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Abstract — The heterogeneous design of multi-core processors, 
such as the Cell processor, introduced new challenges in porting 
high-level languages. Our project is developing tools that hide the 
underlying details of the Cell processor and eases parallel 
programming. We present a Virtual SIMD machine (VSM) 
paradigm that can be used to parallelize array expression 
automatically. The novelty is the use of a virtual SIMD machine 
model to completely hide  the underlying details required for 
programming the Cell processor. The VSM paradigm can also be 
used to develop an  automatic parallelizing compiler for the Cell 
Broadband Engine (Cell BE).  In this paper we give an overview 
of the VSM interface and present preliminary results that show 
the performance of our VSM and its behavior on multiple 
accelerator cores using basic arrays operations. 

Keywords-component; High-level Languages, Virtual Machine, 
Parallel techniques, Multicore Compiler. 

I.  INTRODUCTION 

Many application areas, such as image processing and 
scientific computation, have enough parallelism to make good 
use of the multi-core technology, yet multi core architectures 
are still not fully used. This is due to the lack of parallel 
programming tools that can exploit parallelism and 
automatically parallelizing code for multi-core machines [2][3]. 
The most commonly used parallel programming tools 
nowadays are OpenMP and MPI  [1][3][6]. These models offer 
semi-automatic parallelization tools that depend mainly on 
directives and run-time routines in selecting and parallelizing 
code segments.  

Our project aimed at designing a Virtual SIMD Machine 
(VSM) model that a complier can use to parallelize large data 
structures, such as arrays, automatically. The advantages of this 
approach are: Firstly it reduces the complexity of fully 
automatic parallelization by focusing only on array 
expressions. Secondly, data parallelism is already exhibited in 
the array expressions. Thirdly, it eases the task of developing 
programming parallel applications by concentrating on 
algorithms rather than on parallelization issues such as 
communication, partitioning, alignment, and synchronization.  

We designed and implemented a VSM model that hides the 
Cell heterogeneity. It can be now used to automatically 
parallelize and execute array operations on the Cell accelerator 
cores. The VSM is a register-based virtual machine that is 

designed mainly to access the Cell's accelerator cores. Our 
VSM is a language-independent implementation written in  
C++. It is built of two co-operating interpreters, one for the 
Cell’s master processor and one for the accelerator cores. The 
master’s interpreter basically is stub routines that are 
responsible for data partitioning, communication and 
scheduling micro-tasks to execute in parallel on the Cell 
accelerator cores. 

This paper briefly introduces the Cell processor. It then 
presents an overview the VSM paradigm and talks about the 
main challenges involved in designing and optimizing our 
VSM. The last section shows the outcome of the experiments 
that were conducted to assess the efficiency of our VSM and 
looks at the preliminary results of running basic linear algebra 
operations on the Cell processor.  

II. THE CELL BE ARCHITECTURE 

A. Overview 

The Cell BE, or Cell, is a heterogeneous multi-core 
processor. It was design mainly for multimedia applications[5], 
and has used in other areas such as high performance 
computing. Cell BE has two quite distinct processors: a 64-bit 
PowerPC Processor Element (PPE) and eight Synergistic 
Processor Elements (SPEs) [3]. Both PPE and SPEs support 
SIMD operations on 128 bit registers, but they have two 
different instruction sets; one for the PPE and one for the 
SPEs[5][8]. The PPE has 3 levels of storage (512 MB RAM, 
64KB L1 and 512KB L2 cache) and 32 x 128-bit vector 
registers. Each SPE has only 256KB Local Store (LS) and 128 
x 128-bit registers. The SPE local store is quite distinct from, 
and does not shadow or cache, the main memory.  

B. Communication Within the Cell Processor 

Each SPE has also a Memory Flow Controller (MFC) to 
handle communication and data transfers between the PPE and 
the SPEs. The MFC provide three means of communications: 
Mailboxes, Signal Notification Registers and Direct Memory 
Access (DMA) mechanisms. The first two  mechanisms can be 
used to exchange 32-bit messages between the PPE and the 
SPEs. The Cell’s DMAs operations, such as GET and PUT, 
can be used to move data between the main memory and local 
stores. A DMA’s size can range up to 16KB and must be a 
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multiple of 16 bytes. To transfer data between the PPE and the 
SPEs using a DMA operation, A DMA requires main memory 
address, local storage address, the size of data to be transferred 
and a flag to group DMAs. What is important here is the Cell 
constrains DMA transfers. It required both addresses to be 
aligned on 16-byte boundaries or 128-byte boundary for better 
performance [7]. DMA transfers cannot be used  for updating 
data shared by multiple SPEs. Instead, Cell provides special 
atomic DMA operations, such as Getllar and Putllc. The 
―Getllar‖ operation locks a cache-line (128B) and reserves it 
before transferring the 128 byte from the main memory to LS. 
The ―Putllc‖ transfers a 128 byte from LS into the main 
memory only if the cache-line lock is reserved. Our VSM uses 
these atomic operations for synchronization purposes.  

C. Programming  Cell 

The Cell processor potentially offers high levels of 
parallelism, but it is not easy to program due to its 
heterogeneity of memory structures and instruction sets. The 
two programming languages that are currently functioning on 
the Cell processor are C/C++ and FORTRAN. These 
languages support a number of parallel programming models 
such as OpenMP, Sieve C++ and Offload. Recent releases of 
the GNU tool chain and IBM XL offer compilers for C/C++ 
and FORTRAN on both architectures and support OpenMP 
for Linux platform. 

 

III. THE VIRTUAL SIMD MACHINE (VSM) PARADIGM  

The VSM is an interface that designed to hide all the 
underlying details of the Cell BE architecture. The VSM 
paradigm is based on emulation techniques that imitate a SIMD 
instruction set on the SPEs using a Virtual SIMD Instruction 
(VSI) set and virtual registers. From the PPE point of view, the 
VSIs are implemented as stub routines that can be invoked 
once the required information, such as the virtual register 
number(s) and the starting addresses of the arrays to be 
processed, is supplied. A compiler can use this interface to 
evaluate arrays expressions on one or more SPEs 
automatically. Array languages compilers, in particular, can be 
extended to automatically incorporate the VSIs by 
decomposing high level array expressions into sequences of 
operations (micro-tasks) that can then be executed in parallel 
on the SPEs.  The PPE stub routines are also available as a set 
of C API library routines. These API routines can be explicitly 
called from any programming language to perform array 
operations on the SPEs without the need to do any data 
partitioning, communication and synchronization processes. 

 

A. Virtual SIMD Instructions   

The VSIs are of two address register to register format. The 
VSIs are a set of RISC like register load, operate, store 
operations. The VSM register file consists of 8 virtual (vector) 
registers that can be used in computation operations or can be 
associated with DMA transfers to load and store data. From a 
compiler point of view, each VSI requires three PowerPC 

assembly instructions: One instruction supplies the 
destination/source virtual register's number. The second 
instruction loads either an effective address in case of the Load 
and the Store operations or the second virtual register's number 
which represents the second operand in a computation 
operation. The last assembly instruction  is a call instruction 
that invokes a PPE stub routine. 

B. VSM Message Protocol 

The messaging protocol depends mainly on a mailbox 
mechanism to communicate between the PPE and the SPEs. 
The protocol consists of two distinct structures: forward  
messages and return messages. The forward messages are 
issued by the PPE to order the SPEs to execute an operation. 
The return messages (acknowledgments) are sent from the 
SPEs to the PPE.  The messages can be in either one 32-bit 
word or two 32-bit words format; see Fig. 1 (a) and (b). The 
One-word format is used for computation operations while the 
two word format is used for memory access operations such as 
load and store. The messages must contain the operation code, 
the virtual register numbers, and, for Load or Store, a main 
store address. 

 

C. The PPE Interpreter   

The PPE interpreter is a set of stub routines that are 
basically responsible for data partitioning and communication. 
All stub routines have a similar task that can divided into four 
main steps:  

 Partitioning data in blocks by computing the starting 
address of the data block to be used on each SPE. 

 Combining passed parameters with a unique 
operation code and the starting address (if needed) 
into message(s). 

 Writing the messages into the SPE's Inbound 
mailboxes. 

 Waiting for a completion acknowledgment from the 
SPEs (if needed). 
 

Most of the PPE routines were implemented in nonblocking 
mode to allow the PPE to continue its execution once the 
messages are delivered to the target SPEs and consequently 
allows overlapping operations. Blocking routines such as 
Store, however, stall the PPE until it receives acknowledgment 
with the completion of the requested operation from the SPEs, 
and they are relatively costly. 

 

D. The SPE Interpreter  

The SPE interpreter is a program that runs constantly on 
each SPE in the background. The program frequently checks if 
there is any message deposited into the SPE’s Inbound 

mailbox. If a message dispatched into the inbound mailbox, 
the SPE program then pulls the message and the inbound 
mailbox will be automatically emptied. As soon as the 
message(s) is pulled, the PPE continues its execution, and the  



SPE program extracts the information sent within the pulled 
messages and starts performing the corresponding operation. If 
the requested operation is a blocking operation, the PPE then 
has to wait for an acknowledgment with the completion of the 
operation from the SPEs. The two very important issues that 
the SPEs have to handle during accessing memory are 
alignment  and synchronization. We shall discuss these two 
issues shortly. 

IV. DESIGN CHALLENGES 

This section discusses the challenges encountered during 
the development of the VSM.  

 

A. Virtua SIMD Registers 

The VSM depends on DMA transfers to load/store data 
from/to main memory. The challenge here is to determine the 
appropriate DMA (virtual register) size. The size should be a  
compromise to balance the communication overhead and 
transfer costs. That is, not too big and not too small. We 
conducted a number of experiments for this purpose, and we 
found that the best virtual register size is 4*P KB where P is 
the number of the SPEs.  The tests showed, on the other hand, 
using register smaller than 4KB degraded the performance 
because small data transfers do not hide DMA overhead cost.  
 

B. Alignment  

The alignment problem emerges here because of the 
architecture’s memory alignment constraints. Alignment is 
also critical to performance because DMA must be aligned to 
a 128 bytes boundary for better performance. We developed 
two algorithms to handle the alignment on load and store 
operations. The algorithms can be used for any data type. In 
what follows, let define ―MM_E‖ and ―MM_A‖  as the 
Effective and the Aligned addresses on the main memory 
respectively, ―LS_E‖ and ―LS_A‖ to be the Effective and the 
Aligned addresses on the local storage respectively, VR_S to 
be the size of a virtual register and TB to be temporary buffer 
on the SPE of size VR_S+128, T is temporary buffer of size 
128 bytes. Assume also that the register name is a starting 
address on an SPE’s LS and that DMA transfers are aligned on 
128-byte boundary on both sides. 
 

1) Load Operation 
The following algorithm handles the alignment problem 

when loading from main memory into an SPE’s LS: 
 
– Get effective address (MM_E)  
– AB=MOD(MM_E,128)  
– MM_A=MM_E - AB  
– If AB = 0  

Get VR_S bytes start from MM_A into LS_E 
– else  

Get VR_S+128 bytes start from MM_A into TB 
Copy VR_S bytes start from TB+AB to LS_E 
 

 

2) Store Opertion 
Again, due to the alignment constraints, writing back 

unaligned data from the SPEs requires reading and merging 
bytes from the main memory before rewriting those bytes as 
part of a DMA. We developed an algorithm that can be used 
by one or multiple SPEs to store unaligned data into main 
memory. The algorithm, as shown in Fig. 3, is based on 
operation-dividing technique in which each SPE’s data block 
is divided into three parts: Head, Middle and Tail, see Fig. 2. 
The main advantage of this technique is that it allows 
overlapping DMA transfers within one SPE and among the 
used SPEs and suites well the architecture’s resources.  

 
The size of the Head and Tail was chosen to be 128 bytes 

for two reasons: First,  all DMA transfers are aligned on a 128 
bytes boundary, and secondly to tune our algorithm with the 
Cell’s  resources. The Cell offers atomic DMA operations, 
such as getllar and putllc that can be used to set, reserve and 
release locks on 128 bytes (cache line size). Given that the 
size of the Head and the Tail is an aligned 128 bytes block,  
the Middle portion size should be 128 bytes smaller than the 
virtual register size; that is, VR_S -128 bytes. 

 
The algorithm for storing unaligned data is shown in Fig. 3, 

and it works as following: it performs an aligned read of 128 
bytes including the first part of the block (the Head), updates it 

Opcode  …………….   Register No 
0               7                                                      24                 31 

   ………. ..  Effective Address  ………..   
0                                                                                            31 

Figure 1 (a):  Load and Store Messages 
 

Opcode  …………….  Source 
Register 

Destination 
Register 

0              7                                     16           2324                31  
Figure  1 (b):  Basic Operations Message 

 
 
 

Virtual Register  

Aligned address  
Start Address  

    SPE0          SPE1           SPE2           SPE3 

Head/SPE1                Middle/SPE1                  Tail/SPE1 
Tail /SPE0                                                 Head/SPE2 

Figure 2: Splitting Data Block for Storing Process 
 



and then writes it back into main memory. It then aligns (if 
needed) the Middle part and writes it back into the main 
memory. The final step also performs an aligned read of 128 
bytes including the last part of the block (the Tail), updates it 
and then writes it back into main memory.  

 

C. Synchronizaion 

In the alignment algorithm shown in Fig. 3, the Head and 
Tail of an SPE’s block  are apparently shared between the PPE 

and one of the SPEs or among the SPEs, and hence shared 
data, such as the Heads and Tails, must be over-written in a 
proper order. The synchronization process, in which we use 
locks to updating the Heads and Tails, is as follows: first an 
SPE requests to set a lock on 128 bytes from the main memory 
before reading it. Once the lock is granted, the SPE reserves 
the lock on the 128 bytes until it reads, updates and then writes 
the 128 bytes back. This synchronization process keeps 
memory coherent and avoids any race conditions that could be 
arise as different SPEs  attempt to update the Heads and the 
Tails. The race condition problem is solved by reserving a 
lock on each 128byte until the granted SPE updates the data 
and then releases the lock.  

 

D. Optimization 

In regard to our VSM, storing unaligned data is considerably 
more costly than any other operation. For this reason, the 
algorithm for storing unaligned data was designed with the 
intention to optimize the instruction cost. The optimization 
technique we used here is based on the order of the three 
DMA transfers for storing the Head, Middle and Tail. The 
order of these DMAs, as presented by the algorithm in Fig. 3, 
provides some overlapping within one SPE and among the 
SPEs. The overlapping within one SPE, for example, occurs 
while storing the Middle part and the Tail. After an SPE issues 
a DMA request to the MFC for transferring the Middle part, 
the MFC takes control of the transferring process, meanwhile 
the SPE continues with processing the Tail by requesting a 
lock…etc. Once the Tail is stored back,  the SPE should then 
verify if the Middle part has been completely transferred. The 
DMA’s order also allows SPEs to overlap updating the Heads 
and Tails. This illustrated in Fig. 2, when SPE0 is locking its 
Head, SPE1 can be easily granted a lock on its Head too 
because the SPE1’s Head is part of the SPE0’s Tail. 

 

V. PRELIMIARY RESULTS 

This section first discusses the individual virtual SIMD 
instructions and their latency and then shows the performance 
of the VSM on basic linear algebra operations. The VSM 
interpreters and all testing programs were compiled, 
assembled and linked using GNU tool chain. We simulated a 
generated-compiler code using C code to test the effectiveness 
of our VSM in parallelizing arrays operations automatically. 
The C code explicitly calls the PPE stub routine. All tests were 
performed on a Playstation3 (PS3) running Fedora 7 Linux 
using single-precision floating point arrays and virtual SIMD 
register of size 4KB.  
 

A. Virtual SIMD Instruction Latency 

The average clock cycles per 32 bit word per virtual SIMD 
instruction, such as Load, Store and Arithmetic, is shown in 
Fig. 4. The arithmetic instructions are operate on single-
precision float point values. The Load and arithmetic 
instructions costs are almost the same because they are non 
blocking instructions, but the Store is relatively costly because 
it is blocking instruction. 

 
The cost of non blocking 32-bit instructions, such as load 

and arithmetic operation, vary between 1.1 clock cycles using 
one SPE to 0.6 cycles when four SPEs were used. The 
unaligned load operation, as you can see, costs slightly  more 
than arithmetic operation because they are non blocking 
operations, but the variation is result of loading unaligned data 
which normally costs loading additional 128 bytes.  

 

– AB = MOD(MM_E,128) 
– MM_A = MM_E - AB 

 
//  HEAD (PARTIALLY  UPDATED) 
– Set lock on 128 bytes start from MM_A 
– Get 128 bytes start from MM_A into T 
– Append the results to the tail of T 
– PUT back T, and release the lock 

 
//   UPDATE THE MIDDLE PART 
– MM_A = MM_A + 128 
– LS_E = LS_E + 127 – AB 
– MS = VR_S – 128 
– Copy MS bytes start from LS_E to LS_A  
– PUT MS bytes back start from LS_A to MM_A 

 
//  TAIL (PARTIALLY  UPDATED) 
– MM_A = MM_A + MS 
– Set lock on 128 bytes start from MM_A 
– Get 128 bytes start from MM_A into T 
– Append the results to the head of T. 
– PUT back T, and release the lock 
 
Figure  3. Unaligned Store Algorithm  

 



On the other hand, The Store instruction is relatively costly 
because it implemented as a blocking operation and also 
handles the synchronization process. This explains why 
storing unaligned data using one SPE costs about 11 cycles 
that is up to 10 times as much as unaligned load and up to 5 
times (3 cycles) when using 4 SPEs. The average cost of 
storing aligned 32-bit word is reduced be a factor of 3 as 
compared to storing unaligned 32-bit word. However, the 
Store instruction cost can relatively be reduced by combining 
as much operations as possible per an array expression. 

 
 Fig. 4 also points out that the cost of nonblocking 

instructions  are reduced by roughly a factor of p0.42 where p is 
the number of processors. Nonblocking instructions are not 
fully scalable because their low-latency does not allow a time 
window to overlap communication and reduce the cost. On the 
contrary, blocking instructions are almost fully scalable 
because the opportunity to overlap communication and data 
transfers is high. This can be seen clearly on the Store 
instruction latency which was reduced by a factor of P0.94, 
where P is the number of processors. 

 
Table 1: Basic Linear Algebra Kernels  

Kernel Description Expression 
 

Virtual Instructions  

L
oa

d 

St
or

e 

M
ul

ti
pl

y 

A
dd

 

Sq
ua

re
 

R
oo

t 

Replicate a scalar v1 = s √ √ x x x 

Vector Reduction  s = redPlus(v1) √ √ x √ x 

Square Root v1 = sqrt ( v2 ) √ √ x x √ 

Cross Product  v1 = v2 * v3 √ √ √ x x 

Dot Product   s= v1 . v3 √ √ √ √ x 

Matrix-Vector 
Product 

v2 = A * v1; √ √ √ √ x 

Rank-1 Update A = A + v1* v2
T √ √ √ √ x 

 

B. The VSM Parallel Performance 

To assess the  performance of our VSM, we run a number 
of BLAS-1 and BLAS-2 kernels on the Cell’s two core types. 

The experiments include classical vector operations such as 
reduction operation, cross and dot products of two vectors and 
typical examples of BLAS-2 such as a matrix-vector  product 
and rank-1 update operations [11]. Table 1 lists the BLAS 
kernels and the virtual instructions involved in evaluating each 
expression. The variables in Table 1 are of different ranks. For 
example, A is a square matrix of size n x n, while v1, v2 and v3 
are vectors of size n and s is a scalar. We tested the BLAS 
kernels using single precision floating-point arrays of size n = 
4096) and virtual SIMD registers of size 4KB (1024 floating-
point values) and run 106 times.  
 

Before we discuss the VSM  progress, it is important to 
point out that the reduction operation under our VSM is 
implemented as a blocking operation because the PPE has to 
wait for the used SPEs to return their sums. The SPEs use 
DMA mechanism to return the results. As the SPEs return 
their results, the PPE adds these results. Once all the SPEs 
finish, the PPE returns the sum. As a result of that kernels that 
require such operations are expecting to degrade the SPE’s 

performances.  
 
Fig. 5 presents the performance of the selected BLAS 

kernels when run on one SPE relative to the PPE. The 
achieved speedups on the different kernels using one SPE 
compared to the PPE range from 2.5 times to 6 times. The 
average SPE performance on the Reduction, Dot product, 
Matrix-vector product and Rank-1 Update kernels was around 
3 times as fast as the PPE. The SPE performance was 
degraded here because each kernel requires calling to a 
reduction operation (blocking operation) which is relatively 
costly as was mentioned in the previous section. The SPE 
performance on the Square Root operation is also slower than 
its performance on the Reduction and  Cross Product because 
the square root operation is considered as a complex SPE 
operation [7]. The best performance, however, was achieved  

 
 

Figure 5. Performance of the PPE vs one SPE 
 

 
 

Figure 4. Virtual SIMD Instructions Latency 



on the Replicate and Cross Product kernels because their 
evaluations do not require a call to a blocking operation a side 
of the storing operation which is performed by all kernels.  

 
Thus far, we have looked at the performance of a single 

SPE as compared to the PPE. To explore how the VSM 
parallelizes array operation automatically on multiple SPE, we 
run the same kernels given in Table 1 in parallel using 2 and  4 
SPEs. We used 2 and 4 for divisibility purposes. The  length 
of the virtual register that is used in these experiments was 
4KB. The size is not dividable by 6, and we can not used 8 
SPEs because only 6 SPEs are available on the PS3. Fig. 6 
shows a sample of  the C code that utilizes  our VSM as API 
routines. Fig. 7 shows the scalability attained using multiple 
SPEs. The  speedups obtained from using multiple SPEs was 
near-linear. The VSM showed near-linear performance with 
an overall speedup of a factor P 0.84 where P is the number of 
processors. The maximum speed up, however,  gained on  the 
Square Root kernel, it was by a factor of P 0..94 and the 
minimum was about P 0.75 on the rank-1 Update kernel.  

 

VI. CONCULSION 

 
We presented here a VSM approach to abstract and hide all 
the details of the Cell heterogeneity. The VSM can be used as 
an API by programming languages such as C, but it is also a 
suitable target code for optimizing array language compilers. 
We have integrated it into the Glasgow Vector Pascal 
compiler[9]  where it allows us to parallelize array operations 
automatically. Space precludes discussion of this use of the 
VSM in the current paper. Suffice to say here that this has 
allowed unchanged applications code to be ported between 
and automatically parallelized on both Intel multi-core and 
Cell architectures. This approach eases the task of developing 
programming parallel applications by concentrating on 
algorithms rather than on parallelization process. The 
preliminary results to be reported elsewhere show that this 
approach can be used to parallelize data-intensive applications 
across both homogenous and heterogeneous multi-cores chips.   

 
   The performance of new versions of VSM can be improved 
by using special intrinsic functions, such as Multiply and Add 
function, because many basic linear algebra kernels require a 
reduction operation.        
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Figure 7. The SPEs Performance 
 

// Replicate  value "1.25" into the SPE’s virtual register (VR0) 
repVec(0,1.25); 

 
// Load vector v1 from the PPE into the SPE’s VR1 
 loadVec(1,v1); 
 
// Perform Cross Product on the SPEs VR0 & VR1 
// and keep the result in the SPE’s VR 0 
 mulVec(0,1); 
 
// Store  the contents VR0 into vector v2 on main memory 
 storeVec(0,v2); 
 
// Perform reduction operation: load  vector v2 in a VR of size N, 
// the  sum the elements of  VR and return the sum into variable S. 
 S = redPlus(v2,N); 

 
Figure 6. A Sample C Code for Calling the VSM Routines 
Performance 
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