
Collapsible Tabular Visualization of Aspects in
Object Oriented Programming

Md Nahid Rahman, Md Naim Hossain, Young Lee
Department of Electrical Engineering and Computer Science

MSC 192, 700 University Blvd., Texas A&M University - Kingsville
Kingsville, TX 78363. USA

nahidrmn@gmail.com, findnaim@gmail.com, young.lee@tamuk.edu

Abstract - Due to its implicit invocation nature of
Aspect Oriented Programming (AOP), locating a joint
point for executing aspect is extremely difficult. Hence,
it becomes difficult to understand the application’s
flow and behavior. Current AOP visualization tools have
limitations such as high dependency on other tools,
confusing and excessive use of color to represent aspects
and using an outdated version of AspectJ. In this
paper, we propose a new approach collapsible
tabular visualization tool to visualize and represent AOP
features to aid the programmers in better
understanding AOP applications. We have come out
of traditional color-based aspect visualization and developed
a web based tool: AspectViz that visualizes the aspects in
a simple collapsible table. A questionnaire containing
four different questions related to aspects visualization
was developed to compare AspectViz with current
visualization tools. 20 graduate students and
professional software developers were invited to participate
in the test experiment as well as the survey. We have
compared its performance with existing AOP
visualization tools i.e. the AJDT and the AspectMaps and
showed how it outperformed in many cases, which is no
color confusion, simple tabular visualization of aspects, no
dependency on third-party software, easy to understand and
the time it took to find a particular aspect was less etc.
Collapsible tabular visualization enhanced the usability and
performance of aspect locating in aspect-oriented
programming.

1.0 INTRODUCTION
Object Oriented Programming (OOP) can modularize a
program at great extent, but there are some concerns in
software systems that are not possible to modularize using
OOP anymore. Aspect Oriented Programming (AOP)
was introduced to provide absolute modularity in
software development [1]. Some concerns such as
logging, transaction demarcation, and management,
application profiling and security are the features that
spread all over the source code because of the nature of
these features. AOP can modularize each of these concerns
and implicitly plug inside the base code wherever
needed. Since they are implemented implicitly, it is
impossible to find out which aspect is operating at which
part of the base code. AOP visualizer provides the facility
to view the link between aspect and base code. Hence, it
becomes easier to understand the flow and behavior of the
program.

There is a separation between business concerns and
crosscutting concerns while designing application. During
the development phase, the concerns become tangled and
break some of the basic software design principles such as
Single Responsibility Principle (SRP) by implementing both
business core and crosscutting concerns together inside a
single class. We will discuss some of the disadvantages of
not using AOP in the following:
Code tangling happens when multiple concerns are
implemented in a single module. “Developers consider
concerns for example business logic, application
performance, flow synchronization, application logging,
application security etc. when implementing a module” [2].
The following Figure 1 shows tangling in a class.
This drags to simultaneous appearance of elements originated
from individual concern’s implementation and finally turns
into code tangling.

Transaction

Management

Business

Logic
Security

Figure 1: Code Tangling in a Class

The Code scattering happens if one functionality is written
across several modules. By definition, crosscutting
concerns usually spread over multiple modules, hence
similar codes are also scattered within all these modules.
For instance, if a software makes database calls, then the
performance of a concern can affect the performance of
other modules if those modules are also calling the
database.

GSTF Journal on Computing (JoC) Vol.5 No.3, May 2017

DOI: 10.5176/2251-3043_5.3.374 © The Author(s) 2017. This article is published with open access by the GSTF

16

AspectJ is one of the most integral

implementations of the AOP model and it supports all

the elements. It offers two syntax choices:

traditional keyword and @AspectJ annotation. We

can categorize the crosscutting structures in AOP as a

common crosscutting elements (such as join point, the

pointcut, and the aspect), the dynamic crosscutting

element (e.g., advice) and finally static crosscutting

elements (inter-type and weave-time declarations). All of

these elements also form the actual building blocks of

AspectJ. A weaver is needed to weave the classes and the

aspects together so that advice gets executed.

Even though AOP seems to express crosscutting

concerns in an efficient and elegant way, it is still a

relatively young programming paradigm and not much

work has been done in defining and assessing the

quality of aspect-oriented programs. Visualization of AOP

project can help to improve the quality of software

systems. Some groups of people have done research and

study [3][4] on this issue. Here, we’ll discuss various
aspects of AOP visualization from different perspectives

and propose a new approach to visualize the AOP project.

AOP visualization is an advanced and less

explored field than other areas of software

engineering and development. Different visualization

group visualized AOP in different ways; in most cases,

extensive color is being used. On the other hand, we

have used collapsible tabular format and avoided any

unwanted colors to free the developers from being

confused. Some of the visualization used heavy and

complex tool to analyze the source code. For

example, AspectMaps uses moose reverse engineering

tools but we relied on a basic and important resource only:

the source code itself. We can make our own logic and can

manipulate them accordingly.

2.0 LITERATURE REVIEW

There are some AOP visualizers available where each of
them has adopted different approaches to performing the
visualization task. Here, I will discuss two of the most
prominent and widely used AOP visualization tools: AJDT
and AspectMaps. Their tool showed a part of the AOP
elements inside the source code, by considering the intention
of the program developer. Visualization is considered as the
UML extension which also represents aspects, advice and
method call. The power of this approach is its ability to
perform abstraction operations automatically, and automatic
element selection which will be visualized.

2.1 The AJDT

The AspectJ Development Tools (AJDT) is an open source
Integrated Development Environment (IDE) that supports
programming with AspectJ within Eclipse. It highlights the
syntax, reports error along with many other features that
help the user about understanding the aspects in the
program. AJDT provides aspects browsing capability same
as class browsing capability. AJDT visualizer visualizes an
entire project at a glance, integrated debugging support and
wizards to create aspects and AspectJ projects. It can
visualize any AOP projects and can be found from the
perspective mode of the eclipse.

With AJDT, we can navigate through the aspects and advice
of the AOP project but we cannot scale up the segments to
have a more clear view. Each column is the representation of
AOP source file and the colored portions of it are the advice.
Each color represents different advice which is shown in
Figure 2.

Figure 2: AJDT Representing Aspects with

Different Colors

2.2 The AspectMaps

Another well-known aspect visualization tool is
AspectMaps. This tool extends the Moose reverse
engineering platform by implementing various support tools
from Moose [5]. One important feature of AspectMaps is its
zooming facility of a selected part of source code. Zooming
from a coarser level to fine-grained level exposes more
details about the code. The visualization is localized, for
example in one window for some packages. The level of
visualization can be package level, but in a different window,
it can zoom to class level for other packages [6]. The
AspectMaps window is given below Figure 3.

GSTF Journal on Computing (JoC) Vol.5 No.3, May 2017

© The Author(s) 2017. This article is published with open access by the GSTF

17

Figure 3: Structural Zooming of all Join Point Shadows of

AspectMaps

When a project is opened with AspectMaps, the

package content is put inside a rectangle with the name of

the package on top of it. It colors all the rectangles by the

color specified to the aspect of it. If there are multiple

aspects, then the rectangle is colored with black. As we start

to zoom-in to the package rectangle, it starts to show the

details inside it such as classes and aspects, which aspect

resides in which class with corresponding aspect’s color.
Below Figure 4 is the visualization of a sample AOP project

showing package, class and method level AOP feature

representation.

3.1 Challenges in AOP

AOP modularizes the cross-cutting concerns and plugs

in these modules inside business logic wherever it is

required. Inherently, it also increases the complexity

of software to understand its architecture and

behavior [7]. Since aspect codes are not physically placed

where they are going to make the effect, it later

becomes vague to the software developers to figure

out which aspect is operating at which part of the base

code. Hence, visualization of AOP features was advised

by the experts. As a result, various approaches have

been proposed and tools have been developed. Each tool and

approach have its own shortcomings and hence there is a

need for better and more effective ideas to comprehend the

structure of an AOP application by visualizing it. We

have to keep in mind that the ultimate goal of aspect

visualization is to know where an aspect is advising a join

point, no matter which approach we take to visualize it.

3.2 Problems in Existing Visualizers

To effectively show how an advice is executing at

which join point, several groups have proposed

and developed AOP visualization tools. Few of them

have been successful and popular with software

developers. Most of them have some problems and

difficulties to properly visualize the software. For

instance, AJDT and AspectMaps are most popular

visualizer for AspectJ framework. One common

problem both of these visualizers suffer from is they can

visualize AOP programs that are written only in older

AspectJ constructs i.e. traditional keyword based. But, after

the release of Java 5, since it had support for annotations,

people in the software industry were using annotations other
than traditional AspectJ constructs. Hence, these visualizers
cannot support newer AOP projects. The traditional AspectJ
program requires a special compiler to compile the AOP
source code, but annotation based AOP code can be
compiled using the regular java compiler (javac).

3.2.1 Problems in AJDT

The most common difficulties faced when using AJDT
aspect visualizer are becoming confused with the colors of
aspects and keeping track of columns (source code files) in
the visualizer main window. In AJDT visualizer, a unique
color is assigned to each advice and as the number of advice
increases, it becomes difficult for the programmer to
remember which color belongs to which aspect. Another
problem is that it shows each source class file as a column
where aspects are advised. As the project becomes bigger,
the numbers of classes where the aspects can be plugged
become larger. Sometimes, it becomes several hundred
classes which are very difficult to maintain in the visualizer
window and to keep track of classes and aspects. This is an
unavoidable maintainability issue for AJDT visualizer.

Figure 4: Visualization of AOP Project Using AspectMaps

Visualizer

3.0 CHALLENGES AND PROBLEMS

AOP has higher quality as software systems, but it

also causes some problem in understanding already

developed software and its behavior. In the

accompanying segment, we will talk about difficulties

and issues that join AOP.

GSTF Journal on Computing (JoC) Vol.5 No.3, May 2017

© The Author(s) 2017. This article is published with open access by the GSTF

18

3.2.2 Problems in AspectMaps

The most obvious problem associated with
AspectMaps is its usability. It doesn’t directly work
with the source code and to visualize a project it needs

some extra processing and tools to mediate. Since it

is an extension of the Moose reverse engineering

tool, the source code needs to be made suitable for

Moose tool. To do that, the source code is

converted to .mse and .xcr file.

To import Eclipse projects into AspectMaps,

two external tools are required: firstly, to generate

Moose .mse files for the Object-Oriented part of the

application and secondly to generate .xcr files for the

Aspect-Oriented part of the application. These two tools

are inFamix and VerveineJ and they are protected by

license, not open source. The flow is shown on following

Figure 5:

.mse

Source

Code
.xcr

Aspect

maps

inFa

mix

Verv

eineJ

Figure 5: AspectMaps Workflow

This extra processing is a tedious job for a project

because the source code is constantly changing for

a project. Whenever the source code is changed,

the .mse and .xcr files need to be generated

every time. AspectMaps also suffers from the similar

problem like AJDT: the confusion with color. In

the visualizer window, AspectMaps doesn’t show the
name of the Join Point and Advice. To see those, we
have to expand each class and then see the tool tips.

This is a time-consuming job if the number of classes

and aspect are high.

Another problem is that the border color

of rectangles are colored with the same color of aspect

with which it has a reference. If a class has more than one
aspect reference, the class rectangle’s border is
colored black which doesn’t make any significance.
Hence, it’s not possible to tell which aspect is executing
inside that class.

4.0 PROPOSED APPROACH

A different approach is taken to sort out the issues
and limitations. First of all, no color is used to specify the
aspects. As the developers are familiar with a limited
number of colors no confusion arises. Instead, tabular
representation is used where aspect classes are listed in the
left column and on the right side of table Pointcuts and
Join Points are listed.

All the information related to aspects can found in
a single place. Developers do not need to go back
and forth between base code and aspect source code.
Secondly, it is independent of development tools. All
it needs is an aspect implemented with AspectJ
framework. Third, the flow of visualization of these
tools are from base code to aspect code i.e. first
they find out the base code where aspects are
operating, then they gradually navigate towards the
aspect. On the other hand, our approach finds out the
aspects available in the program first then finds out the
operating base code (Join points). Even if the
program isn’t compatible, it works fine. It can be used
as the documentation of source code as well; as it
generates the Portable Document Format (PDF) that
shows the changes in source code with the evolution of
software.

4.1 Design and Implementation

To achieve our goal we have developed a web-based tool
named AspectViz that uses JSP and Servlet. As it
is web-based developers can access it from anywhere
without installing any software or plugins. Moreover,
AspectViz doesn’t store any input source code that
keeps the proprietorship of the developers without any
violations. It takes any project i.e. developed with
annotations based implementation of AspectJ.
Feature-based extraction approach of the aspects is used
which is described in the following Figure 6.

Figure 6: Design Components of AspectViz

4.1.1 AOP Knowledge Base

AOP features are limited; so, we created a knowledge base

to store the AOP features of AspectJ. Knowledge base

stores the AspectJ annotations and language

keywords such as @Aspect, @Before, @After. Data

structure hashmap is used to store them rather than

database management systems. Knowledge base works

as the input to the pattern matching engine and shown in

Figure 7.

GSTF Journal on Computing (JoC) Vol.5 No.3, May 2017

© The Author(s) 2017. This article is published with open access by the GSTF

19

Figure 7: AOP Knowledge Base

4.1.2 Pattern Matching Engine

This engine is one of the cores and most important

parts of AspectViz. It is used to locate AOP features

in the project. Source code and knowledgebase are

considered as input to this engine. It scans each source

code file and searches for patterns in the knowledge base.

We have implemented pattern matching using regular

repressions and existing pattern matching java

libraries. Then, we scanned the source code to match it

with the features stored in the knowledge base. First,

we searched for Aspects in the source files. Once

found, we looked for Pointcuts specified in the Aspect

class. Then, we found out the type of Pointcut, line

number and the number of Pointcuts in an Aspect. After

that, we extracted the name of the Advice method and the

Join Point locations for each Pointcut. Hence, all the

AOP features: Aspect, Pointcut, Advice and Join

Point are discovered and shown in the output window.

The flow chart of the pattern matching engine is shown in

Figure 8.

Figure 8: Flow Chart of Pattern Matching Engine

4.1.3 AOP Analyzer Engine

The pattern matching engine returns the matched

component to AOP analyzer engine; then the

analyzer engine decides the type of the component and

finds out other related information for this

component, such as for an aspect, to which

package it belongs, the number of pointcuts it has, etc.

It then organizes the features and displays them in a

tabular format. We have listed the aspect and classes

separately for the convenience of users. The

following Figure 9 shows the flow chart of AOP

analyzer engine:

Figure 9: Flow Chart of AOP Analyzer Engine

GSTF Journal on Computing (JoC) Vol.5 No.3, May 2017

© The Author(s) 2017. This article is published with open access by the GSTF

20

4.2 Collapsible Tabular Visualization of Aspects

It is very hard to determine the aspects when the

number of aspects is higher. When there are a lot of

aspects to be visualized it necessary to scale down to a

small segment of rows. Now, if we visualize the

aspects by scaling down, it needs to be scaled up

whenever necessary. So, we came up with a solution

that can scale up to a full description and can scale to

down to minimum information.

Our proposed idea shows a list of aspects

rather than full description at the first. All the

descriptions will be expanded whenever the

description link is clicked. Collapsed or scaled down

to a list of aspects is given in Figure 10. And the

clickable expansion of the full description is illustrated

in Figure 11.

Figure 10: Scaling Down to a Small Portions

Visualization of Aspects

5.0 EXPERIMENTAL METHOD AND RESULTS

To evaluate the performance and effectiveness of
AspectViz, a survey is conducted. The sole purpose of this
survey is to compare usefulness, simplicity, and
performance of AspectViz and AspectMaps.

5.1 Experimental Method

A set of four questions is being compiled to answer
the key features of AOP. Developers ask common
questions related to aspects are what are the aspects,
what do they do and where are they applied. Considering
these facts, four questions are selected. Firstly, we
demonstrated AspectViz, AspectMaps and test
program to them. All the 20 participants were given
a computer and questions printed on a paper. There were
no time constraints to complete the survey. Each
participant was asked to measure the time in seconds to
answer each question and also rate the tools out of 10
based on their experience and comfortableness with the
tools. To answer each question participants started from
the homepage of the visualizer so that the results do
not get affected by another process.

1. Find two aspects and their package names?
2. What are the types of each pointcut in
MergeSortAspect aspect?
3. What is the advice inside MergeSortAspect?
4. How many join points is the aspect SelectionSortAspect
operating on?

Figure 11: Scaling up and Showing Full Description of the
Particular Aspect

5.2 Experiment Results

From the result of the survey conducted, we have calculated

the average time taken to answer each question and the

average rating for each question on the tools. The following

figure shows the time comparison and rating based on the

survey result.

AspectMaps visualizes traditional non-annotation

AOP of AspectJ. To test it we have taken sample application

available on AJDT website named spacewar2. AspectViz

can visualize annotation based AOP of AspectJ; Hence, we

developed a project sort-meter-aspected that measures the

execution time of various sorting algorithms for the same

set of input data.

Here, the time to answer each question is measured
in seconds and the rating is given out of 10. It’s worth

mentioning that, the values of these parameters are not

absolute and may vary from applications to applications

and the skill of the people in AOP doing the test. Survey

result is given in the below table:

GSTF Journal on Computing (JoC) Vol.5 No.3, May 2017

© The Author(s) 2017. This article is published with open access by the GSTF

21

Question

No.

AspectViz

Time

AspectMaps Time Rate AspectViz Rate AspectMaps

1 22.8s 26s 9 8.8

2 11.4s 17.6s 9.5 8.4

3 12.8s 38.8s 8.8 7.2

4 12.8s 49s 9.6 7.4

Average: 14.95s 32.85s 9.2 7.95

TABLE I: COMPARISON OF EXPERIMENT RESULTS BETWEEN ASPECTVIZ
AND ASPECTMAPS

Now, these 20 people are divided into two

groups and each group consisted of 10 members.

Another survey was conducted between two groups

of people named CS-A and CS-B.

CS-A group were given an insertion

sorting algorithm code developed in annotations

based approach of Aspect Oriented Programming.

Students typed this code segment inside an

already developed project and compiled and

executed. They viewed the updated code segment of

the aspects visualization at the browser

[AspectViz] and determined the time. Time was

measured from the start of the typing of the code to

view the visualization.

Similarly, CS-B group were also given

a code segment consists of a method, before(),

after(), pointcut and joinpoint. This segment of

code was developed in the keyword-based

method of Aspects Oriented Programming. Instead

of a web project, this group executed the project

at the eclipse and viewed the visualizations at the

extended plugin of eclipse named AspectJ

Development Tools [AJDT]. Likewise, all the

participants of this group also determined the

time. The code segments for the CS-A and CS-B

groups are illustrated in below Figure 12 and

13 respectively:

Figure 12: Code Segment for CS-A Group

Figure 13: Code Segment for CS-B Group

The average time of the conducted survey results in the

below table:

TABLE II: AVERAGE TIME TAKEN FOR THE EXPERIMENT

OF BOTH THE ASPECTVIZ AND THE AJDT

GSTF Journal on Computing (JoC) Vol.5 No.3, May 2017

© The Author(s) 2017. This article is published with open access by the GSTF

22

6.0 ANALYSIS OF THE RESULTS

The first question in the first experiment is very
straightforward. Since AspectViz lists all the aspects
separately, it takes very little time to find the
aspect’s name. All the aspects details are
collapsed at first. Clicking on the description link
expands all the information related to that particular
aspect. The main reason behind this collapsible/
expandable tabular visualization is scalability. When the
number of aspects is large we need a summarized
visualization which will help the developers to find a
particular aspect easily. So, AspectViz can scale down
and scale up the necessary aspect details as required.
In AspectMaps, it also shows the aspect list
separately but it doesn’t show the package directly. We
have to click each aspect individually in the AspectMaps
window screen and see the package name from the
tool-tip. So, it takes more time to answer the
second part of the first question in AspectMaps and
AspectViz outsmarts AspectMaps in this case.

To answer the second questions, all the
pointcuts inside an aspect in AspectViz are listed in the
same row where the aspect is listed. We had to go
through all the rows down to the required aspect and
get the pointcut details and counts. But in AspectMaps,
since in package level zoom aspects are colored, it took
more time, in this case, to locate the aspect and get the
pointcut details.

For the third question, in AspectViz, it took
almost the same time to answer the second question since
this information is listed at the same location. In
AspectMaps, we had to follow the same steps as in
the second question and had to read all the tooltips inside
that aspect and cost significant time to answer.

For the fourth question, using AspectViz
it took the almost same time to answer as in the
third question since answers are located in the same
location for all aspects. But in AspectMaps, we had to
open the “Max In” zoom option and search for the
matching color aspect in the business classes and read
the tooltips information to get the join point names which
contribute to a greater answer time. The overall rating for
AspectViz was given 9.2 and for AspectMaps was 7.95.
This information represents how effective and easy
AspectViz was to find the answers. So, from the point
of view of usability, simplicity and effectiveness
AspectViz has outsmarted AspectMaps several
occasions. Below are the problems in existing tools that
are effectively negotiated and resolved by AspectViz:

 Confusion with color: On several occasions,

while looking for aspects with the matching

color we have mistakenly located wrong aspects

because of similarity of colors among multiple

aspects. This led to spending more time in

answering question 1. As you can see Figure

3, the two aspects GameSynchronization and

DisplayAspect have almost similar colors. Since
AspectViz doesn’t use color, we located aspects

in less time without being confused which reflects

in the results.

 Complex visualization process: In AspectMaps,

different shapes (rectangle, diamond, and oval)

and colors are used for different AOP and class

components. It takes more time to locate the

targeted components (join point, advice, etc.) by

coordinating colors and shapes. But, in

AspectViz, all the related information of an

aspect is given inside a single row which is easy to

find. That’s why it takes less time to answer

question 4 in AspectViz than AspectMaps.

 Less visual information: AspectMaps provides

different levels of visualization and to locate a

join point we need to follow these levels and

expand the classes using a mouse and read the

tooltip information. It does not show any

information (pointcut name, join point name,

advice name, etc.) on the visualization window

except the names of classes and aspects which

are contributing more time in finding a join point.

In AJDT visualizer, we have to navigate on Eclipse

throughout the source code to find the targeted

join point or advice. But in AspectViz, the name

of the aspects, classes, pointcuts and advice are

provided inside a row of tabular format, providing

a higher level of visual information than most

other tools.

Other problems in existing tools that cannot be
measured in time also resolved in AspectViz, and
discussed below:

GSTF Journal on Computing (JoC) Vol.5 No.3, May 2017

© The Author(s) 2017. This article is published with open access by the GSTF

23

 Dependency on third party tools: As discussed earlier,

AspectMaps is an extension of moose reverse
engineering tool and totally dependent on two other

tools inFamix and VerveineJ to generate .mse
and .xcr files respectively to visualize an AOP

application. But, AspectViz is a simple web
application. No need to install and directly

visualize the uploaded source code without any

tools needed in the middle. Hence, change in the

source code is also reflected in the visualization which

is not possible in AspectMaps because we have to

generate .mse and .xcr files every time we change
the code. Similarly, AJDT cannot work independently;

it relies on Eclipse IDE to visualize the code.

 Outdated technology: The annotation feature was

added in Java 5 which aids the programmers in
writing less complex and clean code which is widely

used in the industry. AspectJ also released all the

features in annotation format along with its traditional

way of writing code. AspectMaps can only visualize

the AOP programs written in traditional AspectJ

notations, not in the annotation. From a developer’s
perspective, this is a less advantageous to

AspectMaps. But AspectViz can visualize programs

written in AspectJ annotation to keep up with the

expectations of developers.

In the second experiment, the average time it takes

to type the code segment is a bit higher for

AspectViz. Compilation and runtime are almost same
for both the AJDT and the AspectViz. But, the
average time was taken to view and find the particular
visualization section for the AspectViz is 23 seconds
and for the AJDT is 2 minutes and 8 seconds.
AspectViz. Compilation and runtime are almost same
for both the AJDT and the AspectViz. But, the
average time was taken to view and find the particular
visualization section for the AspectViz is 23 seconds
and for the AJDT is 2 minutes and 8 seconds.

From the above test results and analysis, we can say
that collapsible tabular visualization and
representation of AOP programs can help the
programmers to understand the flow, architecture, and
behavior of applications in easier, quicker and
effective way.

7.0 CONCLUSION

Here, in this paper, we have proposed new ideas and
techniques to visualize AOP projects and implemented
the ideas by developing a tool. The conventional
way of visualizing deals with colors which can
cause confusions as we discussed earlier; instead, we
have used a collapsible tabular representation of
aspects with one color (black) and provided the
fine-grained details of each aspect in a common
place. Instead of depending on other tools to analyze
source code, we have directly manipulated the source
code which allowed us to have more control on code
and implement our logics accordingly. We have
measured the performance of the AspectViz with a
sample AOP project, and have compared it with the
AJDT and the AspectMaps visualizer and found that
the AspectViz outperformed the AJDT and the
AspectMaps in many cases.

8.0 FUTURE WORK

AspectJ can be implemented in two ways: traditional
keyword-based method and annotations based method.
We have focused on annotations based method here
only. In future, this can be extended to support the
traditional keyword-based method. Our knowledge
base can also be extended to search diverse AOP
patterns in the program. Some frameworks also support
AspectJ visualization. The same visualization can be
done for those frameworks such as spring framework
in Java. Moreover, better way of visualization and
navigation system will always be welcome as required.

GSTF Journal on Computing (JoC) Vol.5 No.3, May 2017

© The Author(s) 2017. This article is published with open access by the GSTF

24

[1] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. Griswold, “An overview of AspectJ,” in Proceedings of the

15th European Conference on Object-Oriented Programming

(ECOOP 2001), ser. Lecture Notes in Computer Science,J. L.

Knudsen, Ed., no. 2072. Budapest, Hungary: Springer-Verlag, Jun.
2001, pp. 327–353.

[2] L. Ramnivas, and J Rod, Enterprise AOP with Spring

Applications – AspectJ in Action, 2nd ed. Manning, 2010.

[3] A. Rountev, S. Kagan, and M. Gibas, “Static and dynamic
analysis of call chains in java,” in Proc. of the 2004 ACM SIGSOFT

international symposium on Software testing and analysis, ser.
ISSTA ’04. New York, NY, USA:ACM, 2004, pp. 1–11.

[4] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C.
Lucena, and A. von Staa. Modularizing design patterns with
aspects: a quantitative study. In AOSD ’05: Proceedings of the 4th
international conference on Aspect- oriented software development,

pages 3–14, New York, NY, USA, 2005. ACM Press.

[5] J. Fabry, A. Bergel., “Design Decisions in AspectMaps”,
2013 First IEEE Working Conference on Software Visualization

(VISSOFT), 2013, pp 1-4.

[6] J. Fabry, A. Kellens, S. Ducasse, “AspectMaps - A Scalable
Visualization of Join Point Shadows,” in 2011 IEEE 19th

International Conference on Program Comprehension (ICPC), 2011,

pp 121-130.

[7] F. d’Arce,E. Garcia, C. M. Correia, “Coordinated Visualization of

Aspect-Oriented Programs,” 2013 27th Brazilian Symposium on

Software Engineering (SBES), 2013, pp 86-93.

[8] A. Colyer, A. Clement, G. Harley, and M. Webster, Eclipse

aspectj: aspect-oriented programming with aspectj and the eclipse

aspectj development tools. Addison-Wesley Professional, 2004.

[9] J.H. Pfeiffer and J. R. Gurd, “Visualisation-based tool support

for the development of aspect-oriented programs,” in AOSD ’06:
Proceedings of the 5th international conference on Aspect-
oriented software development. New York, NY, USA: ACM, 2006,

pp. 146–157.

[10] W. Coelho and G. C. Murphy, “Presenting crosscutting
structure with active models,” in AOSD ’06: Proceedings of the

5th international conference on Aspect-oriented software

development. New York, NY, USA: ACM, 2006, pp. 158–168.

[11] The Eclipse Foundation, “AJDT: Aspectj development
tools,” Online, 2015, http://www.eclipse.org/ajdt/ - last accessed on
12/02/2015.

REFERENCES

[12] O.A. Lazzarini Lemos, F. Capodifoglio Zanichelli, R.

Rigatto, F. Ferrari, S. Ghosh, “Visualization, Analysis, and

Testing of Java and AspectJ Programs with Multi-Level System
Graphs”, 2013 27th Brazilian Symposium on Software

Engineering (SBES), 2013, pp 49-58.

[13] O. A. L. Lemos and P. C. Masiero, “A pointcut based
coverage analysis approach for aspect oriented programs,” Inf.
Sci., vol. 181, no. 13, pp. 2721–2746, Jul. 2011.

[14] D. Grove, G. DeFouw, J. Dean, and C. Chambers,
“Call graph construction in object-oriented languages,” in
Proc. of the 12th ACM SIGPLAN conference on Object-

oriented programming, systems, languages, and applications,
ser. OOPSLA ’97. New York, NY, USA: ACM, 1997, pp. 108–
124.

[15] J. Hannemann and G. Kiczales. Design pattern

implementation in java and AspectJ. In Proceedings of the 17th

Annual Conference on Object- oriented Programming

Systems, Languages and Applications, November 2002.

[16] W. Coelho and G. C. Murphy, “Presenting crosscutting
structure with active models,” in AOSD ’06: Proceedings of the

5th international conference on Aspect-oriented software

development. New York, NY, USA: ACM, 2006, pp. 158– 168.

APPENDIX A
SAMPLE SURVEY QUESTIONNAIRES
Guidelines:
•Measure the time taken to answer each question in
seconds or minutes.
•Rate each tool based on your level of satisfaction to
find answers. Rate out of 10.

1.A) AspectViz: Find two Aspects and their package
names?

Answer:
com.sortmeter.aspects.SelectionSortAspect.java
com.sortmeter.aspects.BubbleSortAspect.java
Time taken: 11 seconds
Rate: 10
B)AspectMaps: Find two Aspects and their package
names?
Answer: DisplayAspect
Pilot
Time taken: 6 seconds
Rate: 10

GSTF Journal on Computing (JoC) Vol.5 No.3, May 2017

© The Author(s) 2017. This article is published with open access by the GSTF

25

2.A) AspectViz: What are the types of each pointcut
in SelectionSortAspect aspect?

Answer: @Before
@After
Time taken: 7 seconds
Rate: 9
B)AspectMaps: What are the types of pointcuts in
Coordinator aspect?
Answer: @After
@Before
Time taken: 14 seconds
Rate: 8
3. A) AspectViz: What are the advice (method
names) inside SelectionSortAspect aspect?

Answer: logBeforeSelectionSort
logAfterSelectionSort
Time taken: 16 seconds
Rate: 9
B) AspectMaps: What are the advice (method names)
inside Coordinator aspect?
Answer: synchronizationPoint
Time taken: 24 seconds
Rate: 8
4. A) AspectViz: How many Join Points does the
BubbleSortAspect is operating on?

Answer: 1
Time taken: 9 seconds
Rate: 10
B) AspectMaps: How many Join Points does the
DisplayAspect is operating on?
Answer: 5
Time taken: 62 seconds
Rate: 8

GSTF Journal on Computing (JoC) Vol.5 No.3, May 2017

© The Author(s) 2017. This article is published with open access by the GSTF

26

	Blank Page
	Blank Page
	Blank Page

