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Abstract - Due to its implicit invocation nature of 
Aspect Oriented Programming (AOP), locating a joint 
point for executing aspect is extremely difficult. Hence, 
it becomes difficult to understand the application’s 
flow and behavior. Current AOP visualization tools have 
limitations such as high dependency on other tools, 
confusing and excessive use of color to represent aspects 
and using an outdated version of AspectJ. In this 
paper, we propose a new approach collapsible 
tabular visualization tool to visualize and represent AOP 
features to aid the programmers in better 
understanding AOP applications. We have come out 
of traditional color-based aspect visualization and developed 
a web based tool: AspectViz that visualizes the aspects in 
a simple collapsible table. A questionnaire containing 
four different questions related to aspects visualization 
was developed to compare AspectViz with current 
visualization tools. 20 graduate students and 
professional software developers were invited to participate 
in the test experiment as well as the survey. We have 
compared its performance with existing AOP 
visualization tools i.e. the AJDT and the AspectMaps and 
showed how it outperformed in many cases, which is no 
color confusion, simple tabular visualization of aspects, no 
dependency on third-party software, easy to understand and 
the time it took to find a particular aspect was less etc. 
Collapsible tabular visualization enhanced the usability and 
performance of aspect locating in aspect-oriented 
programming. 

1.0 INTRODUCTION 
Object Oriented Programming (OOP) can modularize a 
program at great extent, but there are some concerns in 
software systems that are not possible to modularize using 
OOP anymore. Aspect Oriented Programming (AOP) 
was introduced to provide absolute modularity in 
software development [1]. Some concerns such as 
logging, transaction demarcation, and management, 
application profiling and security are the features that 
spread all over the source code because of the nature of 
these features. AOP can modularize each of these concerns 
and implicitly plug inside the base code wherever 
needed. Since they are implemented implicitly, it is 
impossible to find out which aspect is operating at which 
part of the base code. AOP visualizer provides the facility 
to view the link between aspect and base code. Hence, it 
becomes easier to understand the flow and behavior of the 
program.  

There is a separation between business concerns and 
crosscutting concerns while designing application. During 
the development phase, the concerns become tangled and 
break some of the basic software design principles such as 
Single Responsibility Principle (SRP) by implementing both 
business core and crosscutting concerns together inside a 
single class. We will discuss some of the disadvantages of 
not using AOP in the following:   
Code tangling happens when multiple concerns are 
implemented in a single module. “Developers consider 
concerns for example business logic, application 
performance, flow synchronization, application logging, 
application security etc. when implementing a module” [2]. 
The following Figure 1 shows tangling in a class. 
This drags to simultaneous appearance of elements originated 
from individual concern’s implementation and finally turns 
into code tangling. 

Transaction 

Management 

Business 

Logic 
Security 

Figure 1: Code Tangling in a Class 

The Code scattering happens if one functionality is written 
across several modules. By definition, crosscutting 
concerns usually spread over multiple modules, hence 
similar codes are also scattered within all these modules. 
For instance, if a software makes database calls, then the 
performance of a concern can affect the performance of 
other modules if those modules are also calling the 
database. 
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AspectJ is one of the most integral 

implementations of the AOP model and it supports all 

the elements. It offers two syntax choices: 

traditional keyword and @AspectJ annotation. We 

can categorize the crosscutting structures in AOP as a 

common crosscutting elements (such as join point, the 

pointcut, and the aspect), the dynamic crosscutting 

element (e.g., advice) and finally static crosscutting 

elements (inter-type and weave-time declarations). All of 

these elements also form the actual building blocks of 

AspectJ. A weaver is needed to weave the classes and the 

aspects together so that advice gets executed.  

Even though AOP seems to express crosscutting 

concerns in an efficient and elegant way, it is still a 

relatively young programming paradigm and not much 

work has been done in defining and assessing the 

quality of aspect-oriented programs. Visualization of AOP 

project can help to improve the quality of software 

systems. Some groups of people have done research and 

study [3][4] on this issue. Here, we’ll discuss various 
aspects of AOP visualization from different perspectives 

and propose a new approach to visualize the AOP project.  

AOP visualization is an advanced and less 

explored field than other areas of software 

engineering and development. Different visualization 

group visualized AOP in different ways; in most cases, 

extensive color is being used. On the other hand, we 

have used collapsible tabular format and avoided any 

unwanted colors to free the developers from being 

confused. Some of the visualization used heavy and 

complex tool to analyze the source code. For 

example, AspectMaps uses moose reverse engineering 

tools but we relied on a basic and important resource only: 

the source code itself. We can make our own logic and can 

manipulate them accordingly.

2.0 LITERATURE REVIEW 

There are some AOP visualizers available where each of 
them has adopted different approaches to performing the 
visualization task. Here, I will discuss two of the most 
prominent and widely used AOP visualization tools: AJDT 
and AspectMaps. Their tool showed a part of the AOP 
elements inside the source code, by considering the intention 
of the program developer. Visualization is considered as the 
UML extension which also represents aspects, advice and 
method call. The power of this approach is its ability to 
perform abstraction operations automatically, and automatic 
element selection which will be visualized.  

2.1 The AJDT 

The AspectJ Development Tools (AJDT) is an open source 
Integrated Development Environment (IDE) that supports 
programming with AspectJ within Eclipse. It highlights the 
syntax, reports error along with many other features that 
help the user about understanding the aspects in the 
program. AJDT provides aspects browsing capability same 
as class browsing capability. AJDT visualizer visualizes an 
entire project at a glance, integrated debugging support and 
wizards to create aspects and AspectJ projects. It can 
visualize any AOP projects and can be found from the 
perspective mode of the eclipse. 

With AJDT, we can navigate through the aspects and advice 
of the AOP project but we cannot scale up the segments to 
have a more clear view. Each column is the representation of 
AOP source file and the colored portions of it are the advice. 
Each color represents different advice which is shown in 
Figure 2.   

Figure 2: AJDT Representing Aspects with 

Different Colors 

2.2 The AspectMaps 

Another well-known aspect visualization tool is 
AspectMaps. This tool extends the Moose reverse 
engineering platform by implementing various support tools 
from Moose [5]. One important feature of AspectMaps is its 
zooming facility of a selected part of source code. Zooming 
from a coarser level to fine-grained level exposes more 
details about the code. The visualization is localized, for 
example in one window for some packages. The level of 
visualization can be package level, but in a different window, 
it can zoom to class level for other packages [6]. The 
AspectMaps window is given below Figure 3.
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Figure 3: Structural Zooming of all Join Point Shadows of 

AspectMaps 

When a project is opened with AspectMaps, the 

package content is put inside a rectangle with the name of 

the package on top of it. It colors all the rectangles by the 

color specified to the aspect of it. If there are multiple 

aspects, then the rectangle is colored with black. As we start 

to zoom-in to the package rectangle, it starts to show the 

details inside it such as classes and aspects, which aspect 

resides in which class with corresponding aspect’s color. 
Below Figure 4 is the visualization of a sample AOP project 

showing package, class and method level AOP feature 

representation.  

3.1 Challenges in AOP 

AOP modularizes the cross-cutting concerns and plugs 

in these modules inside business logic wherever it is 

required. Inherently, it also increases the complexity 

of software to understand its architecture and 

behavior [7]. Since aspect codes are not physically placed 

where they are going to make the effect, it later 

becomes vague to the software developers to figure 

out which aspect is operating at which part of the base 

code. Hence, visualization of AOP features was advised 

by the experts. As a result, various approaches have 

been proposed and tools have been developed. Each tool and 

approach have its own shortcomings and hence there is a 

need for better and more effective ideas to comprehend the 

structure of an AOP application by visualizing it. We 

have to keep in mind that the ultimate goal of aspect 

visualization is to know where an aspect is advising a join 

point, no matter which approach we take to visualize it.  

3.2 Problems in Existing Visualizers 

To effectively show how an advice is executing at 

which join point, several groups have proposed 

and developed AOP visualization tools. Few of them 

have been successful and popular with software 

developers. Most of them have some problems and 

difficulties to properly visualize the software. For 

instance, AJDT and AspectMaps are most popular 

visualizer for AspectJ framework. One common 

problem both of these visualizers suffer from is they can 

visualize AOP programs that are written only in older 

AspectJ constructs i.e. traditional keyword based. But, after 

the release of Java 5, since it had support for annotations, 

people in the software industry were using annotations other 
than traditional AspectJ constructs. Hence, these visualizers 
cannot support newer AOP projects. The traditional AspectJ 
program requires a special compiler to compile the AOP 
source code, but annotation based AOP code can be 
compiled using the regular java compiler (javac). 

3.2.1 Problems in AJDT 

The most common difficulties faced when using AJDT 
aspect visualizer are becoming confused with the colors of 
aspects and keeping track of columns (source code files) in 
the visualizer main window. In AJDT visualizer, a unique 
color is assigned to each advice and as the number of advice 
increases, it becomes difficult for the programmer to 
remember which color belongs to which aspect. Another 
problem is that it shows each source class file as a column 
where aspects are advised. As the project becomes bigger, 
the numbers of classes where the aspects can be plugged 
become larger. Sometimes, it becomes several hundred 
classes which are very difficult to maintain in the visualizer 
window and to keep track of classes and aspects. This is an 
unavoidable maintainability issue for AJDT visualizer. 

Figure 4: Visualization of AOP Project Using AspectMaps 

Visualizer 

3.0 CHALLENGES AND PROBLEMS 

AOP has higher quality as software systems, but it 

also causes some problem in understanding already 

developed software and its behavior. In the 

accompanying segment, we will talk about difficulties 

and issues that join AOP. 

GSTF Journal on Computing (JoC) Vol.5 No.3, May 2017

© The Author(s) 2017. This article is published with open access by the GSTF

18



3.2.2 Problems in AspectMaps 

The most obvious problem associated with 
AspectMaps is its usability. It doesn’t directly work 
with the source code and to visualize a project it needs 

some extra processing and tools to mediate. Since it 

is an extension of the Moose reverse engineering 

tool, the source code needs to be made suitable for 

Moose tool. To do that, the source code is 

converted to .mse and .xcr file.   

To import Eclipse projects into AspectMaps, 

two external tools are required: firstly, to generate 

Moose .mse files for the Object-Oriented part of the 

application and secondly to generate .xcr files for the 

Aspect-Oriented part of the application. These two tools 

are inFamix and VerveineJ and they are protected by 

license, not open source. The flow is shown on following 

Figure 5: 

.mse 

Source 

Code 
.xcr 

Aspect 

maps 

inFa

mix 

Verv

eineJ 

Figure 5: AspectMaps Workflow 

This extra processing is a tedious job for a project 

because the source code is constantly changing for 

a project. Whenever the source code is changed, 

the .mse and .xcr files need to be generated 

every time. AspectMaps also suffers from the similar 

problem like AJDT: the confusion with color. In 

the visualizer window, AspectMaps doesn’t show the 
name of the Join Point and Advice. To see those, we 
have to expand each class and then see the tool tips. 

This is a time-consuming job if the number of classes 

and aspect are high.  

Another problem is that the border color 

of rectangles are colored with the same color of aspect 

with which it has a reference. If a class has more than one 
aspect reference, the class rectangle’s border is 
colored black which doesn’t make any significance. 
Hence, it’s not possible to tell which aspect is executing 
inside that class. 

4.0 PROPOSED APPROACH 

A different approach is taken to sort out the issues 
and limitations. First of all, no color is used to specify the 
aspects. As the developers are familiar with a limited 
number of colors no confusion arises. Instead, tabular 
representation is used where aspect classes are listed in the 
left column and on the right side of table Pointcuts and 
Join Points are listed. 

All the information related to aspects can found in 
a single place. Developers do not need to go back 
and forth between base code and aspect source code. 
Secondly, it is independent of development tools. All 
it needs is an aspect implemented with AspectJ 
framework. Third, the flow of visualization of these 
tools are from base code to aspect code i.e. first 
they find out the base code where aspects are 
operating, then they gradually navigate towards the 
aspect. On the other hand, our approach finds out the 
aspects available in the program first then finds out the 
operating base code (Join points). Even if the 
program isn’t compatible, it works fine. It can be used 
as the documentation of source code as well; as it 
generates the Portable Document Format (PDF) that 
shows the changes in source code with the evolution of 
software.  

4.1 Design and Implementation  

To achieve our goal we have developed a web-based tool 
named AspectViz that uses JSP and Servlet. As it 
is web-based developers can access it from anywhere 
without installing any software or plugins. Moreover, 
AspectViz doesn’t store any input source code that 
keeps the proprietorship of the developers without any 
violations. It takes any project i.e. developed with 
annotations based implementation of AspectJ. 
Feature-based extraction approach of the aspects is used 
which is described in the following Figure 6.  

Figure 6: Design Components of AspectViz 

4.1.1 AOP Knowledge Base 

AOP features are limited; so, we created a knowledge base 

to store the AOP features of AspectJ. Knowledge base 

stores the AspectJ annotations and language 

keywords such as @Aspect, @Before, @After. Data 

structure hashmap is used to store them rather than 

database management systems. Knowledge base works 

as the input to the pattern matching engine and shown in 

Figure 7.  
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Figure 7: AOP Knowledge Base 

4.1.2 Pattern Matching Engine 

This engine is one of the cores and most important 

parts of AspectViz. It is used to locate AOP features 

in the project. Source code and knowledgebase are 

considered as input to this engine. It scans each source 

code file and searches for patterns in the knowledge base. 

We have implemented pattern matching using regular 

repressions and existing pattern matching java 

libraries. Then, we scanned the source code to match it 

with the features stored in the knowledge base. First, 

we searched for Aspects in the source files. Once 

found, we looked for Pointcuts specified in the Aspect 

class. Then, we found out the type of Pointcut, line 

number and the number of Pointcuts in an Aspect. After 

that, we extracted the name of the Advice method and the 

Join Point locations for each Pointcut. Hence, all the 

AOP features: Aspect, Pointcut, Advice and Join 

Point are discovered and shown in the output window. 

The flow chart of the pattern matching engine is shown in 

Figure 8.  

Figure 8: Flow Chart of Pattern Matching Engine 

4.1.3 AOP Analyzer Engine 

The pattern matching engine returns the matched 

component to AOP analyzer engine; then the 

analyzer engine decides the type of the component and 

finds out other related information for this 

component, such as for an aspect, to which 

package it belongs, the number of pointcuts it has, etc.  

It then organizes the features and displays them in a 

tabular format. We have listed the aspect and classes 

separately for the convenience of users. The 

following Figure 9 shows the flow chart of AOP 

analyzer engine: 

Figure 9: Flow Chart of AOP Analyzer Engine 

GSTF Journal on Computing (JoC) Vol.5 No.3, May 2017

© The Author(s) 2017. This article is published with open access by the GSTF

20



4.2 Collapsible Tabular Visualization of Aspects 

It is very hard to determine the aspects when the 

number of aspects is higher. When there are a lot of 

aspects to be visualized it necessary to scale down to a 

small segment of rows. Now, if we visualize the 

aspects by scaling down, it needs to be scaled up 

whenever necessary. So, we came up with a solution 

that can scale up to a full description and can scale to 

down to minimum information.     

Our proposed idea shows a list of aspects 

rather than full description at the first. All the 

descriptions will be expanded whenever the 

description link is clicked. Collapsed or scaled down 

to a list of aspects is given in Figure 10. And the 

clickable expansion of the full description is illustrated 

in Figure 11.    

Figure 10: Scaling Down to a Small Portions 

Visualization of Aspects 

5.0 EXPERIMENTAL METHOD AND RESULTS 

To evaluate the performance and effectiveness of 
AspectViz, a survey is conducted. The sole purpose of this 
survey is to compare usefulness, simplicity, and 
performance of AspectViz and AspectMaps. 

5.1 Experimental Method 

A set of four questions is being compiled to answer 
the key features of AOP. Developers ask common 
questions related to aspects are what are the aspects, 
what do they do and where are they applied. Considering 
these facts, four questions are selected. Firstly, we 
demonstrated AspectViz, AspectMaps and test 
program to them. All the 20 participants were given 
a computer and questions printed on a paper. There were 
no time constraints to complete the survey. Each 
participant was asked to measure the time in seconds to 
answer each question and also rate the tools out of 10 
based on their experience and comfortableness with the 
tools. To answer each question participants started from 
the homepage of the visualizer so that the results do 
not get affected by another process.  

1. Find two aspects and their package names?
2. What are the types of each pointcut in 
MergeSortAspect aspect?
3. What is the advice inside MergeSortAspect?
4. How many join points is the aspect SelectionSortAspect 
operating on?

Figure 11: Scaling up and Showing Full Description of the 
Particular Aspect 

5.2 Experiment Results 

From the result of the survey conducted, we have calculated 

the average time taken to answer each question and the 

average rating for each question on the tools. The following 

figure shows the time comparison and rating based on the 

survey result.  

AspectMaps visualizes traditional non-annotation 

AOP of AspectJ. To test it we have taken sample application 

available on AJDT website named spacewar2. AspectViz 

can visualize annotation based AOP of AspectJ; Hence, we 

developed a project sort-meter-aspected that measures the 

execution time of various sorting algorithms for the same 

set of input data.  

Here, the time to answer each question is measured 
in seconds and the rating is given out of 10. It’s worth 

mentioning that, the values of these parameters are not 

absolute and may vary from applications to applications 

and the skill of the people in AOP doing the test. Survey 

result is given in the below table: 
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Question 

No. 

AspectViz 

Time 

AspectMaps Time Rate AspectViz Rate AspectMaps 

1 22.8s 26s 9 8.8 

2 11.4s 17.6s 9.5 8.4 

3 12.8s 38.8s 8.8 7.2 

4 12.8s 49s 9.6 7.4 

Average: 14.95s 32.85s 9.2 7.95 

TABLE I: COMPARISON OF EXPERIMENT RESULTS BETWEEN ASPECTVIZ 
AND ASPECTMAPS 

Now, these 20 people are divided into two 

groups and each group consisted of 10 members. 

Another survey was conducted between two groups 

of people named CS-A and CS-B.  

CS-A group were given an insertion 

sorting algorithm code developed in annotations 

based approach of Aspect Oriented Programming. 

Students typed this code segment inside an 

already developed project and compiled and 

executed. They viewed the updated code segment of 

the aspects visualization at the browser 

[AspectViz] and determined the time. Time was 

measured from the start of the typing of the code to 

view the visualization. 

Similarly, CS-B group were also given 

a code segment consists of a method, before(), 

after(), pointcut and joinpoint. This segment of 

code was developed in the keyword-based 

method of Aspects Oriented Programming. Instead 

of a web project, this group executed the project 

at the eclipse and viewed the visualizations at the 

extended plugin of eclipse named AspectJ 

Development Tools [AJDT]. Likewise, all the 

participants of this group also determined the 

time. The code segments for the CS-A and CS-B 

groups are illustrated in below Figure 12 and 

13 respectively: 

Figure 12: Code Segment for CS-A Group 

Figure 13: Code Segment for CS-B Group 

The average time of the conducted survey results in the 

below table: 

TABLE II: AVERAGE TIME TAKEN FOR THE EXPERIMENT 

OF BOTH THE ASPECTVIZ AND THE AJDT 
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6.0 ANALYSIS OF THE RESULTS 

The first question in the first experiment is very 
straightforward. Since AspectViz lists all the aspects 
separately, it takes very little time to find the 
aspect’s name. All the aspects details are 
collapsed at first. Clicking on the description link 
expands all the information related to that particular 
aspect. The main reason behind this collapsible/
expandable tabular visualization is scalability. When the 
number of aspects is large we need a summarized 
visualization which will help the developers to find a 
particular aspect easily. So, AspectViz can scale down 
and scale up the necessary aspect details as required. 
In AspectMaps, it also shows the aspect list 
separately but it doesn’t show the package directly. We 
have to click each aspect individually in the AspectMaps 
window screen and see the package name from the 
tool-tip. So, it takes more time to answer the 
second part of the first question in AspectMaps and 
AspectViz outsmarts AspectMaps in this case. 

To answer the second questions, all the 
pointcuts inside an aspect in AspectViz are listed in the 
same row where the aspect is listed. We had to go 
through all the rows down to the required aspect and 
get the pointcut details and counts. But in AspectMaps, 
since in package level zoom aspects are colored, it took 
more time, in this case, to locate the aspect and get the 
pointcut details.  

For the third question, in AspectViz, it took 
almost the same time to answer the second question since 
this information is listed at the same location. In 
AspectMaps, we had to follow the same steps as in 
the second question and had to read all the tooltips inside 
that aspect and cost significant time to answer. 

For the fourth question, using AspectViz 
it took the almost same time to answer as in the 
third question since answers are located in the same 
location for all aspects. But in AspectMaps, we had to 
open the “Max In” zoom option and search for the 
matching color aspect in the business classes and read 
the tooltips information to get the join point names which 
contribute to a greater answer time. The overall rating for 
AspectViz was given 9.2 and for AspectMaps was 7.95. 
This information represents how effective and easy 
AspectViz was to find the answers. So, from the point 
of view of usability, simplicity and effectiveness 
AspectViz has outsmarted AspectMaps several 
occasions. Below are the problems in existing tools that 
are effectively negotiated and resolved by AspectViz: 

 Confusion with color: On several occasions, 

while looking for aspects with the matching 

color we have mistakenly located wrong aspects 

because of similarity of colors among multiple 

aspects. This led to spending more time in 

answering question 1. As you can see Figure 

3, the two aspects GameSynchronization and 

DisplayAspect have almost similar colors. Since 
AspectViz doesn’t use color, we located aspects 

in less time without being confused which reflects 

in the results.

 Complex visualization process: In AspectMaps, 

different shapes (rectangle, diamond, and oval) 

and colors are used for different AOP and class 

components. It takes more time to locate the 

targeted components (join point, advice, etc.) by 

coordinating colors and shapes. But, in 

AspectViz, all the related information of an 

aspect is given inside a single row which is easy to 

find. That’s why it takes less time to answer 

question 4 in AspectViz than AspectMaps.

 Less visual information: AspectMaps provides 

different levels of visualization and to locate a 

join point we need to follow these levels and 

expand the classes using a mouse and read the 

tooltip information. It does not show any 

information (pointcut name, join point name, 

advice name, etc.) on the visualization window 

except the names of classes and aspects which 

are contributing more time in finding a join point. 

In AJDT visualizer, we have to navigate on Eclipse 

throughout the source code to find the targeted 

join point or advice. But in AspectViz, the name 

of the aspects, classes, pointcuts and advice are 

provided inside a row of tabular format, providing 

a higher level of visual information than most 

other tools.   

Other problems in existing tools that cannot be 
measured in time also resolved in AspectViz, and 
discussed below: 
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 Dependency on third party tools: As discussed earlier, 

AspectMaps is an extension of moose reverse 
engineering tool and totally dependent on two other 

tools inFamix and VerveineJ to generate .mse 
and .xcr files respectively to visualize an AOP 

application. But, AspectViz is a simple web 
application. No need to install and directly 

visualize the uploaded source code without any 

tools needed in the middle. Hence, change in the 

source code is also reflected in the visualization which 

is not possible in AspectMaps because we have to 

generate .mse and .xcr files every time we change 
the code. Similarly, AJDT cannot work independently; 

it relies on Eclipse IDE to visualize the code.

 Outdated technology: The annotation feature was 

added in Java 5 which aids the programmers in 
writing less complex and clean code which is widely 

used in the industry. AspectJ also released all the 

features in annotation format along with its traditional 

way of writing code. AspectMaps can only visualize 

the AOP programs written in traditional AspectJ 

notations, not in the annotation. From a developer’s 
perspective, this is a less advantageous to 

AspectMaps. But AspectViz can visualize programs 

written in AspectJ annotation to keep up with the 

expectations of developers.

In the second experiment, the average time it takes 

to type the code segment is a bit higher for 

AspectViz. Compilation and runtime are almost same 
for both the AJDT and the AspectViz. But, the 
average time was taken to view and find the particular 
visualization section for the AspectViz is 23 seconds 
and for the AJDT is 2 minutes and 8 seconds.  
AspectViz. Compilation and runtime are almost same 
for both the AJDT and the AspectViz. But, the 
average time was taken to view and find the particular 
visualization section for the AspectViz is 23 seconds 
and for the AJDT is 2 minutes and 8 seconds.  


From the above test results and analysis, we can say 
that collapsible tabular visualization and 
representation of AOP programs can help the 
programmers to understand the flow, architecture, and 
behavior of applications in easier, quicker and 
effective way. 

7.0 CONCLUSION 

Here, in this paper, we have proposed new ideas and 
techniques to visualize AOP projects and implemented 
the ideas by developing a tool. The conventional 
way of visualizing deals with colors which can 
cause confusions as we discussed earlier; instead, we 
have used a collapsible tabular representation of 
aspects with one color (black) and provided the 
fine-grained details of each aspect in a common 
place. Instead of depending on other tools to analyze 
source code, we have directly manipulated the source 
code which allowed us to have more control on code 
and implement our logics accordingly. We have 
measured the performance of the AspectViz with a 
sample AOP project, and have compared it with the 
AJDT and the AspectMaps visualizer and found that 
the AspectViz outperformed the AJDT and the 
AspectMaps in many cases.  

8.0 FUTURE WORK 

AspectJ can be implemented in two ways: traditional 
keyword-based method and annotations based method. 
We have focused on annotations based method here 
only. In future, this can be extended to support the 
traditional keyword-based method. Our knowledge 
base can also be extended to search diverse AOP 
patterns in the program. Some frameworks also support 
AspectJ visualization. The same visualization can be 
done for those frameworks such as spring framework 
in Java. Moreover, better way of visualization and 
navigation system will always be welcome as required.   
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APPENDIX A 
SAMPLE SURVEY QUESTIONNAIRES 
Guidelines: 
•Measure the time taken to answer each question in 
seconds or minutes.
•Rate each tool based on your level of satisfaction to 
find answers. Rate out of 10.

1.A) AspectViz: Find two Aspects and their package 
names?

Answer: 
com.sortmeter.aspects.SelectionSortAspect.java 
com.sortmeter.aspects.BubbleSortAspect.java 
Time taken: 11 seconds 
Rate: 10 
B)AspectMaps: Find two Aspects and their package 
names?
Answer: DisplayAspect 
Pilot 
Time taken: 6 seconds 
Rate: 10 
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2.A) AspectViz: What are the types of each pointcut 
in SelectionSortAspect aspect?

Answer: @Before 
@After 
Time taken: 7 seconds 
Rate: 9 
B)AspectMaps: What are the types of pointcuts in 
Coordinator aspect?
Answer: @After 
@Before 
Time taken: 14 seconds 
Rate: 8 
3. A) AspectViz: What are the advice (method 
names) inside SelectionSortAspect aspect? 

Answer: logBeforeSelectionSort 
logAfterSelectionSort 
Time taken: 16 seconds 
Rate: 9 
B) AspectMaps: What are the advice (method names) 
inside Coordinator aspect? 
Answer: synchronizationPoint 
Time taken: 24 seconds 
Rate: 8 
4. A) AspectViz: How many Join Points does the 
BubbleSortAspect is operating on? 

Answer: 1 
Time taken: 9 seconds 
Rate: 10 
B) AspectMaps: How many Join Points does the 
DisplayAspect is operating on? 
Answer: 5 
Time taken: 62 seconds 
Rate: 8

GSTF Journal on Computing (JoC) Vol.5 No.3, May 2017

© The Author(s) 2017. This article is published with open access by the GSTF

26


	Blank Page
	Blank Page
	Blank Page

