
A Virtual SIMD Machine Approach for Abstracting
Heterogeneous Multicore Processors

Youssef Gdura
Department of Computer Science,

Glasgow University,
Glasgow, UK

ygdura@dcs.gla.ac.uk

Paul Cockshott

Department of Computer Science,
Glasgow University,

Glasgow, UK
wpc@dcs.gla.ac.uk

Abstract — The heterogeneous design of multi-core processors,
such as the Cell processor, introduced new challenges in porting
high-level languages. Our project is developing tools that hide the
underlying details of the Cell processor and eases parallel
programming. We present a Virtual SIMD machine (VSM)
paradigm that can be used to parallelize array expression
automatically. The novelty is the use of a virtual SIMD machine
model to completely hide the underlying details required for
programming the Cell processor. The VSM paradigm can also be
used to develop an automatic parallelizing compiler for the Cell
Broadband Engine (Cell BE). In this paper we give an overview
of the VSM interface and present preliminary results that show
the performance of our VSM and its behavior on multiple
accelerator cores using basic arrays operations.

Keywords-component; High-level Languages, Virtual Machine,
Parallel techniques, Multicore Compiler.

I. INTRODUCTION

Many application areas, such as image processing and
scientific computation, have enough parallelism to make good
use of the multi-core technology, yet multi core architectures
are still not fully used. This is due to the lack of parallel
programming tools that can exploit parallelism and
automatically parallelizing code for multi-core machines [2][3].
The most commonly used parallel programming tools
nowadays are OpenMP and MPI [1][3][6]. These models offer
semi-automatic parallelization tools that depend mainly on
directives and run-time routines in selecting and parallelizing
code segments.

Our project aimed at designing a Virtual SIMD Machine
(VSM) model that a complier can use to parallelize large data
structures, such as arrays, automatically. The advantages of this
approach are: Firstly it reduces the complexity of fully
automatic parallelization by focusing only on array
expressions. Secondly, data parallelism is already exhibited in
the array expressions. Thirdly, it eases the task of developing
programming parallel applications by concentrating on
algorithms rather than on parallelization issues such as
communication, partitioning, alignment, and synchronization.

We designed and implemented a VSM model that hides the
Cell heterogeneity. It can be now used to automatically
parallelize and execute array operations on the Cell accelerator
cores. The VSM is a register-based virtual machine that is

designed mainly to access the Cell's accelerator cores. Our
VSM is a language-independent implementation written in
C++. It is built of two co-operating interpreters, one for the
Cell’s master processor and one for the accelerator cores. The
master’s interpreter basically is stub routines that are
responsible for data partitioning, communication and
scheduling micro-tasks to execute in parallel on the Cell
accelerator cores.

This paper briefly introduces the Cell processor. It then
presents an overview the VSM paradigm and talks about the
main challenges involved in designing and optimizing our
VSM. The last section shows the outcome of the experiments
that were conducted to assess the efficiency of our VSM and
looks at the preliminary results of running basic linear algebra
operations on the Cell processor.

II. THE CELL BE ARCHITECTURE

A. Overview

The Cell BE, or Cell, is a heterogeneous multi-core
processor. It was design mainly for multimedia applications[5],
and has used in other areas such as high performance
computing. Cell BE has two quite distinct processors: a 64-bit
PowerPC Processor Element (PPE) and eight Synergistic
Processor Elements (SPEs) [3]. Both PPE and SPEs support
SIMD operations on 128 bit registers, but they have two
different instruction sets; one for the PPE and one for the
SPEs[5][8]. The PPE has 3 levels of storage (512 MB RAM,
64KB L1 and 512KB L2 cache) and 32 x 128-bit vector
registers. Each SPE has only 256KB Local Store (LS) and 128
x 128-bit registers. The SPE local store is quite distinct from,
and does not shadow or cache, the main memory.

B. Communication Within the Cell Processor

Each SPE has also a Memory Flow Controller (MFC) to
handle communication and data transfers between the PPE and
the SPEs. The MFC provide three means of communications:
Mailboxes, Signal Notification Registers and Direct Memory
Access (DMA) mechanisms. The first two mechanisms can be
used to exchange 32-bit messages between the PPE and the
SPEs. The Cell’s DMAs operations, such as GET and PUT,
can be used to move data between the main memory and local
stores. A DMA’s size can range up to 16KB and must be a

DOI: 10.5176_2010-2283_1.4.117

mailto:ygdura@dcs.gla.ac.uk
mailto:wpc@dcs.gla.ac.uk

multiple of 16 bytes. To transfer data between the PPE and the
SPEs using a DMA operation, A DMA requires main memory
address, local storage address, the size of data to be transferred
and a flag to group DMAs. What is important here is the Cell
constrains DMA transfers. It required both addresses to be
aligned on 16-byte boundaries or 128-byte boundary for better
performance [7]. DMA transfers cannot be used for updating
data shared by multiple SPEs. Instead, Cell provides special
atomic DMA operations, such as Getllar and Putllc. The
―Getllar‖ operation locks a cache-line (128B) and reserves it
before transferring the 128 byte from the main memory to LS.
The ―Putllc‖ transfers a 128 byte from LS into the main
memory only if the cache-line lock is reserved. Our VSM uses
these atomic operations for synchronization purposes.

C. Programming Cell

The Cell processor potentially offers high levels of
parallelism, but it is not easy to program due to its
heterogeneity of memory structures and instruction sets. The
two programming languages that are currently functioning on
the Cell processor are C/C++ and FORTRAN. These
languages support a number of parallel programming models
such as OpenMP, Sieve C++ and Offload. Recent releases of
the GNU tool chain and IBM XL offer compilers for C/C++
and FORTRAN on both architectures and support OpenMP
for Linux platform.

III. THE VIRTUAL SIMD MACHINE (VSM) PARADIGM

The VSM is an interface that designed to hide all the
underlying details of the Cell BE architecture. The VSM
paradigm is based on emulation techniques that imitate a SIMD
instruction set on the SPEs using a Virtual SIMD Instruction
(VSI) set and virtual registers. From the PPE point of view, the
VSIs are implemented as stub routines that can be invoked
once the required information, such as the virtual register
number(s) and the starting addresses of the arrays to be
processed, is supplied. A compiler can use this interface to
evaluate arrays expressions on one or more SPEs
automatically. Array languages compilers, in particular, can be
extended to automatically incorporate the VSIs by
decomposing high level array expressions into sequences of
operations (micro-tasks) that can then be executed in parallel
on the SPEs. The PPE stub routines are also available as a set
of C API library routines. These API routines can be explicitly
called from any programming language to perform array
operations on the SPEs without the need to do any data
partitioning, communication and synchronization processes.

A. Virtual SIMD Instructions

The VSIs are of two address register to register format. The
VSIs are a set of RISC like register load, operate, store
operations. The VSM register file consists of 8 virtual (vector)
registers that can be used in computation operations or can be
associated with DMA transfers to load and store data. From a
compiler point of view, each VSI requires three PowerPC

assembly instructions: One instruction supplies the
destination/source virtual register's number. The second
instruction loads either an effective address in case of the Load
and the Store operations or the second virtual register's number
which represents the second operand in a computation
operation. The last assembly instruction is a call instruction
that invokes a PPE stub routine.

B. VSM Message Protocol

The messaging protocol depends mainly on a mailbox
mechanism to communicate between the PPE and the SPEs.
The protocol consists of two distinct structures: forward
messages and return messages. The forward messages are
issued by the PPE to order the SPEs to execute an operation.
The return messages (acknowledgments) are sent from the
SPEs to the PPE. The messages can be in either one 32-bit
word or two 32-bit words format; see Fig. 1 (a) and (b). The
One-word format is used for computation operations while the
two word format is used for memory access operations such as
load and store. The messages must contain the operation code,
the virtual register numbers, and, for Load or Store, a main
store address.

C. The PPE Interpreter

The PPE interpreter is a set of stub routines that are
basically responsible for data partitioning and communication.
All stub routines have a similar task that can divided into four
main steps:

 Partitioning data in blocks by computing the starting
address of the data block to be used on each SPE.

 Combining passed parameters with a unique
operation code and the starting address (if needed)
into message(s).

 Writing the messages into the SPE's Inbound
mailboxes.

 Waiting for a completion acknowledgment from the
SPEs (if needed).

Most of the PPE routines were implemented in nonblocking
mode to allow the PPE to continue its execution once the
messages are delivered to the target SPEs and consequently
allows overlapping operations. Blocking routines such as
Store, however, stall the PPE until it receives acknowledgment
with the completion of the requested operation from the SPEs,
and they are relatively costly.

D. The SPE Interpreter

The SPE interpreter is a program that runs constantly on
each SPE in the background. The program frequently checks if
there is any message deposited into the SPE’s Inbound

mailbox. If a message dispatched into the inbound mailbox,
the SPE program then pulls the message and the inbound
mailbox will be automatically emptied. As soon as the
message(s) is pulled, the PPE continues its execution, and the

SPE program extracts the information sent within the pulled
messages and starts performing the corresponding operation. If
the requested operation is a blocking operation, the PPE then
has to wait for an acknowledgment with the completion of the
operation from the SPEs. The two very important issues that
the SPEs have to handle during accessing memory are
alignment and synchronization. We shall discuss these two
issues shortly.

IV. DESIGN CHALLENGES

This section discusses the challenges encountered during
the development of the VSM.

A. Virtua SIMD Registers

The VSM depends on DMA transfers to load/store data
from/to main memory. The challenge here is to determine the
appropriate DMA (virtual register) size. The size should be a
compromise to balance the communication overhead and
transfer costs. That is, not too big and not too small. We
conducted a number of experiments for this purpose, and we
found that the best virtual register size is 4*P KB where P is
the number of the SPEs. The tests showed, on the other hand,
using register smaller than 4KB degraded the performance
because small data transfers do not hide DMA overhead cost.

B. Alignment

The alignment problem emerges here because of the
architecture’s memory alignment constraints. Alignment is
also critical to performance because DMA must be aligned to
a 128 bytes boundary for better performance. We developed
two algorithms to handle the alignment on load and store
operations. The algorithms can be used for any data type. In
what follows, let define ―MM_E‖ and ―MM_A‖ as the
Effective and the Aligned addresses on the main memory
respectively, ―LS_E‖ and ―LS_A‖ to be the Effective and the
Aligned addresses on the local storage respectively, VR_S to
be the size of a virtual register and TB to be temporary buffer
on the SPE of size VR_S+128, T is temporary buffer of size
128 bytes. Assume also that the register name is a starting
address on an SPE’s LS and that DMA transfers are aligned on
128-byte boundary on both sides.

1) Load Operation
The following algorithm handles the alignment problem

when loading from main memory into an SPE’s LS:

– Get effective address (MM_E)
– AB=MOD(MM_E,128)
– MM_A=MM_E - AB
– If AB = 0

Get VR_S bytes start from MM_A into LS_E
– else

Get VR_S+128 bytes start from MM_A into TB
Copy VR_S bytes start from TB+AB to LS_E

2) Store Opertion
Again, due to the alignment constraints, writing back

unaligned data from the SPEs requires reading and merging
bytes from the main memory before rewriting those bytes as
part of a DMA. We developed an algorithm that can be used
by one or multiple SPEs to store unaligned data into main
memory. The algorithm, as shown in Fig. 3, is based on
operation-dividing technique in which each SPE’s data block
is divided into three parts: Head, Middle and Tail, see Fig. 2.
The main advantage of this technique is that it allows
overlapping DMA transfers within one SPE and among the
used SPEs and suites well the architecture’s resources.

The size of the Head and Tail was chosen to be 128 bytes

for two reasons: First, all DMA transfers are aligned on a 128
bytes boundary, and secondly to tune our algorithm with the
Cell’s resources. The Cell offers atomic DMA operations,
such as getllar and putllc that can be used to set, reserve and
release locks on 128 bytes (cache line size). Given that the
size of the Head and the Tail is an aligned 128 bytes block,
the Middle portion size should be 128 bytes smaller than the
virtual register size; that is, VR_S -128 bytes.

The algorithm for storing unaligned data is shown in Fig. 3,

and it works as following: it performs an aligned read of 128
bytes including the first part of the block (the Head), updates it

Opcode ……………. Register No
0 7 24 31

 ………. .. Effective Address ………..
0 31

Figure 1 (a): Load and Store Messages

Opcode ……………. Source
Register

Destination
Register

0 7 16 2324 31
Figure 1 (b): Basic Operations Message

Virtual Register

Aligned address
Start Address

 SPE0 SPE1 SPE2 SPE3

Head/SPE1 Middle/SPE1 Tail/SPE1
Tail /SPE0 Head/SPE2

Figure 2: Splitting Data Block for Storing Process

and then writes it back into main memory. It then aligns (if
needed) the Middle part and writes it back into the main
memory. The final step also performs an aligned read of 128
bytes including the last part of the block (the Tail), updates it
and then writes it back into main memory.

C. Synchronizaion

In the alignment algorithm shown in Fig. 3, the Head and
Tail of an SPE’s block are apparently shared between the PPE

and one of the SPEs or among the SPEs, and hence shared
data, such as the Heads and Tails, must be over-written in a
proper order. The synchronization process, in which we use
locks to updating the Heads and Tails, is as follows: first an
SPE requests to set a lock on 128 bytes from the main memory
before reading it. Once the lock is granted, the SPE reserves
the lock on the 128 bytes until it reads, updates and then writes
the 128 bytes back. This synchronization process keeps
memory coherent and avoids any race conditions that could be
arise as different SPEs attempt to update the Heads and the
Tails. The race condition problem is solved by reserving a
lock on each 128byte until the granted SPE updates the data
and then releases the lock.

D. Optimization

In regard to our VSM, storing unaligned data is considerably
more costly than any other operation. For this reason, the
algorithm for storing unaligned data was designed with the
intention to optimize the instruction cost. The optimization
technique we used here is based on the order of the three
DMA transfers for storing the Head, Middle and Tail. The
order of these DMAs, as presented by the algorithm in Fig. 3,
provides some overlapping within one SPE and among the
SPEs. The overlapping within one SPE, for example, occurs
while storing the Middle part and the Tail. After an SPE issues
a DMA request to the MFC for transferring the Middle part,
the MFC takes control of the transferring process, meanwhile
the SPE continues with processing the Tail by requesting a
lock…etc. Once the Tail is stored back, the SPE should then
verify if the Middle part has been completely transferred. The
DMA’s order also allows SPEs to overlap updating the Heads
and Tails. This illustrated in Fig. 2, when SPE0 is locking its
Head, SPE1 can be easily granted a lock on its Head too
because the SPE1’s Head is part of the SPE0’s Tail.

V. PRELIMIARY RESULTS

This section first discusses the individual virtual SIMD
instructions and their latency and then shows the performance
of the VSM on basic linear algebra operations. The VSM
interpreters and all testing programs were compiled,
assembled and linked using GNU tool chain. We simulated a
generated-compiler code using C code to test the effectiveness
of our VSM in parallelizing arrays operations automatically.
The C code explicitly calls the PPE stub routine. All tests were
performed on a Playstation3 (PS3) running Fedora 7 Linux
using single-precision floating point arrays and virtual SIMD
register of size 4KB.

A. Virtual SIMD Instruction Latency

The average clock cycles per 32 bit word per virtual SIMD
instruction, such as Load, Store and Arithmetic, is shown in
Fig. 4. The arithmetic instructions are operate on single-
precision float point values. The Load and arithmetic
instructions costs are almost the same because they are non
blocking instructions, but the Store is relatively costly because
it is blocking instruction.

The cost of non blocking 32-bit instructions, such as load

and arithmetic operation, vary between 1.1 clock cycles using
one SPE to 0.6 cycles when four SPEs were used. The
unaligned load operation, as you can see, costs slightly more
than arithmetic operation because they are non blocking
operations, but the variation is result of loading unaligned data
which normally costs loading additional 128 bytes.

– AB = MOD(MM_E,128)
– MM_A = MM_E - AB

// HEAD (PARTIALLY UPDATED)
– Set lock on 128 bytes start from MM_A
– Get 128 bytes start from MM_A into T
– Append the results to the tail of T
– PUT back T, and release the lock

// UPDATE THE MIDDLE PART
– MM_A = MM_A + 128
– LS_E = LS_E + 127 – AB
– MS = VR_S – 128
– Copy MS bytes start from LS_E to LS_A
– PUT MS bytes back start from LS_A to MM_A

// TAIL (PARTIALLY UPDATED)
– MM_A = MM_A + MS
– Set lock on 128 bytes start from MM_A
– Get 128 bytes start from MM_A into T
– Append the results to the head of T.
– PUT back T, and release the lock

Figure 3. Unaligned Store Algorithm

On the other hand, The Store instruction is relatively costly
because it implemented as a blocking operation and also
handles the synchronization process. This explains why
storing unaligned data using one SPE costs about 11 cycles
that is up to 10 times as much as unaligned load and up to 5
times (3 cycles) when using 4 SPEs. The average cost of
storing aligned 32-bit word is reduced be a factor of 3 as
compared to storing unaligned 32-bit word. However, the
Store instruction cost can relatively be reduced by combining
as much operations as possible per an array expression.

 Fig. 4 also points out that the cost of nonblocking

instructions are reduced by roughly a factor of p0.42 where p is
the number of processors. Nonblocking instructions are not
fully scalable because their low-latency does not allow a time
window to overlap communication and reduce the cost. On the
contrary, blocking instructions are almost fully scalable
because the opportunity to overlap communication and data
transfers is high. This can be seen clearly on the Store
instruction latency which was reduced by a factor of P0.94,
where P is the number of processors.

Table 1: Basic Linear Algebra Kernels

Kernel Description Expression

Virtual Instructions

L
oa

d

St
or

e

M
ul

ti
pl

y

A
dd

Sq
ua

re

R
oo

t

Replicate a scalar v1 = s √ √ x x x

Vector Reduction s = redPlus(v1) √ √ x √ x

Square Root v1 = sqrt (v2) √ √ x x √

Cross Product v1 = v2 * v3 √ √ √ x x

Dot Product s= v1 . v3 √ √ √ √ x

Matrix-Vector
Product

v2 = A * v1; √ √ √ √ x

Rank-1 Update A = A + v1* v2
T √ √ √ √ x

B. The VSM Parallel Performance

To assess the performance of our VSM, we run a number
of BLAS-1 and BLAS-2 kernels on the Cell’s two core types.

The experiments include classical vector operations such as
reduction operation, cross and dot products of two vectors and
typical examples of BLAS-2 such as a matrix-vector product
and rank-1 update operations [11]. Table 1 lists the BLAS
kernels and the virtual instructions involved in evaluating each
expression. The variables in Table 1 are of different ranks. For
example, A is a square matrix of size n x n, while v1, v2 and v3
are vectors of size n and s is a scalar. We tested the BLAS
kernels using single precision floating-point arrays of size n =
4096) and virtual SIMD registers of size 4KB (1024 floating-
point values) and run 106 times.

Before we discuss the VSM progress, it is important to
point out that the reduction operation under our VSM is
implemented as a blocking operation because the PPE has to
wait for the used SPEs to return their sums. The SPEs use
DMA mechanism to return the results. As the SPEs return
their results, the PPE adds these results. Once all the SPEs
finish, the PPE returns the sum. As a result of that kernels that
require such operations are expecting to degrade the SPE’s

performances.

Fig. 5 presents the performance of the selected BLAS

kernels when run on one SPE relative to the PPE. The
achieved speedups on the different kernels using one SPE
compared to the PPE range from 2.5 times to 6 times. The
average SPE performance on the Reduction, Dot product,
Matrix-vector product and Rank-1 Update kernels was around
3 times as fast as the PPE. The SPE performance was
degraded here because each kernel requires calling to a
reduction operation (blocking operation) which is relatively
costly as was mentioned in the previous section. The SPE
performance on the Square Root operation is also slower than
its performance on the Reduction and Cross Product because
the square root operation is considered as a complex SPE
operation [7]. The best performance, however, was achieved

Figure 5. Performance of the PPE vs one SPE

Figure 4. Virtual SIMD Instructions Latency

on the Replicate and Cross Product kernels because their
evaluations do not require a call to a blocking operation a side
of the storing operation which is performed by all kernels.

Thus far, we have looked at the performance of a single

SPE as compared to the PPE. To explore how the VSM
parallelizes array operation automatically on multiple SPE, we
run the same kernels given in Table 1 in parallel using 2 and 4
SPEs. We used 2 and 4 for divisibility purposes. The length
of the virtual register that is used in these experiments was
4KB. The size is not dividable by 6, and we can not used 8
SPEs because only 6 SPEs are available on the PS3. Fig. 6
shows a sample of the C code that utilizes our VSM as API
routines. Fig. 7 shows the scalability attained using multiple
SPEs. The speedups obtained from using multiple SPEs was
near-linear. The VSM showed near-linear performance with
an overall speedup of a factor P 0.84 where P is the number of
processors. The maximum speed up, however, gained on the
Square Root kernel, it was by a factor of P 0..94 and the
minimum was about P 0.75 on the rank-1 Update kernel.

VI. CONCULSION

We presented here a VSM approach to abstract and hide all
the details of the Cell heterogeneity. The VSM can be used as
an API by programming languages such as C, but it is also a
suitable target code for optimizing array language compilers.
We have integrated it into the Glasgow Vector Pascal
compiler[9] where it allows us to parallelize array operations
automatically. Space precludes discussion of this use of the
VSM in the current paper. Suffice to say here that this has
allowed unchanged applications code to be ported between
and automatically parallelized on both Intel multi-core and
Cell architectures. This approach eases the task of developing
programming parallel applications by concentrating on
algorithms rather than on parallelization process. The
preliminary results to be reported elsewhere show that this
approach can be used to parallelize data-intensive applications
across both homogenous and heterogeneous multi-cores chips.

 The performance of new versions of VSM can be improved
by using special intrinsic functions, such as Multiply and Add
function, because many basic linear algebra kernels require a
reduction operation.

References

[1] Liu, F., Chaudhary, V. 2003. A practical OpenMP compiler for system
on chips. In Proceedings of the Workshop on OpenMP Applications and
Tools (WOMPAT), 54–68.

[2] Breitbert, j., Fohry, C., OpenCL, An affective programming model for
data parallel computations at the Cell BE, Parallel & Distribute
Processing, Workshop and PhD Forum (IPDPSW) (2010), pp. 1—8

[3] Olukotun, K. AND Hammond, L., A Future of Multiprocessors, ACM
Transactions on Embedded Computing SysteA_EA, , Publication date:
April 2008 (2005), pp. 26—29

[4] Scheinine A., Introduction to Parallel Programming Concepts, Louisiana
State University (2009)

[5] Kahle, J.A. and Day, M.N. and Hofstee, H.P. and Johns, C.R. and
Maeurer, T.R. and Shippy, D., Introduction to the Cell multiprocessor,
IBM journal of Research and Development (2005), pp. 589—604

[6] Ami Marowka, Performance of OpenMP on Multicore Processors
(2008), pp. 208--219

[7] Sandeep, K., Practical Computing on the Cell Broadband Engine,
Springer, 2009.

[8] Arevalo, A. et al., Programming the Cell Broadband Engine™
Architecture, International Technical Support Organization (2008)

[9] Jackson I., Opteron Support for Vector Pascal, Dept Computing Science,
University of Glasgow (2004)

[10] Cockshott, P. and Renfrew, K., SIMD programming for Windows and
Linux, Springer (2004)

[11] http://www.cs.indiana.edu/classes/b673/notes/blas2.html

Figure 7. The SPEs Performance

// Replicate value "1.25" into the SPE’s virtual register (VR0)
repVec(0,1.25);

// Load vector v1 from the PPE into the SPE’s VR1
 loadVec(1,v1);

// Perform Cross Product on the SPEs VR0 & VR1
// and keep the result in the SPE’s VR 0
 mulVec(0,1);

// Store the contents VR0 into vector v2 on main memory
 storeVec(0,v2);

// Perform reduction operation: load vector v2 in a VR of size N,
// the sum the elements of VR and return the sum into variable S.
 S = redPlus(v2,N);

Figure 6. A Sample C Code for Calling the VSM Routines
Performance

http://www.cs.indiana.edu/classes/b673/notes/blas2.html

