

Abstract—The widely adopted and implemented core web services
standards SOAP and WSDL have achieved extraordinary
interoperability across highly disparate software systems. The service
oriented architecture SOA has become widely recognized for its
important role in information technology (IT) projects. A SOA is a style
of design that guides an organization during all aspects of creating and
using business services (including conception, modeling, design,
development, deployment and management). SOA has been the ideal
combination of architecture and technology for consistently delivering
robust, reusable services that support today’s business needs and that can
be easily adapted to satisfy changing business requirements. As systems
become more complex, the overall system structure-or architecture---
becomes a central design problem. A system's architecture provides a
model of the system that suppresses implementation detail.
Unfortunately, current representations of SOA architecture are informal
and ad hoc. Currently many state of the art formal methods have been
applied into the modeling, interoperability, dependability and
trustworthiness of web services and this could have a significant impact
on the ongoing standardization efforts for services and cloud
technologies. This paper presents a formal verification of proposed x-
SOA based architecture for UDDI based web service discovery
framework. The paper attempts to establish the proposed architecture for
locating services in mobile computing environment as well. Potentially,
extending the state of art formal method techniques could have a
significant impact on the ongoing standardization efforts for web services
and cloud technologies for both fixed and mobile networks.

Index Terms—SOA, mobile networks, cache, broker, service discovery

I. INTRODUCTION
ROGRAMS that interact with one another over the web
must be able to find one another, discover information
allowing them to interconnect that may include

request/reply interaction or more complicated process flow
such as negotiate qualities of service as security, reliable
messaging and transactional composition. The web service
community is working to meet all these requirements. A web
service is a location on a network that has a machine-readable
description of the messages it receives and optionally returns.
Standards like XML, WSDL, SOAP, UDDI [1,2,10] define
how web services are described, discovered, and communicate
with one another. Web services roles include requester and
provider.

Shrabani Mallick is with the Computer Science and engineering
Department, Motilal National Institute of Technology, Allahabad, India
(email: shrabani@mnnit.ac.in)

Dharmender Singh Kushwaha is with the Computer Science and

engineering Department, Motilal National Institute of Technology, Allahabad,
India (email: dsk@mnnit.ac.in)

The service requester initiates the execution of a service by
sending a message to service provider. The service provider
executes the service upon receipt of a message and returns the
results, if any are specified, to the requester. A requester can
be provider, and vice versa, meaning an execution agent can
play either or both roles. A service is therefore defined in
terms of the message exchange patterns it supports. The main
components of service includes the description, the
implementation and the mapping layer between the two.

Figure 1: Components of a web service

The major advantage of implementing SOA using web
services are that they are pervasive, simple, discoverable and
platform neutral. Businesses use SOAP to register themselves
or others with UDDI; then the registry clients use the query
APIs to search registered information to discover a trading
partner, figure 2.

Figure 2 shows the basic 3-tier SOA architecture which
consists of specifications (SOAP, WSDL and UDDI)[10] that
support the interaction of a web service requester with a web
service provider and the potential discovery of the web service
description. For the success of a SOA based application, it’s
important that users are motivated to use them, for which all
that matters is that they can understand and formulate XML-
formatted query messages.

An Efficient Web Service Discovery
Architecture for Static and Mobile

Environments

Shrabani Mallick, Dharmender Singh Kushwaha, MNNIT ALLAHABAD, India

P

 DOI: 10.5176/2251-3043_3.1.243

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

129 © 2013 GSTF

Figure 2: The web service registration and discovery

Under such circumstances companies may struggle to adopt to
SOA[4] as users have to be first trained to standards,
conventions and data structures for querying of web services.
The next section discusses the modified x-SOA architecture
that provides an enhancement over the basic x-SOA
architecture [4]. The modified x-SOA [11] architecture is a
better answer in dealing with the potential problems of
adapting to SOA and web service standards. The new layer of
abstraction called the Request Analyzer provides extended
facilities to the Service Requester thereby facilitating a naive
user to place the request query in plain text English.

x-SOA Architecture for web service discovery

The proposed x-SOA architectural framework can provide an
effective and universal service querying mechanism for any
level of users. The new layer RA sits on top of a service
requester that facilitates the preprocessing activities of a
request query before it is being handed over to the broker for
discovery.

II. RELATED WORKS
With the increased need of web services and equating them

to software as a service has motivated many works in this
field. [1,2] offers an alternative to the UDDI registry for
discovery of web services. The authors in [3] proposes a FSM
approach for Dynamic web Service. [4] a three layer Service
brokering x-SOA architecture for an underlying transparent
web service access to the service client is presented. In [5]
semantics based request query analysis using a tree-form of
data structure to discover the web services by assigning weight
values to each node of the tree is discussed. In [6] a keyword

based approach is implemented triggered by the partitioning
approach that is used in database design. In [7,8] a web service
discovery model, based on abstract and lightweight semantic
web services descriptions, using the Service taxonomy is
focused. Authors in [9] propose an approach for semantic web
service discovery and propagation based on semantic web
services and FIPA multi agents. Authors in [11] propose an
efficient discovery architecture using an additional tier of
request analyzer. Based on the works of Authors in [13, 14,
15] we conclude that an efficient way to reduce the network
factor of energy saving or consumption is through disconnects,
as and when going to inactive state or essentially not using the
network. The authors in [16] have estimated the energy costs
for mobile and ubiquitous computing.

The architecture proposed so far has not been
formalized. Most of the work done by the previous researchers
have tried to address the problem of web service discovery
problem through approaches based on key words, semantics,
neural networks, ordered service search, agent based
framework etc. Many of them assume that the user is aware of
the web service interfaces names, which is not always true. An
organized framework which contains a layer exclusively for
processing a simple plain text query based on their linguistic
compositional semantics and getting back the most appropriate
set of web services is what is focused here. More over this
paper has attempted to formalize the proposed architecture so
that SOA framework can be standardized. The proposed
architecture has been extended for mobile environments which
are resource constrained and has shown satisfying results.

III. TRANSITIONAL DISCOVERY SEMANTICS
Next, we shall depict the formalised web service discovery

approach using the proposed architecture and the states and
interactions of various entities involved. It can be thought of
as message passing communication system that consists of
request-reply (reply in this context is web service interfaces)
paradigm.
Request (Req) : A plain text request query for obtaining web
services that is analyzed for its linguistic components.
Service (Req) : The requester on receiving the suitable web
service interface names invokes the required web service from
the provider.

The Request Analyzer (RA) shall act as an intermediary
between the service broker and the service requester, figure 3.
The RA accepts the request from the Requester and parses the
request query string into the lexical components- verbs, noun,
adjectives and adverbs. The RA will first forward the verbs
queue to the service broker where two possibilities may occur:
Look up its cache, upon which if matching web services are
found, the broker will return the web service names. If no
matches are found, the broker broadcasts the request on the
cloud, using the publish/subscribe paradigm. On getting back
the list of web service names (WSNs) from the brokering
agent, the RA will compare the WSNs with nouns and
adjectives+adverbs, that will serve as the parameters for
context based (nouns define contexts) and use-based matching
(verbs define use whereas adjectives & adverbs refine the

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

130 © 2013 GSTF

use). After comparison the most appropriate web service
name/(s) will be returned back to the Requester.

Figure 3 : Flow Diagram of web service discovery algorithm

The Requester then invokes the interface through the provider.
The Broker will either look up or broadcast. The operational
semantics for the Look_up cache activity will be a pattern
matching with the actual request query which is depicted as–
A template T and request query r match when the following
function is defined as

 (1)
Where

 (2)
The Look_Up action will return the web service names for
which the match will return true or if no matches
are found.
If no matches are found then it will broadcast the request
query on the cloud to which the interested service providers
may respond and return their addresses.

 (3)
 collects those names that effectively occur in a

network N as address of some provider.

 (4)
On getting back the list of web services the request analyser
filters the suitable service names using the nouns and
adjectives from the parsed request query which is defined as ,

 (5)
Once the requester gets the required service name and address,
it invokes the service by sending appropriate message to the
provider using RPC as,

 (6)
where b and s are the binding and status parameters.

IV. TRANSIITONAL SEMANTICS OF THE DISCOVERY
PROCESS

Now, we shall define the transition of each agent in
terms of their component and input agents. For the Transition
System, let A the set finite alphabet contains the symbols

 that stands for request, verb, noun, adverb/adjective
or service respectively. Let be the symbol of unobservable
or internal action, be the initial state, S’, S” the
intermediate states and S the final state.

The complete set of transitions are given below:
Rule 1: Parse
For parsing the plain text request query, the initial transition
can be written as,

Now after parsing for a v component

, similarly for a,n components

Rule 2: Look_up

 if no match is found

 if match found
Rule 3: Sum

Let there be n services i.e, I={1,2,3...n} that have
matched with the request query. The summation rule can be
written as,

 where

V. PERFORMANCE EVALUATION
The proposed modified x-SOA architecture using the Request
Analyser off-loads the requester from being over-whelmed
with the huge list of web services and hence makes the
selection of web services easier and faster.
We started with a list of 10 web services. On subsequent
refinements the reduction in search spaces are shown in the
graph below:

Figure 4 : Plot of various stages of Refinement against the no.
of web services
Hence the strategy follows a combinatorial search algorithm to
achieve efficiency by reducing the effective size of the search
space.

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

131 © 2013 GSTF

Figure 5: Proportion of search spaces for various refinements

For the above example we see that address space (based on
umber of web services) has reduced from n (=10) to log(n)
(=1). The running search times tested on a 1-billion-steps-per-
second computer for different size of web service sets returned
are as follows:

Size of data set (n) Search Time

1 0.001 µs

10 0.01 µs

20 0.02 µs

30 0.03 µs

40 0.04 µs

50 0.05 µs

 Table 5: Search times in µs for web services

Figure 6: Plot of Search times for different sizes of returned
data sets.
The plot shows that the running search would reduce
considerably with the reduced and pertinent set of web
services.

VI. THE MODIFIED X-SOA ARCHITECTURE AND
MOBILE ADOPTION

Web services provide a convenient method for messaging over
the internet infrastructure. For example, a given system may
allow mobile users to find someone’s phone number through a
directory service and subsequently get driving directions to

that person’s place of residence. These two functions may be
available as web services. This can be done in two ways-

(i) By using Web Service Proxy (Asynchronous mode)
(ii) By using Direct Connection to the Web Services

(Synchronous mode)
In the first case the back end of our mobile system may
connect to the web servers and retrieve the information and
return it to the mobile device through whatever
communication protocol it is using when network connection
is fair. In the second case, the mobile devices can directly
access the network and use the web services. The latter case
requires a considerable advanced mobile device with efficient
XML parsing capability. The prime issues with mobile devices
are –

1. Energy constraints
2. Resource constraints – Processor and Memory
3. High mobility hence network instability

The Asynchronous mode scores more as a better strategy for
finding the web services as it presents a perfect way to deal
with a disconnected user in an active way in case of
intermittent network connectivity. But the other two problems
remain partly unaddressed. The proposed x-SOA architecture
serves as a solution for the canonical mobile environment.
When the mobile device initiates a web service discovery
request through a plain text English query either via a proxy or
an agent the request is served with a huge set of matching web
services. The job of the web service proxy or the agent is to
get back to the query initiator with the results whenever the
device gets connected. The huge set of results returned may
lead the constrained device in a starvation state while it has to
select the appropriate web services to invoke them. The
proposed Request Analyser may act as a middleware service
in the proxy or agent to filter the appropriate service so that
the mobile user is served with an optimized set of service. The
Broker Cache may help the device to connect to services faster
in case of repeated use of same services.
The X-SOA architecture addresses the following aspects in
consideration to various dimensions of resource starved
devices-

1. Reduced no. of services returned thereby reducing the
memory utility.

2. Selected set of services – optimizing device’s
processor performance

3. Less Processing – saving energy
4. Asynchronous mode of working – solving intermittent

connectivity.
5. Caching in Broker – Reducing discovery time for

repeated use of services.

The working of the modified x-SOA architecture in respect of
the mobile computing environment for finding the needed
services is depicted in figure 7.

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

132 © 2013 GSTF

Figure 7: Locating needed services with modified x-SOA in

mobile computing environment

The set of actions performed by the mobile host and the proxy/
agent as per the architecture implementation can be stated as –
1 On NewServiceRequest(httpRequest)

2 startInterface() with proxy

3 send plaintext request query

4 suspendInterface()

5 On ReceiptServiceNameFromProxy(httpResponse)

6 if (ServiceName>1)

7 select the required service

8 send invoke request to proxy

9 else

10 send invoke request to proxy

11 suspendInterface()

12 On ServiceResponseFromProxy(httpResponse)

13 use service functionality

12 suspendInterface()

Figure 8.1 Actions performed in the mobile host side

13 On NewSerchRequested(httpRequest)

14 parse query

15 send httpRequest for LookUp in UDDI

16 receive the list of service names

17 filter names based on semi-semantics of request query

18 send (ServiceNames) to mobile Host

19 On InvokeRequest(soapRequest)

20 Locate server

21 send (soapRequest) to server

22 receive (soapResponse) from server

23 cache service

24 Store Result

25 forward Result to mobile Host on resume Interface

Figure 8.2 Actions performed on Proxy side

VII. PERFORMANCE ESTIMATES CHARACTERIZATION FOR
MOBILE ENVIRONMENTS

According to [16], the system energy cost for establishing a
connection and transferring n bytes based on the volume of the
data is as given:

E = Ee + n * Et (1)

Where Ee is the energy cost for connection establishment and
Et is the energy per bit for the transfer.

Based on experimental results the plot of various levels of
energy consumed while transmitting varying chunks of data
packets is shown in figure 9. Ee is experimentally taken as 5J.

Time Data Transfer
(Bytes)

Energy
consumed(J)

9.00 1656 40
9.15 896 520
9.30 2561 650
10.15 785 458
10.30 696 280
11.12 1759 490
12.11 125 120
1.25 1899 460
1.31 132 450
2.20 145 136
2.45 2601 625

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

133 © 2013 GSTF

Figure 9: Plot of volume of data transfer and corresponding
energy consumption

Thus it can be concluded from the graph that reduced volume
of data transfer saves on the battery life substantially. The
proposed modified x-SOA architecture scales well with other
the mobile environment and exhibits the following
performance estimators:

• Reduced Volume of computation
• Phases of connected and disconnected operations
• Less Memory consumption by storing selected services
• Optimized processing for searching from a reduced

search space
• Faster service discovery time through broker caching.

VIII. CONCLUSION
We have formally defined a formal calculus for SOA
framework that provides basic primitives to describe the SOA
taxonomy. We demonstrated the efficiency of the architecture
using a sample case study. This paper presents a formal
verification of proposed x-SOA based architecture for UDDI
based web service discovery framework. Potentially,
extending the state of art formal method techniques could have
a significant impact on the ongoing standardization efforts for
web services and cloud technologies. The proposed formalized
architecture can be a driving force in design of middleware for
SOA application. The architecture has been established o be
adopted to mobile environment as well. The performance
based on the experiments have been found convincing.

REFERENCES

[1] xMETHOD,[Online].Available. ttp://xmethods.net/ve2/index.po
[2] REMOTEMETHODS,[Online]
[3] San-Yih Hwang, Ee-Peng Lim, Chien-Hsiang Lee, Cheng-Hung

Chen, On Composing a Reliable Composite Web Service: A Study
of Dynamic Web Service Selection 2007 IEEE International
conference on Web Services

[4] Mike P. Papazoglou, Willem-Jan van den Heuvel Service Oriented
Architectures: approaches, technologies and research Issues, The
VLDB Journal (2007), Springer-Verlag Publication

[5] Wuling Ren, Zhujun Xu, A New Web Service Discovery Method
Based on Semantic, IEEE 2008 Workshop on Power Electronics
and Intelligent Transportation System

[6] Jiangang Ma, Yanchun Zhang, Jing He, Efficiently finding Web
Services Using a Clustering Semantic Approach, CSSSIA 2008,
Copyright ACM

[7] Georgios Meditskos and Nick Bassiliades, Structural and Role-
Oriented Web Service Discovery with Taxonomies in OWL-S,
IEEE Journal Publication, Apr 2009

[8] G. Meredith and S. Bjorg. Service-Oriented Computing: Contracts
and types. Communications of ACM, 46(10):41-47, October 2003.

[9] Azadeh Ghari Neiat, Mehran Mohsenzadeh, Sajjad Haj Shavalady,
Amir Masoud Rahmani, A new approach for Semantic Web
Services Discovery and Propagation based on Agents, April 2009
IEEE International Conference on Networking and Services.

[10] WSDL 1.1: http://www.w3/TR/wsdl
[11] Shrabani Mallick, D. S Kushwaha “ An Efficient Web service

Discovery Architecture”, International Journal of Computer
Applications, Volume 3- No 12 , July 2010

[12] Robin Milner , Communication and Concurrency, Prentice Hall,
1989

[13] Giuseppe Anastasi, Marco Conti, Enrico Gregori, and Andrea
Passarella, “A Power Saving Architecture for Web Access from
Mobile Computers”, Springer-Verilag, NETWORKING, LNCS
2345, pp. 240-251, 2002.

[14] M.Stemm e R.H.Katz, “Measuring and Reducing Energy
Consumption of Network Interfaces in Hand-Held Devices”, Proc.
3° International Workshop on Mobile Multimedia Communication,
Princeton, NJ, Settembre 1996.

[15] G. Anastasi, M. Conti, W. Lapenna, “Power Saving Policies for
Wireless Access to TCP/IP Networks”, Proceedings of the 8-th
IFIP Workshop on Performance Modelling and Evaluation of
ATM and IP Networks IFIP ATM&IP2000), Ilkley (UK), July 17-
19, 2000.

[16] Ahmad Rahmati, Student Member, and Lin Zhong IEEE member,
“Context-Based Network Estimation for Energy-Efficient
Ubiquitous Wireless Connectivity” IEEE TRANSACTIONS ON
MOBILE COMPUTING, {submitted}

Authors:

Shrabani Mallick is with the Computer Science and engineering
Department, Motilal National Institute of Technology,
Allahabad, India (email: shrabani@mnnit.ac.in)

Dharmender Singh Kushwaha is with the Computer Science and
engineering Department, Motilal National Institute of
Technology, Allahabad, India (email: dsk@mnnit.ac.in)

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

134 © 2013 GSTF

