

Abstract— In this paper, we introduce a model for managing

abstract data structures that map to arbitrary distributed

memory architectures. It is difficult to achieve scalable

performance in data-parallel applications where the programmer

manipulates abstract data structures rather than directly

manipulating memory. On distributed memory architectures such

abstract data-parallel operations may require communication

between nodes. Therefore, the underlying system has to handle

communication efficiently without any help from the user. Our

data model splits data blocks into two sets -- local data and

remote data -- and schedules the sub-block by availability at

runtime.

We implement the described model in DistNumPy -- a high-

productivity programming library for Python. We go on to

evaluate the implementation using a representative distributed

memory system -- a Cray XE-6 Supercomputer -- up to 2048

cores. The benchmarking results demonstrate scalable good

performance.

Index Terms—HPC, NumPy, High-Productivity, Data-Parallel,

DistNumPy

I. INTRODUCTION

High-productivity programming languages are very popular in

the computational scientific community because they enable

quickly prototyping of numerical problems. Common for most

high-productivity languages is high-level operation on data

structures such as vectors and matrices because they increase

the productivity and remove a broad range of typical errors.

Two high-productivity languages, MATLAB and Python, are

popular in the scientific community precisely because of a rich

set of high-level vector and matrix operations.

It is possible to execute parallel applications written in a

high-productivity language that make use of data parallelism

without reducing the productivity[4, 11]. This is because data

parallelism is ideal for high-level vector and matrix operations.

Data parallelism refers to a parallel model where a single

instruction is distributed between processes based on data

locality. Therefore, data parallelism provides full knowledge

of data distribution and parallelization to all participating

processors, which makes it possible for the runtime system to

Manuscript received February 16, 2012. Mads R. B. Kristensen and Brian

Vinter is with Niels Bohr Institute, University of Copenhagen, Denmark.

Email: madsbk@nbi.dk/vinter@nbi.dk.

execute vector operations seamlessly in

Fig.1, Matrix expression of a simple 5-point stencil

computation example. See Figure 2 for the expression in

MATLAB and Figure 8 for the expression in Python.

Fig. 2, 5-point stencil application that uses Jacobi Iteration in a

fixed number of iterations implemented in MATLAB.

parallel without further assistance from the user. Additionally,

the processors need not communicate when performing data

dependency analysis and scheduling optimizations at runtime.

However, the downside of data parallelism is that it reduces

the programmability because the user is restricted to vector

operations.

When expressing algorithms through high-level vector and

matrix operations, or simply array operations, the user needs a

mechanism to specify a subset of an array. E.g., Figure 1and 2

illustrate how one implements a 5-point-stencil computation in

MATLAB by operating on views of arrays. In contrast,

conventional programming languages would require using

tedious scalar operations with for loops and index arithmetic.

These array views are data structures that maps to arbitrary

distributed memory and thus possible overlapping memory. In

the context of this paper, we will use array views as a synonym

for such abstract data structures that may refer to parts of the

same underlying data.

Array views gives rise to a number of important

performance challenges when combined with data parallelism

where the shared data is distributed across multiple processes.

The problem is that operations on views may translate into

non-aligned distributed array operations, which are difficult to

handle efficiently. We define an aligned distributed array

Managing Overlapping Data Structures for

Data-Parallel Applications on Distributed

Memory Architectures

Mads Ruben Burgdorff Kristensen and Brian Vinter

DOI: 10.5176_2010-2283_2.1.142

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

145 © 2012 GSTF

operation as an operation on arrays that are distributed in a

conformable manner, i.e. the arrays use identical data

distribution. A non-aligned distributed array operation is then

an operation without this property.

In this paper, we will introduce a data model that provides

efficient handling of overlapping data structures. We will

concretize the data model by implementing efficient array

views in the high-productivity language DistNumPy[11],

which interprets NumPy applications as data parallel

applications in a distributed memory environment. In order to

achieve good scalable performance we leverage the work by

[14] who introduce an efficient communication latency-hiding

model.

A. Related Work

Libraries and programming languages that strive to support

parallelism in a high productive manner is a well-known

concept. In a perfect framework all parallelism introduced by

the framework is completely hided from the user while the

performance and scalability archived is optimal. However,

most frameworks require the user to specify some kind of

parallelism -- either explicitly by using parallel directives or

implicitly by using parallel data structures.

High Performance Fortran (HPF)[12] and ZPL[3] are two

well-known examples of data-parallel programming languages

that supports abstract data structures. HPF is a Fortran-based

data-parallel programming language that requires static

compilation for distributed-memory systems[10]. To obtain

good parallel performance the user must align arrays together

to reduce communication[1]. Our data model manages

computation and communication of abstract data structures at

runtime, which enables on-the-fly data dependency analysis.

Using our model the user will not have to align arrays in order

to obtain good parallel performance.

Python extensions, NumPy[13] and SciPy[9], have been

successfully used in scientific computing[6] because their

high-level abstractions are very close to mathematical formulas

and there exist a super rich set of Python packages for almost

any common task. Similarly, MATLAB is very popular

because of a high-level data structure abstraction support.

NumPy, SciPy, and MATLAB are targeting single-node

systems where as our model is targeting multi-node systems.

There exists extension to MATLAB that targets multi-node

systems. MATLAB*P[4] introduces data-parallelism in

MATLAB with support for high-level data structure

abstraction.

II. TARGET DATA-PARALLEL APPLICATIONS

Data-parallel applications are a class of applications that

make use of data parallelism -- either explicitly handled by the

programmer or implicitly handled by the programming

language or library. In this work, we focus on data-parallel

applications written in a high-productivity language where the

programming language, scientific library, and/or runtime

system handles the data parallelism seamlessly.

We target applications with the following properties:

Fig. 3, The Two-Dimensional Block Cyclic Distribution of a

matrix on a 2 x 3 grid of processors.

 The application uses high-level array operations

instead of explicitly programmed for loops.

 The application uses data parallelism to execute

vector/array operation in parallel.

 In order to utilize distributed memory architectures, the

application distribute data evenly across process

using a static distribution scheme.

The application uses data structures that maps to arbitrary

distributed memory, e.g. by using data structures, such as array

views, that may refer to parts of the same underlying data.

A. Data Distribution

 Data parallelism is a classic approach to support distributed

memory architectures. It clearly defines how data and

computation is distributed across processes when combined

with a static distribution scheme. Two-Dimensional Block

Cyclic Distribution is a very popular distribution scheme and it

is used in numerical libraries such as ScaLAPACK[2] and

LINPACK[5]}. It supports matrices and vectors and has a

good load balance in numerical problems that have a diagonal

computation workflow e.g. Gaussian elimination. The

distribution scheme works by arranging all processes in a two

dimensional grid and then distributing data-blocks in a round-

robin fashion either along one or both grid dimensions (Fig.

3); the result is a well-balanced distribution.

B. Array Operations

 High-level array operation is relevant for all kinds of

computations. Some array operations are very domain specific

and other array operations are very general. Element-wise

operations on arrays are an elementary part of most high-

productivity languages and libraries. It simplifies the

programming because it replaces computation loops, including

index arithmetic, with one single operation.

 Element-wise operations take a fixed number of scalar inputs

and produce a fixed number of scalar outputs. E.g., an

element-wise addition takes three array-views as argument:

two input arrays and one output array. For each element, the

operation adds the two input arrays together and writes the

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

146 © 2012 GSTF

result into the output array. Applying an element-wise

operation on a whole array is semantically equivalent to

Fig. 4, Reference hierarchy between the two array data

structures and the main memory. Only the three array-views at

top of the hierarchy are visible from the perspective of the

user.

performing the operation on each distributed array block

individually. This property makes it possible to perform the

distributed element-wise operation in parallel.

C. Array Views

 Array views are essential when expressing algorithms

through high-level array operations. It makes it possible to

apply an operation on a subpart of an existing array without

memory copying. Conceptually, array views form a hierarchy

where each array view points to an underlying ``base''. This

``base'' is then an array that maps directly to a contiguous piece

of memory. We define the two terms, array-base and array-

view, as follows:

 Array-base is the base of an array and has direct

access to the content of the array in main memory. An

array-base is created with all related meta-data when

the user allocates a new distributed array, but the user

will never access the array directly through the array-

base. The array-base always describes the whole array

and its meta-data such as array size and data type are

constant.

 Array-view is a view of an array-base. The view can

represent the whole array-base or only a sub-part of

the array-base. An array-view can even represent a

non-contiguous sub-part of the array-base. An array-

view contains its own meta-data that describe which

part of the array-base is visible. The array-view is

manipulated directly by the user and from the users

perspective the array-view is simply a normal

contiguous array.

For simplicity, array-views are not allowed to refer to each

other, which mean that the hierarchy is flat with only two

levels: array-base below array-view. However, multiple array-

views are allowed to refer to the same array-base. This

hierarchy is illustrated in Figure 4.

III. NON-ALIGNED ARRAY OPERATIONS

Managing overlapping data structures, aka array-view, for

data-parallel applications on distributed memory architectures

gives rise to a number of important performance challenges.

Fig. 5, The data layout of the two arrays M and N and the

three array-views A, B and C in the 3-point stencil application.

The arrays are distributed between two processes using a

block-size of three.

The problem is that element-wise operations on array-views

may translate into non-aligned distributed array operations,

which are difficult to handle efficiently. That is, element-wise

operations on array-views that does not map directly to the

underlying array-base.

For example, a 3-point stencil application uses three array-

views, A, B and C, to express a stencil. When executing on two

processes the two underlying array-bases, M and N, are

distributed according to Fig. 5. It is clear that A and C does not

map directly to the underlying array-bases M and N. Thus, the

result is a non-aligned array operation. In order to execute

such an application the two processes must exchange data

blocks, which mean commutation when executing on a

distributed memory architecture. Therefore, an efficient data

structure model that minimizes communication is vital for the

parallel performance.

IV. MANAGING NON-ALIGNED ARRAY OPERATIONS

The main contribution in this work is a model for managing

non-aligned array operations efficiently. We introduce a

hierarchy of data structures that makes it possible to divided

non-aligned array operations into aligned blocks at runtime

while minimizing the total amount of communication.

The model consists of three kinds of data blocks: base-

blocks, view-blocks and sub-view-blocks, which make up a

three level abstraction hierarchy (Fig. 6).

 Base-block is a block of an array-base and maps

directly into one block of memory located on one

node. The memory block is contiguous and only

one process has exclusive access to the block. The

base-blocks are distributed across multiple

processes in a round-robin fashion according to the

N-Dimensional Block Cyclic Distribution.

 View-block is a block of an array-view and from the

perspective of the user a view-block is a

contiguous block of array elements. A view-block

can span over multiple base-blocks and

consequently also over multiple processes. For a

process to access a whole view-block it will have

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

147 © 2012 GSTF

to fetch data from possible remote processes and

put the pieces together before accessing the block.

To avoid this process, which may cause some

internal memory copying, we divide view-blocks

into sub-view-block.

 Sub-view-block is a block of data that is a part of a

view-block but is located on only one process. The

memory block is not necessarily contiguous but

only one process has exclusive access to the block.

The driving idea is that all array operation is

translated into a number of sub-view-block

operations.

Fig. 6, An illustration of the block hierarchy that represents a

2D distributed array. The array is divided into three block-

types: Base, View and Sub-View-blocks. The 16 base-blocks

make up the base-array, which may be distributed between

multiple processes. The nine view-blocks make up a view of

the base-array and represent the elements that are visible to the

user. Each view-block is furthermore divided into four sub-

view-blocks, each located on a single process.

In this data model, an aligned array is an array that has a

direct contiguous mapping through the block hierarchy. That

is, a distributed array in which the base-blocks, view-blocks

and sub-view-blocks are identical. A non-aligned array is then

a distributed array without this property.

It is straightforward to parallelization aligned array

operations because each view-block is identical to the

underling base-block and is located on a single process. On the

other hand, when operating on non-aligned arrays each view-

block may be located on multiple processes. Therefore, we

have to divide the computation into sub-view-blocks and even

into aligned blocks of sub-view-blocks, which makes the

operation more complex and introduces extra communication

and computation overhead.

At the user level, an array operation operates on a number of

input array-views and output array-views. It is the user’s

responsibility to make sure that the shape of these array-views

matches each other. Since all arrays uses the same block size,

this guaranties that all involved view-blocks match each other.

Thus, it is possible to handle one view-block from each array

at a time. In order to compute an array operation in parallel all

available processes computes a view-block using the following

steps:

1) The process fetches all the remote sub-view-blocks that

constitute the involving input view-blocks.

2) The process aligns the sub-view-blocks by dividing

them into the smaller blocks that are aligned to each

other. If some output sub-view-blocks is not located

on the process it will use temporary memory for the

output.

3) The process applies operation on these aligned blocks.

4) The process sends temporary output sub-view-blocks

back to the original locations.

Fig. 7, The sub-view-block alignment of the first view-block in

the three array-views A, B and C (Fig. 5).

A. References

To demonstrate how the model works we will walk through

the execution of the first block in a small 3-point stencil

application. Two processes are executing the stencil

application with the two array-bases, M and N, using a block-

size of three elements. This means that three contiguous array

elements are located on each process (Fig. 5). The application

uses two input array-views, A and B, and one output array-

view, C, to compute the 3-point stencil.

In order to compute the first view-block in the three array-

views, process 0 divides the computation into two parts (Fig.

7). The first part, which consists of the first two elements,

needs no communication since all elements are located locally.

The process can therefore apply the operation directly on the

first two elements of each array.

The second part, which consists of the third element, needs

communication. The two processes will transfer the third

element in A from process 1 to process 0. Even though the

third element in C is located remotely, no communication is

need now because C is the output. Instead, a temporary

memory location is used for the output element. The process

will apply the operation when the communication the element

is finished. When process 0 finishes the computation of part 2

the process transfer the third element back to process 1.

B. Latency-Hiding

It is essential to the performance of non-aligned array

operations that the execution hides communication latency

behind computation. In order to accomplish this we make use

of the Latency-Hiding model introduces in [14]. Using this

model, we initiate non-blocking communication at the earliest

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

148 © 2012 GSTF

time and only do computation after all communication has

been initiated. Furthermore, we check for communication

completion between multiple computation operations to make

sure that there is progress in the communication layer. The

execution flow is as follows:

1) Initiate all non-depended communication operations.

2) Check if any communication operations has been

finished in a non-blocking manner and insert

operations that have no dependencies into the ready

queue.

3) When only computation operations are ready, execute

one of them and move new operations that have no

dependencies into the ready queue.

4) Go back to step one if there are unfinished operations

or else terminate.

The algorithm maintains the following three invariants:

1) All ready operations are in the ready queue.

2) Computation operations are executed only when there

is no communication operation in the ready queue.

3) Communication operations are checked for completion

when there is no computation operation in the ready

queue.

Table 1. Cray XE-6 Supercomputer
Processor AMD Opteron 6172

Clock 2.1 GHz

Peak Performance per Core 8.4 Gflops

Cores per NUMA Domain 6

NUMA Domains per Node 4 (packaged in 2 sockets)

Total Cores per Node 24

Private L1 Data Cache 64 KB

Private L2 Data Cache 512 KB

Shared L3 Cache per Socket 12MB

Memory Bandwidth 25.6 GB/s

Memory per Node 32GB DDR3-1066 ECC

Compiler PGI 11.3

Math Library Cray Scientific Library 10.5

Interconnect Gemini 3-D Torus

Peak Bandwidth (per direction) 7 GB/s

MPI Cray MPI 5.1.4

V. DISTRIBUTED NUMERICAL PYTHON

In order to demonstrate the efficiency of our model for

managing abstract data structures, we optimize the numerical

Python library Distributed Numerical Python (DistNumPy)

[11] using our model. DistNumPy is a new version of

NumPy[13] that parallelizes array operations in a manner

completely transparent to the user -- from the perspective of

the user, the difference between NumPy and DistNumPy is

minimal. DistNumPy can use multiple processors through the

communication library Message Passing Interface (MPI)[7].

However, DistNumPy does not use the traditional single-

program multiple-data (SPMD) parallel programming model.

Instead, the MPI communication in DistNumPy is fully

transparent and the user needs no knowledge of MPI or any

parallel programming model.

The only difference in the API of NumPy and DistNumPy is

the array creation routines. DistNumPy allow both distributed

and non-distributed arrays to co-exist thus the user must

specify, as an optional parameter, if the array should be

distributed. The following illustrates the only difference

between the creation of a standard array and a distributed

array:

#Non-Distributed
A = numpy.array([1,2,3])
#Distributed
B = numpy.array([1,2,3], dist=True)

The first version of DistNumPy does not support efficient

non-aligned array operations. Its focus was scientific

applications that uses aligned distributed array operations,

such as Monte Carlo and N-body simulations. To address this

shortcoming we introduce our model for managing abstract

data structures efficiently. We expect good performance and

scalability when combining this implementation with the

latency-hiding model introduced in [14].

The implementation of DistNumPy is open-source and

freely available (http://code.google.com/p/DistNumPy).

Fig. 8, 5-point stencil application that uses Jacobi Iteration in a

fixed number of iterations implement in DistNumPy.

VI. EXPERIMENTS

In this section, we will evaluate the performance impact of

our model for managing non-aligned array operations. We

conduct all experiments on an Cray XE6 supercomputer

(Table 1). The system systems consist of multi-core Non-

Uniform Memory Access (NUMA) shared-memory nodes

where each node has multiple NUMA domains. CPU cores

within the same NUMA domain have uniform data access

latency to the local memory while CPU cores of different

NUMA domains would have non-uniform data access

latencies. We will focus on the MPI communication overhead

associated with non-aligned array operation and we will

therefore only execute one MPI-process per NUMA domain.

To evaluate the performance, we will compare aligned array

operations with non-aligned array operations. We use a 5-point

stencil application that uses Jacobi Iteration in a fixed number

of iterations. Figure 8 is this application implemented in

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

149 © 2012 GSTF

http://code.google.com/p/DistNumPy

Python using the DistNumPy library. It expresses the 5-point

stencil using five array views that are shifted one element in

each direction and thereby non-aligned operations (Fig. 1). In

order to benchmark the efficiency of the data structures

hierarchy we introduce in this work, we compare this

application with a synthetic version where all operations an

aligned and do the same amount of computation. Because

Fig. 9, Weak scaling of aligned and non-aligned array

operation.

Fig. 10, Weak scaling of aligned versus non-aligned array

operation.

of the exclusively use of aligned operation the synthetic

version requires no communication. It should be emphasize

that the synthetic version is purely for benchmark purposes

and do no meaningful work.

The unfavorable computation-communication ratio in the 5-

point stencil application makes it difficult to achieve good

scaling performance. The asymptotic computational

complexity is O(n) thus increasing the problem size does not

improve the scaling performance significantly.

For the experiment, we calculate the FLOPS based on the

floating operation counts of the ideal sequential algorithm and

the measured execution times. Additionally, we compare the

results with the linearly scaling performance, which we

calculate by extrapolating the sequential FLOPS performance

of NumPy. We use this comparison as an upper bound of the

achievable scalable performance. We perform weak scaling

experiments, in which the problem size is scaled with the

number of CPU-cores in the executions. The experiment goes

from 8 to 2048 CPU-cores where the CPU-cores and problem

size doubles between each execution.

A. Results

Figure 9 shows the result of the experiment. Overall the

result is very promising, we see a linear increase of

performance in both the aligned and non-aligned version. The

aligned version demonstrates a speedup of 1514 at 2048 CPU-

cores compared to a sequential execution, which translates into

a CPU utilization of 74%. The non-aligned version

demonstrates a speedup of 948 at 2048 CPU-cores compared

to a sequential execution, which translates into a CPU

utilization of 46%.

To analyze the experiment result further we divide the

execution time into three categories in Figure 10. The

execution time in each category is the average timing from

each process.

 Computation is the time used on actually computing

element values. It should be fairly static through all

the executions. However, variations in the data

distribution may result in different execution times.

 Blocking is the time used on waiting for

communication to finish. Each process will do as

much work as possible before interring a blocking

state. However, as the number of CPU-cores

increases the chances that the job scheduler on the

Cray system allocates distant nodes to a job also

increases. Furthermore, the torus network

performance may suffer from the communication

traffics caused by other jobs.

 Overhead is the time used on handling the data

structures associated with array operations. The

overhead is proportional with the number of sub-

view-blocks involved in the computation. Since the

number of sub-view-blocks increases with the

problem size, the overhead also increases. In

addition, the number of sub-view-blocks increases

even more when executing non-aligned operations.

As expected the blocking time is relatively small for all the

aligned operation executions. Even at 2048, the blocking time

is less the 2% of the total execution time. On the other hand,

the blocking time for the non-aligned version is not as good.

At 2048, the blocking time is 18% of the total execution time.

This increase in blocking time is primarily because of an

increase in communication, but also because of the MPI

implementation by Cray. Currently, the Cray MPI for the Cray

Gemini network has limited overlapping support for non-

blocking MPI communication.

In the aligned operation version, the overhead time

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

150 © 2012 GSTF

increases from 0.4% to 24% of the overall execution time.

This overhead incensement is a direct result of the increased

problem size. In the non-aligned operation version, the

overhead increases more drastically -- going from 6% to 34%

of the overall execution time. This is because the non-aligned

operations results in four times the number of sub-view-blocks

-- one sub-view-block per direction in the stencil computation.

VII. CONCLUSION

The single execution flow with abstract data operations is

both the main strength and weakness of data-parallel

programming models: two most notorious types of parallel

programming bugs, data races and deadlocks, simply do not

exist in data-parallel applications because there is only one

execution thread. However, flexible abstract data operations

for data-parallel applications require a very efficient runtime

system in order to have good scalable performance.

In this work, we have successfully shown that by splitting

data blocking based on locality it is possible to efficiently

managing abstract data structures that map to arbitrary

distributed memory. We demonstrate scalable performance of

a Jacobi Iteration application up to 2048 CPU-cores.

ACKNOWLEDGMENT

This research is supported by the Danish Strategic Research

Council, grant #09-063770. This research used resources of

the National Energy Research Scientific Computing Center,

which is supported by the Office of Science of the U.S.

Department of Energy under Contract No. DE-AC02-

05CH11231.

REFERENCES

[1] S. Benkner, P. Mehrotra, J. Van Rosendale, and H. Zima. High-level

management of communication schedules in HPF-like languages. In

Proceedings of the 12th international conference on Supercomputing,

ICS ’98, pages 109–116, New York, NY, USA, 1998. Institute for

Software Technology and Parallel Systems, University of Vienna. ISBN

0-89791-998-X.

[2] L. S. Blackford. ScaLAPACK. In Proceedings of the 1996 ACM/IEEE

conference on Supercomputing (CDROM) - Supercomputing 96 Super-

computing 96, page 5, 1996.

[3] B. L. Chamberlain, S.-E. Choi, E. C. Lewis, C. Lin, L. Snyder, and D.

Weathersby. ZPL: A Machine Independent Programming Language for

Parallel Computers. Software Engineering, 26(3):197–211, 2000.

[4] R. Choy and A. Edelman. MATLAB*P 2.0: A unified parallel

MATLAB. Technical report, Massachusetts Institute of Technology,

January 2003.

[5] J. Dongarra, J. Bunch, C. Moler, and G. Stewart. LINPACK users’

guide. SIAM, 1, 1979.

[6] P. F. Dubois. Guest Editor’s Introduction: Python: Batteries Included.

Computing in Science Engineering, 9(3):7–9, may-june 2007. ISSN

1521-9615.

[7] W. Gropp, E. Lusk, and A. Skjellum. Using MPI Portable Parallel

Programming with the Message Passing Interface. The MIT Press,1994.

[8] M. U. Guide. The MathWorks. Inc., Natick, MA, 5, 1998.

[9] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific

tools for Python, 2001.

[10] K. Kennedy, C. Koelbel, and H. Zima. The rise and fall of High

Performance Fortran: an historical object lesson. In Proceedings of the

third ACM SIGPLAN conference on History of programming

languages, HOPL III, pages 7–1, New York, NY, USA, 2007. ACM.

ISBN 978-1-59593-766-7.

[11] M. R. B. Kristensen and B. Vinter. Numerical Python for Scalable

Architectures. In Fourth Conference on Partitioned Global Address

Space Programming Model, PGAS’10. ACM, 2010. ISBN 978-1-4503-

0461-0.

[12] D. Loveman. High Performance Fortran. IEEE Parallel & Distributed

Technology: Systems & Applications, 1(1):25, 1993.

[13] T. E. Oliphant. Python for Scientific Computing. Computing in Science

and Engineering, 9:10–20, 2007. ISSN 1521-9615.

[14] M. Ruben Burgdorff Kristensen and B. Vinter. Managing

Communication Latency-Hiding at Runtime for Parallel Programming

Languages and Libraries. Arxiv Preprint arXiv:1201.3804v1, jan 2012.

Mads Ruben Burgdorff Kristensen is a PhD student at the Niels Bohr

Institute, University of Copenhagen. His primary PhD study is in

Supercomputing and Multi-core architectures. Current work includes

seamlessly parallelism in scientific Python applications with special focus on

exploiting distributed memory architectures.

Brian Vinter is Professor at the Niels Bohr Institute, University of

Copenhagen. His primary research areas are Grid computing,

Supercomputing and Multi-core architectures. He has done research in the

field of High Performance Computer since 1994. Current research includes

methods for transparent utilization of parallelism in scientific applications

with special focus on exploiting distributed memory architectures such as

CELL-BE and BlueGene.

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

151 © 2012 GSTF

