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Abstract—Distributed antenna systems (DASs) have attracted
lots of attention as a method to improve the performance of future
wireless networks. Capacity analysis and optimum power alloca-
tion for the physical layer of DASs have been extensively explored
in the literature. However, the study of cross-layer issues, such
as channel-aware scheduling and fairness evaluation, is relatively
scarce. This paper partially fills this gap by addressing the down-
link capacity and fairness analysis of a DAS assisted by joint
user scheduling and transmit power control. The algorithm is
evaluated in a multi-cell environment assuming imperfect channel
state information. The algorithm exploits the spatial diversity
provided by the distributed antennas in order to schedule over the
same frequency band a different user attached to each one of the
distributed nodes. The objective is to optimize the power levels
to control the interference created between the transmissions
of the selected users, thereby multiplexing as many of them as
possible while maximizing capacity. To achieve this goal, a sum-
rate capacity optimization with respect to the power levels is
here proposed by using a gradient descent iterative technique.
The result is the set of optimum user-antenna pairs to be
scheduled and their optimum power levels. Inter-cell interference
is calculated by reusing the results of previous simulation runs
in the transmission parameters of outer-cells, thereby efficiently
replicating system-level behavior. The algorithm is also evaluated
in terms of fairness by using the spatial distribution of the user
capacity. Capacity and fairness of the algorithm considerably
outperform previous solutions, particularly in scenarios with
good line-of-sight and optimum node location.

Index Terms—Distributed antenna systems, power control,
user scheduling, sum-rate optimization.

I. INTRODUCTION

A. Distributed Antenna Systems (background work)
Multiple-input multiple-output (MIMO) systems have been

identified as a good candidate for boosting the performance of
future wireless networks [1]. MIMO systems have the ability
to increase the capacity of wireless channels without the need
of additional bandwidth for data transmission. However, due
to size and space limitations of terminals and base stations
(BSs), MIMO suffers from the problem of high correlation
between the signals of the antenna elements [1]. A solution
to this problem can be found in the area of distributed an-
tenna systems (DASs). In comparison with co-located antenna
systems (CASs), where all antennas are co-located in the BS,
in DASs the antennas are geographically distributed within
the cell [2], thereby reducing access distance to the user and
minimizing the correlation problem.

Distributed antenna systems have been simply used to im-
prove coverage in indoor locations [3]. However, over the last
decade, DASs have been investigated under more advanced
multiuser detection schemes. The capacity of a DAS with
CDMA (code division multiple access) in single cell scenarios
has been investigated in [4]. The authors found that capacity
gains can be achieved in the down-link by simple selecting for
transmission the antenna with the lowest path-loss value. By
contrast, uplink capacity was maximized by using multiple
antenna processing. Similarly, the work in [2] has studied
the down-link capacity of a multi-cell DAS scenario with
a single user in the central cell. Two transmission schemes
were analyzed: blanket, in which all the antennas assist in the
transmission, and selective, where only the antenna with the
lowest path-loss value is used. Perfect knowledge of channel
state information (CSI) at the transmitter and/or at the receiver
was assumed. The selective scheme was shown to provide the
best performance. Optimum power allocation for multi-cell
DASs with a single user has been addressed in [7] and [8].

B. Motives behind the proposed work
Despite the extensive work on the physical layer of DAS,

cross-layer issues such as the design of scheduling algorithms
and fairness evaluation of DAS remain relatively unexplored.
To address these issues, the work in [5] has analyzed round-
robin (RR) and maximum-carrier to-interference (MCI) sched-
ulers for the down-link of DAS under different values of
traffic load and transmit power. The study has concluded that
antenna selective schemes provide considerable gain margins,
particularly in the case of RR scheduling. In the case of MCI
scheduling, relatively less gains were reported due to the mul-
tiuser diversity gains of this type of scheduler. Improving on
this previous work, a novel scheduler for the down-link of DAS
based on power and interference control has been proposed in
[6]. This solution aims to schedule a different user attached to
each distributed node in the central cell. This is achieved by
optimizing the antenna power levels and the scheduled users
in an iterative way to comply with a prescribed signal-to-
interference-plus-noise ratio (SINR) for each scheduled user.
The results showed that the algorithm provides considerable
packet throughput gains that were proportional to the number
of distributed antennas in the cell. The algorithm was evaluated
under the assumption of perfect CSI.
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C. Paper contributions and organization

This paper proposes a novel approach for joint user schedul-
ing and power optimization in DAS that has been inspired
by the algorithm presented in [6]. The proposed algorithm
also aims to schedule a different user attached to a different
node inside the cell. Therefore, as a first step, each antenna
is associated with a unique user in the network using the
criterium of maximum channel gain. The next step is to
optimize the Shannon sum-rate capacity (considering all user-
node pairs inside the cell) in terms of the power level of each
antenna. This is achieved by using a gradient steepest descent
(GSD) iterative technique. If at any of the iterations, the power
of a given user-antenna pair is considerably low, then the
node is dropped from the set of scheduled nodes. The aim
of this process is to control the interference created between
the simultaneous transmissions of the selected users, thereby
multiplexing as many of them as possible while maximizing
sum-rate capacity. In comparison with the algorithm pre-
sented in [6] (which targets packet throughput based on SINR
thresholds) in this approach the exact analytical expression
of the sum-rate capacity is used as objective function of the
GSD optimization technique. GSD is a popular technique in
the literature of convex optimization to deal with functions
whose optimum values are difficult to obtain theoretically [9].
However, GSD has some drawbacks such as slow converge
and local optimum values [9]. This paper also proposes a
method to deal and solve these issues of GSD for the particular
problem addressed here. In addition, the algorithm is based
on the availability of imperfect channel state information
at the central processing node, which is a more realistic
assumption. A novel method to compute outer-cell interference
by reusing the results of previous iterations has also allowed
us to efficiently replicate the behavior of the algorithm at
the system-level. The algorithm provides the optimum set of
antenna-user pairs to be scheduled and the optimum power
levels that maximize capacity in the central cell. The paper also
proposes the study of the fairness properties of the algorithm
by using the spatial distribution of the capacity achieved by
the scheduled users. Capacity and fairness are considerably
improved over conventional solutions for various values of
transmit power and relative node location in the cell.

The structure of this paper is as follows. Section II describes
the multi-cell deployment scenario and the propagation and
signal models to be used. Section III describes the proposed
algorithm and the optimization techniques. Section IV presents
the results of the simulation and numerical evaluation. Finally,
Section V draws the main conclusions of the paper.

II. SYSTEM MODEL

Consider the hexagonal multi-cell distributed antenna sys-
tem depicted in Figure 1 with I + 1 cells: one central cell
(i = 0), which will be the main target of analysis, and I
surrounding cells (i = 1, . . . , I), which will be used as simple
sources of interference. Only one tier of surrounding cells will
be used (i.e., I = 7). Each hexagonal cell has a radius R and
consists of a total of M+1 nodes: one located at the center of
the cell (m = 0), and M distributed nodes (m = 1, . . . ,M ),

which are located at a distance Dr from the center of the
cell. The distributed nodes are spaced at uniform angles given
by θm = 2(m−1)π

M . A conventional cellular system with one
centralized node can be characterized by using M = 0. The
analysis in this paper is focused on the down-link transmission
with only one antenna per distributed node and one antenna
at the user terminal. It is also assumed that the distributed
nodes are connected, via a dedicated link such as a cable
or optical fibre, to the node at the center of the cell where
all decisions for user scheduling and power allocation are
taken. The transmissions in the network are organized in time-
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6i =
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Fig. 1. Cellular architecture for evaluation of DASs.

slots. A set of J potential users is considered to be randomly
deployed in the central cell of analysis every time slot of
the system. The channel between user j and the m-th node
of the i-th cell of the network will be denoted by hm,i,j .
Channel envelopes of different users and different distributed
nodes are assumed to be statistically independent and with
Rice distribution described by the parameter K. This means
that hm,i,j will be modeled as a complex Gaussian variable
with mean µ and variance σ2, i.e. hm,i,j ∼ CN (µ, σ2), where
K = µ2

σ2 . All channels are block fading and are affected by a
propagation path-loss model defined by [10]:

LdB(m, i, j) = 20 log10(dm,i,j) + 44.3 + 20 log10

(
f

5.0

)
,

where dm,i,j is the distance between user j and the m-th
node of the i-th cell of the network, and f is the operational
frequency in GHz. Shadowing is also considered using a log-
normal distribution with parameter σs = 3dB. The signal
transmitted by the m-th node of the i-th cell will be denoted
by si,m = [si,m(0), . . . , si,m(S − 1)]T , where S is the
number of symbols and (·)T is the vector transpose operator.
Assuming that the transmitted symbols have unitary power
(i.e., E[sHi,msi,m] = 1, where E[·] is the statistical expectation
operator and (·)H is the hermitian transpose operator) and the
transmit power of node m in cell i is given by Pm,i, then the
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signal received by user j is given by:

rj =
I∑
i=0

M∑
m=0

√
Pm,ihm,i,jsi,m + vj , (1)

where vj = [vj(0), . . . , vj(S − 1)]T is the additive gaus-
sian noise with zero mean and unitary variance vj(q) ∼
CN (0, σ2

v), q ∈ {0, . . . S − 1} and σ2
v = 1. The signal-to-

interference-plus-noise ratio (SINR) experienced by user j in
cell i, given the transmission of the m−th node which is also
in the i-th cell, is denoted by γm,i,j and can be mathematically
written as:

γm,i,j =
Pm,i|hm,i,j |2

1 +
∑M
n=1;n6=m Pn,i|hn,i,j |2 + υi,j

, j ∈ Ui (2)

where υi,j =
∑I
k=0;k 6=i

∑M
n=0 Pn,k|hn,k,j |2 is the outer-cell

interference for user j when it is being served by cell i,
and Ui is the set of users located in the coverage area of
cell i. Since all the decisions for resource allocation, user
scheduling and power control will be taken at the central node
of the cell, the available channel state information to make
such decisions is potentially inaccurate. In this paper, we will
assume that the central node has perfect knowledge of the
line-of-sight component of the Rician-distributed channels and
imperfect knowledge of the random fading component. The
channel variable available at the central node will be denoted
by ĥm,i,j , and the imperfect channel state information (CSI)
will be characterized by a correlation coefficient defined as
ρ = E[(ĥm,i,j − µ)(hm,i,j − µ)]. The SINR measured by the
central node in the cell will be then given by:

γ̂m,i,j =
Pm,i|ĥm,i,j |2

1 +
∑M
n=1;n6=m Pn,i|ĥn,i,j |2 + υ̂i,j

, (3)

where υ̂i,j is the estimated outer-cell interference for user j
when is being served by cell i.

III. ALGORITHM DESCRIPTION AND OPTIMIZATION

The main objective of the algorithm proposed in this paper
is to multiplex/schedule as many users as possible over the
same frequency band. Each user will be attached to each one
of the distributed nodes inside the cell (only one user per
node). The algorithm aims to optimize the power levels of
the nodes in order to reduce interference and maximize the
sum-rate capacity in the cell. The first step of the algorithm
is then to select the best user for each one of the distributed
nodes in the central cell based on the measured channel gain:

um = argmax
j
|ĥm,0,j |, um 6= un (4)

The capacity for each user-antenna pair is thus given by

Ĉm = log2 (1 + γ̂m,0,um
) , (5)

and the total sum-rate capacity can be simply written as:

ĈT =
M∑
m=0

Ĉm. (6)

Let P = [P1,0, . . . , PM,0]
T denote the vector of transmit power

values of the set of distributed nodes in the central cell, the

maximization of the sum-rate capacity can then be expressed
as follows:

Popt = argmax
P

ĈT ,

subject to
M∑
m=0

Pm,0 < P,Pm,0 > 0, (7)

where P is the transmit power constraint of the cell. To
solve this optimization problem, a gradient steepest descent

technique will be used. Let ∇ĈT =
[
∂ĈT

∂P0,0
, . . . , ∂ĈT

∂PM,0

]T
denote the gradient of the sum-rate capacity function. By
considering that the total capacity in (6) can be rewritten as

ĈT =
M∑
m=0

log2

(
1 + υ̂0,um

+
M∑
n=0

Pn,0|ĥn,0,um
|2
)

−
M∑
m=0

log2

1 + υ̂0,um
+

M∑
n=0;n6=m

Pn,0|ĥn,0,um
|2
 ,

then each element of the gradient vector function can be
expressed as follows:

∂ĈT
∂Pk,0

=

M∑
m=0

|ĥk,0,uk
|2

1 + υ̂0,um
+
∑M
n=1 Pn,0|ĥn,0,um

|2

−
M∑

m=0,m6=k

|ĥk,0,uk
|2

1 + υ̂0,um
+
∑M
n=1;n6=m Pn,0|ĥn,0,um

|2

The iterative gradient steepest descent algorithm can then be
stated as follows [9]:

P(n+ 1) = P(n) + µ
∇ĈT
|∇ĈT |

subject to
M∑
m=0

Pm,0 < P,Pm,0 > 0 (8)

where µ is a constant that can be changed to modify the
convergence properties of the algorithm, and | · | is the vector
magnitude operator. If at any of the iterations, the power
level of one of the nodes reaches the value of zero or almost
zero, then such node and its selected user are discarded from
the set of scheduled nodes-user pairs. Also, if the value of
the total transmit power in the cell is above the maximum
allowed power P , then all the power values of the nodes
are normalized so that their sum is exactly P . In order to
improve the convergence properties of the algorithm, the initial
value of the transmit power vector should be set to the water-
filling solution in the absence of intra-cell interference. This
is a very institutive approach, since it means that initially we
consider each distributed node as an independent cell with not
external interference. The water-filling solution then provides
the optimum power value that maximizes the capacity of the
set of nodes and that complies with the cell total transmit
power constraint. The gradient technique is then used to refine
the solution, but this time considering the effects of intra-cell
interference. By using this approach, the convergence of the
algorithm is considerably improved by reducing the number
of iterations needed to reach the optimum value.
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The calculated optimum values of transmit power of a given
simulation run are stored and used for the outer-cells in the
next simulation run. The objective of reusing the results is
that on the long term the same behavior of the central cell is
replicated in the outer-cells, thereby allowing a more accurate
calculation of interference in a multi-cell scenario. In this
way, it is possible to accurately analyze the behavior of the
algorithm at the system level, without the need of actually
running the algorithm simultaneously across all the cells of
the deployment scenario. During our investigations, it was
also observed that the algorithm can also converge to local
optimum values, particularly at low values of transmit power.
In these cases, the final value of the capacity after the iterative
scheme is compared to another known optimum value of the
system, which is given by the selection of the best user-antenna
pair in the cell. The final value for the capacity to be allocated
is given by the maximum of these two values. Finally, to
calculate the actual capacity achieved by the transmissions in
the cell we substitute the obtained optimum power levels in
the capacity formulae without considering imperfect channel
state information:

Cm = log2 (1 + γm,0,um
) ,

and

CT =
M∑
m=0

Cm.

A flowchart explaining the main steps of the algorithm is
shown in Fig. 2. Let us now propose a metric to evaluate
the fairness of the proposed algorithm. In this paper, we
propose the use of the first order moment of the capacity
space distribution of the scheduled users, which can also be
regarded as the average distance of the scheduled users to
the center of the cell weighted by the capacity achieved by
the users. Therefore, an algorithm that schedules users farther
away from the center of the cell than other algorithm (while
providing an acceptable capacity level) will produce a larger
fairness indicator. The proposed fairness indicator can be thus
mathematically expressed as follows:

F =
M∑
m=0

Cm
dm,0,um

R
(9)

IV. RESULTS

This section presents simulation results that show the bene-
fits of the proposed algorithm. Fig. 3 and Fig. 4 show, respec-
tively, the average capacity (E[CT ]) and the average fairness
indicator (E[F ]) of the proposed algorithm for various values
of the normalized transmit power constraint P with respect
to the noise variance, i.e. P/σ2

v . The figures also include the
results for an MCI scheduler in conventional cellular system
and a distributed antenna system with MCI scheduling and
optimum antenna selection targeting a single user (i.e., only
the user-antenna combination with the best channel gain is
scheduled at any time-slot). The later scheme will be termed
here DAS MCI. It can be observed that the proposed algorithm
provides considerable gains for all values of transmit power
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Initialize trasmit power 

vector P for central and 

outer cells and compute 

initial capacity CTo

Maximum 

number of 

iterations 
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Fig. 2. Flowchart describing the proposed scheduling and power control
algorithm for DAS.

constraint to noise ratio with respect these solutions. However,
at low values of power, the proposed algorithm degrades into
the DAS MCI scheduler, which indicates that diversity can
be only achieved when enough power budget is allowed to
be optimized inside the cell. Note that in the results, the total
power that is used by the central BS of a conventional cellular
system or by the selected node in the DAS MCI scheduler is
now split between all the nodes of the distributed antenna
system according to the results of the optimization algorithm.
The results in Fig. 3 and Fig. 4 have been calculated under
the assumption of a correlation factor of ρ = 1, i.e. perfect
channel state information and for a value of Rice factor of
K = 10dB. A cell radius of R = 500m with a total of
M = 7 distributed nodes per cell, J = 20 user terminals
randomly deployed each time-slot, an operational frequency of
f = 5GHz, and a relative node location fixed to Dr = 2R/3
have been used to obtain the results in Fig. 3 and Fig. 4.
To investigate the performance under imperfect channel state
information, Fig. 5 and Fig. 6 show, respectively, the average
capacity and the average fairness indicator of the proposed
algorithm for various values of the correlation factor ρ. The
results in Fig. 5 and Fig. 6 have been calculated for two
values of Rice factor K = 10dB and K = −∞dB. It
can be observed that the algorithm can be seriously affected
by the assumption of imperfect channel state information.
However, even in the worst case, it still outperforms the
conventional cellular system with MCI and the DAS MCI
scheduler. In addition, the degrading effects of imperfect CSI
are less obvious in the case of a Rice factor of K = 10dB,
as in this case the power of the random fading component is
considerably smaller, thereby reducing the uncertainty of the
measured CSI. Finally, Fig. 7 and Fig. 8 show, respectively,
the average capacity and the average fairness indicator of the
proposed algorithm for various values of relative node position
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in the cell using a fixed value of transmit power constraint to
noise ratio of P/σ2

v = 100dB and correlation factor ρ = 1.
The results indicate that optimum node position in the cell
is around Dr = 0.7R for maximizing the capacity proposed
algorithm. In terms of fairness, the optimum node location is
around Dr = 0.8R.
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Fig. 3. Average sum-rate capacity (E[CT ]) vs. transmit-power-constraint-
to-noise ratio (P/σ2

v) [dB] for different scheduling algorithms in DAS and
conventional cellular systems.
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v) [dB] for different scheduling algorithms in DAS and
conventional cellular systems.

V. CONCLUSIONS

Down-link capacity and fairness have been evaluated for
DAS using a new algorithm for joint user scheduling and
power control. Simulation results show that the proposed
algorithm not only allows the multiplexing of the simulta-
neous transmissions of several users in the cell (each one
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different scheduling algorithms in DAS and conventional cellular systems.
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Fig. 6. Average fairness indicator (E[F ]) vs. correlation factor (ρ) for
different scheduling algorithms in DAS and conventional cellular systems.

attached to a different distributed node), but it also allows
a considerable improvement of the sum-rate capacity and
fairness properties of the cellular system. The results show the
benefits of using a cross-layer design by combining concepts
of channel-aware scheduling with dynamic power control in
distributed MIMO systems. In addition, a method to avoid
local optimum values was also proposed, as well as a method
to improve the converge of the algorithm by using as initial
starting point the water-filling solution in absence of intra-cell
interference. Future work includes the use of multiple antennas
both at the transmitter and receiver ends, with beam-forming
or pre-coding schemes, and the extension to the up-link case.
Further work in local optimum values for different system
configurations is also envisioned.
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Fig. 7. Average sum-rate capacity (E[CT ]) vs. relative node position (Dr/R)
for different scheduling algorithms in DAS and conventional cellular systems.
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for different scheduling algorithms in DAS and conventional cellular systems.
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