
Building Smart Space Applications with PErvasive
Computing in Embedded Systems (PECES)

Middleware

K. Selvarajah, R. Zhao and N. Speirs
School of Computing Science

Newcastle University
Newcastle NE1 7RU, United Kingdom

Email: { k.selvarajah, ran.zhao1, neil.speirs}@ncl.ac.uk

Abstract— The increasing number of devices that are invisibly
embedded into our surrounding environment as well as the
proliferation of wireless communication and sensing technologies
are the basis for visions like ambient intelligence, ubiquitous and
pervasive computing. PErvasive Computing in Embedded
Systems (PECES) project develops the technological basis to
enable the global cooperation of embedded devices residing in
different smart spaces in a context-dependent, secure and
trustworthy manner. This paper presents PECES middleware
that consists of flexible context ontology, a middleware that is
capable of dynamically forming execution environments that are
secure and trustworthy. This paper also presents set of tools to
facilitate application development using the PECES middleware.

Keywords- Pervasive Computing; Middleware; Smart Spaces;
Context Ontologies; Development Tools; Security;

I. PECES PROJECT

The objective of the PECES project [1] is the creation of a
comprehensive software layer to enable the seamless
cooperation of embedded devices across various smart spaces
on a global scale in a context-dependent, secure and
trustworthy manner. The benefits of pervasive computing and
their undeniable impact on the economy and society have led to
a number of research and development efforts. These efforts
have enabled smart spaces to integrate embedded devices in
such a way that they interact with a user as a coherent system.
However, they fall short of addressing the co-operation of
devices across different environments. This results in isolated
„islands of integration‟ with clearly defined boundaries.

Aura [2] middleware is based on the concept of smart
environments that focuses on providing services in non-
intrusive manner. BASE [3] is a service based middleware that
supports the adaptation of communication protocols and
technologies and it is based on the concept of smart peers.
Integrated development of context-aware applications in smart
spaces is presented in [4]. For many future applications, the
integration of embedded systems from multiple smart spaces is
a primary key to providing a truly seamless user experience.
Nomadic users that move through different environments will
need to access information provided by systems embedded in

their surroundings as well as systems embedded in other smart
spaces.

The PECES project and its consortium are geared towards
addressing the challenges in pervasive computing
environments in order to provide a truly integrated solution.
The most innovative features of the PECES middleware are to
enable the communication among heterogeneous devices
across the different smart spaces using dynamic addressing,
security and context ontologies.

Figure 1: Pervasive Computing Vision

In this paper, the PECES middleware and development
tools are discussed. Section II introduces the ontologies
developed for the PECES project prototype application
development. Section III describes the PECES middleware
and its novel features such as role specification, dynamic
addressing, local and remote gateway and security concepts.
Section IV presents the PECES development tools that have
been developed by the PECES consortium for middleware
based smart space application development and testing.
Conclusions are then presented in Section V.

II. PECES CONTEXT ONTOLOGIES

Context ontologies define a common vocabulary to share
context information in a pervasive computing domain and
provide machine interpretable definitions of basic concepts in

The work presented here is sponsored by European Commission under
FP7 Programme (Grant agreement number FP7- 224342-ICT-2007-2).

DOI: 10.5176_2010-2283_1.4.103

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by GSTF Digital Library (GSTF-DL): Open Journal Systems (Global Science and Technology...

https://core.ac.uk/display/233149807?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the domain and relations among them. They offer quite
promising and powerful mechanisms for defining, acquiring,
understanding, processing and sharing context and inferring
new knowledge based on available data and context [5].

The PECES project develops a general purpose, domain
independent middleware which enables the seamless
cooperation of embedded devices across smart spaces on a
global scale in a context-dependent, secure and trustworthy
manner. From a data perspective this means that a possibly
very heterogeneous set of devices needs to communicate
information among themselves in contexts and environments
which cannot be predetermined statically. Meaningful
communication, i.e., the understanding and correct
interpretation of the type, content and context of the exchanged
data is essential in this setting. While the type and content of
information is dependent on the specific applications, the
context in which the application executes can be generalized
and described across application domains. The PECES
ontologies are freely available from [12] and detailed
information about the PECES ontologies can be found in [7].

Figure 2: Contextual Concepts within a Smart Space

The basic concepts to model the contextual information of a
smart space are Device, Context, SmartSpace, Location and
Service and the relationships among them are shown in Figure
2. The Device concept provides vocabularies to model
specification of devices inside smart spaces and the Context
concept is used to extend sub-concepts such as
LocationContext or SmartSpaceContext for representing a set
of context instances. The SmartSpace concept is used to
extend to different kinds of smart spaces. Two main categories
of smart space are defined respectively by two subclasses
StationarySmartSpace and Non_StationarySmartSpace. The
StationarySmartSpace concept represents smart spaces having
fixed location and the Non_StationarySmartSpace concept
represents mobile smart spaces. To express the idea that a
smart space provides a service, a Service instance is referred to
by a SmartSpace instance using a service:provides property.
Vice versa, to express a service is provided by a smart space,
inversed property service:providedBy is used.

III. PECES MIDDLEWARE

The PECES project consortium decided to build the
cooperation layer on top of the BASE middleware [3]. This

enabled the project consortium to focus the development
efforts on the novel and innovative features of the PECES
middleware. BASE is freely available as open source under
BSD license which facilitates the necessary modifications and
extensions and enables the free reuse – even for commercial
exploitation. The BASE middleware enables the
communication between devices that are within
communication range. Yet, in order to achieve the goal of
providing cooperation layer that enables the seamless
interaction within and across the boundaries of a single smart
space, it was necessary to extend the BASE concepts. The
extension of the BASE middleware focused communication
gateway concepts, addressing concepts and smart space and
security concepts. The figure below shows the BASE
components as well as the new features added to achieve
PECES project goal. More detailed information about the
PECES middleware can be found in [8], [9], [11].

Figure 3: PECES Architecture

A. Generic Role Assignment

Due to the continuous changes in context and mobility of
devices the underlying systems can be highly dynamic and the
network topology can change frequently in the pervasive
computing environments. So that it is vital to enable pervasive
computing applications such as PECES based applications to
adapt to the continuous changes in context and device
availability. The responsibility for adaptation can be shifted
between different entities. In cases where changes are
infrequent, a user may manually configure and adapt the
system. However, if changes are frequent, manual
configuration and adaptation are clearly not a viable approach
as they conflict with the goal of distraction free support for
tasks. In order to mitigate this, the adaptation can be automated
through the application. This approach relieves the user from
performing manual adaptation but it complicates the
development of applications and it may result in inefficiencies
in cases where multiple applications implement and use similar
adaptation mechanisms. As a result, the PECES middleware is
aiming at automating the initial configuration and the
continuous adaptation to changes in order to shield the user and
the application developer from the accompanied complications.

In order to be suitable for a broad range of different
systems and in order to minimize the utilization of resources
that are required for automation, the PECES middleware
provides configuration and adaptation support by means of a
uniform abstraction. To create a uniform abstraction that is
suitable for a broad range of different configuration tasks, it is
necessary to introduce a clear separation between the result of a
configuration, the computations that need to be done to
produce it and the utilization of this result. This enables the
reuse of the same basic mechanisms for different tasks. Generic
role assignment provides such a uniform abstraction. More
detailed information about the role assignment concepts can be
found in [8].

A role can be assigned to any device as long as there are no
further constraints that limit the assignment. To enable the
automated computation of an assignment that reflects a
particular goal of a configuration task, generic role assignment
introduces rules. Rules define contextual constraints on the
assignment of roles to devices. The simplest form of contextual
constraint that is generally useful for all configuration tasks is a
simple filter. An example of such a filter is to demand that all
devices should be at a certain location. Another form of
contextual constraint that is particularly relevant for PECES are
so-called reference rules. Reference rules refer to a set of
devices that has been assigned a particular role.

The set of rules together with their corresponding roles
form a role specification. Given that the necessary contextual
information can be captured by sensors or other types of
information sources, one can use an algorithm to automatically
assign roles to the devices whose context satisfies the
constraints specified by their rules.

B. Smart Space Concept

A smart space can be defined as a group of networked
devices that cooperate to support their users. The boundaries of
a smart space are typically defined on the basis of a geographic
location, e.g. a room or a building. However, such narrow
definitions are not flexible enough to support the application
prototypes in the PECES project. Obviously, these smart
spaces cannot be defined on the basis of a single location. For
example in applications based upon a car, the whole car, i.e. the
smart space itself, is mobile.

In order to extend the definition, the addressing and
grouping scheme can be used to support the formation of smart
spaces based on arbitrary contextual properties. However, the
resulting definition will be automatically restricted to devices
that are residing in the same local network. This is a result of
the fact that the formation process of basic groups is limited to
a local network. Yet, for typical smart spaces local connectivity
is guaranteed.

To support smart space formation, the PECES middleware
introduces three additional components which are coordinator,
member and gateway. These components can be easily
motivated by looking at the anatomy of the smart spaces that
are identified in the PECES Use-Case Specification [6]:

 Coordinator: A smart space consists of at least one
coordinator device. This device is responsible for

identifying members of the smart space based on role
specification.

 Member: In addition to coordinator device, a smart
space may contain additional devices that are
dynamically entering or leaving the local network.
Depending on the context, a member device might
either be integrated or not. Currently, a member device
can only be integrated at most into one smart space at a
time.

 Gateway: Some devices that are part of a smart space
may also be able to communicate with other devices
through an Internet connection. Examples for such
devices are smart phones or residential gateways as
well as laptops that are equipped with a UMTS
modem. In these scenarios, the PECES middleware
gateway functionality provides connectivity for other
devices in the smart space.

C. Communication Gateway

Due to the heterogeneity of devices and communication
technologies, it is not safe to assume all future devices will be
equipped with the same set of communication technologies. As
an example consider that a sensor node might only be equipped
with ZigBee 802.15.4 but not with Bluetooth in order enable
energy-efficient communication. Thus, in order to enable a
Bluetooth enabled device to communicate with such sensor
nodes, it is necessary to use a device that is equipped with both
technologies as a local gateway. Similarly, due to the
associated costs and other factors, not all devices will have a
direct connection to a global interconnection network like the
Internet. In order to enable the communication between devices
that are not directly connected to the Internet, it is necessary to
enable some devices to act as remote gateways for others.

PECES middleware support local gateways as well as
remote gateways. The main difference between these two types
of gateways is that the local gateway locally shares the required
knowledge. In the remote case, the knowledge sharing should
be restricted to a minimum in order to avoid the costly
distribution of frequently changing information. The remote
gateways need to be realized differently in that they require an
external entity to distribute the information that is distributed
by means of device discovery in the local case. This
information will be distributed by means of the Registry. More
detailed information about the PECES Registry Interface can
be found in [9].

D. Security Concept

PECES middleware introduce a basic trust model that is
used as basis for the concepts and mechanisms of the
middleware. These mechanisms enable the secure interaction
of devices. To enable this, they span the management of
cryptographic keys, the authentication of information –
specifically context information and role assignments, the
secure data- and service-centric communication as well as role-
based access control. Although they do not introduce additional
interaction features, together they span the whole set of
security-related requirements identified in the PECES
prototype applications.

The security mechanisms are modular and they introduce a
certain degree of configurability that can be leveraged by
application developers for optimization purposes. This enables
them to define application-specific tradeoffs between security
and application performance. In order to simplify the
configuration of these mechanisms, the PECES project also
provides appropriate development tools (will be discussed in
the next section) that simplify basic security related tasks such
as the distribution of keys and certificates during application
development. The PECES middleware is designed to provide
support for both secure and unsecure version of the PECES
middleware application development. If security is not a
requirement for any specific application, developers can make
use of the unsecure version of the PECES middleware APIs for
smart space application development.

IV. PECES DEVELOPMENT TOOLS

The development tools suite provides features to build and
test applications based on the PECES middleware. The tools
are implemented as Eclipse plugins [10]. The development
tools suite provides several tools to support different activities
during the application development, modelling and testing
phases. The following sections explain the tool sets necessary
for the application development which are the Peces Project
Tool, the Peces Device Definition Tool, the Peces Ontology
Instantiation Tool, the Peces Security Configuration Tool, the
Peces Role Specification Definition Tool and the Peces Service
Definition Tool. The PECES Development Tools are already
available online and that can be installed in Eclipse IDE using
“Installed New Software..” feature from the PECES project
tools site: http://www.ict-peces.eu/eclipsetools.

A. PECES Project Tool

This is the first tool to start with the application
development process. Using this tool, a PECES general project
can be generated in the Eclipse workspace with three different
folders (ConfigurationTool, ModellingTool and TestingTool) to
keep different configuration, modelling and testing related files
which will be generated by other tools in the development
process. This project is used to provide interfaces with others
tool using *.xml and *.owl files. For example, the following
screenshot shows a DEMOPROJECT project created by the
Peces Project Tool with ConfigurationTool, ModellingTool and
TestingTool folders.

Figure 4: Screenshot of the Peces Project Tool

B. PECES Device Definition Tool

The This tool provides a graphical user interface (GUI) for
application developers to specify the device description. The
Peces Device Definition Tool can be used to define
BASE/PECES middleware communication plugins such as IP,
Bluetooth, ZigBee (e.g. MxIPBroadcastTransceiver,
MxIPMuticastTransceiver, EmulationTransceiver), and device
functionalities (e.g. Coordinator, Gateway,
Coordinator&Gateway, Member) and also device names. The
devices can be selected and placed in the editor area of the tool
and necessary functionalities and communication plugins can
be then defined by right clicking on the devices. After defining
the device functionality, different colors will be shown
according to the selected device functionality (e.g., a
coordinator is red).

Figure 5: Screenshot of the Peces Device Definition Tool

Figure 5 shows an example application in which four
devices are defined namely GUIDESYSTEM,
LOCATIONSYSTEM, VISITOR_IPAQ and VISITOR_HTC. The
GUIDESYSTEM is defined as the coordinator of the smart
space (shown in red) and LOCATIONSYSTEM is defined as a
gateway device (shown in green). Two member devices are
VISITOR_IPAQ and VISITOR_HTC and those devices are
shown in blue in Figure 5. The screenshot also shows four
different Java projects which are automatically generated for
each devices with necessary PECES middleware library
(peces-2.0.jar).

After placing the selected devices in the workspace, device
IDs are automatically generated according to the order of the
placement (e.g. first device placed in the workspace will be
given ID of 0, the next device will be given ID 1 and so on).
Application developers may change the device name and
device communication features as well as device functionalities
such as coordinator, gateway and member but the device ID
cannot be changed. The device related configuration details are
recorded in project.xml file.

C. PECES Ontology Instantiation Tool

This tool provides a user interface for static context
properties. The Peces Ontology Instantiation Tool enables the
application developer to instantiate the devices. This tool
supports all PECES ontologies (e.g., http://www.ict-

peces.eu/ont/device.owl) as well as other custom ontologies
(e.g., http://www.daml.org/services/owl-s/1.1/Service.owl)
which application developers may wish to use for their
application. The Ontology Instantiation Tool automatically
loads the participating device name and its assigned
functionality information from the project.xml file which was
generated by the Peces Device Definition Tool. The Peces
Ontology Instantiation Tool provides GUI where application
developers can add instances and link context properties.

Figure 6: Screenshot of the Peces Ontology Instantiation Tool

D. PECES Role Specification Definition Tool

The PECES Role Specification Tool provides an interface
where developers can define the different rules that the
application will use to dynamically form groups of
collaborative devices. In a PECES middleware, these rules are
written essentially as constrained queries over the context
properties of the devices. For that reason, the PECES Role
Specification Definition tool loads the results of the PECES
Ontology Instantiation Tool, showing on a tree-shaped diagram
all the devices that have been defined in the project, and their
properties (upon which the rules will be defined). When the
process is completed, this tool generates necessary java code
for role specification which actually defines the formation of
the smart space.

Figure 7: Screenshot of the Role Specification Definition Tool

E. PECES Service Definition Tool

The PECES Service Definition Tool provides a simple
interface to the developers that allows the automatic generation
of all the code needed to instantiate and make use of a PECES
middleware based service. When the developer decides to
make use of the PECES Service Definition Tool to define a
service, a window shows a list of all the services that have been

defined with the PECES Ontology Instantiation Tool. The
developer can then simply choose the service to be defined.

Once the selection is performed, the main window of the
PECES Service Definition Tool appears on the Eclipse IDE,
showing the following options such as Device, Scope and
Implemented functions. This tool permits the developer to
define the interface that the service will offer to its clients (i.e.
the functions that will be available to them). This definitions
follow a format that is similar to any Java function. It means,
the final function will have the following structure: [Returns]
[Name]([Parameters]). For instance, “void
getGuideLocation()”.

Figure 8: Screenshot of the Service Definition Tool

The PECES development tools are designed to provide
support for both secure and unsecure version of the PECES
middleware application development. So far the device projects
are configured for unsecure version of the PECES middleware.
If the application developers are interested in building secure
middleware applications, then they should use the Peces
Security Configuration Tool to configure secure middleware
application and generate necessary keys and certificates for the
devices.

F. PECES Security Configuration Tool

The PECES middleware uses the OpenSSL library to create
necessary certificates and keys. As a result, the Security
Configuration Tool integrates the OpenSSL toolkit to enable
application developers to generate keys and certificates for
smart space applications. The Security Configuration Tool
provides an interface to gather necessary information for root
certificates, intermediate certificates (trust chain) and client
certificates. The necessary information gathered from the Java
interface is passed to the OpenSSL command line interface
with the use of AutoIT script files. The AutoIT “Send”
command is used to send information. Figure 9 shows the
interface needed to generate a root certificate. Developers
should first generate a root certificate and can then generate
necessary trust chain and client certificates.

Once the root certificate is generated successfully, the name
of the security root certificate appears as a tree structure in the
root Certificate section. To generate the first trust chain,
developers should select the root certificate and then click on
the “Trust Chain” button which provides an interface for trust
chain configuration. More trust chains can be added as
required for the application development.

Figure 9: Screenshot of the Security Configuration Tool – Root
Certificate Creation

Once the necessary certificate chains are created, they
appear as trees in the Certificates area. To generate a Client
certificate, developers must select the appropriate trust chain in
the tree, and then click on the “Client. Cert” button to generate
client certificate. The new interface provides feature to select
the device for client certificate configuration. For example,
here in Figure 10, the GUIDESYSTEM is selected as the device
where the certificate will be deployed. When the process is
completed, all necessary root and intermediate certificates are
deployed in the “full” folder (full trust) in the certificate folder
and keys and client certificates are also deployed in the
certificate folder as shown in the Figure 10 below.

Figure 10: Screenshot of the Security Configuration Tool –
Certificate Creation

The tool also provides a mechanism for a device to deploy
certificates to other devices which are to be trusted. For
example, the GUIDESYSTEM device can specify that the
LOCATIONSYSTEM is to be trusted by copying the necessary
certificates to the device.

V. CONCLUSIONS

One of the main objectives of the PECES middleware is to
provide a cooperation layer that enables seamless interaction
and coordination among devices in and across smart spaces in a
secure manner. This paper presented the PECES middleware

and a set of tools which provide support to build PECES
middleware based application. The tools provided support for
device configuration, ontology instantiation, security
configuration, role specification and service definition.

ACKNOWLEDGMENTS

The work presented here is sponsored by European
Commission under FP7 Programme (Grant agreement no FP7-
224342-ICT-2007-2) and we would like to thank PECES
project partners for their contributions.

REFERENCES

[1] PECES Project, http://www.ict-peces.eu, last accessed November 2011

[2] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste, “Project Aura: Towards

Distraction-Free Pervasive Computing”, IEEE Pervasive Computing, vol. 1, no. 2,

pp. 22-31, Apr. 2002.

[3] C. Becker, G. Schiele, H. Gubbels, and K. Rothermel, “BASE - A Micro-broker-
based Middleware For Pervasive computing”, Proceedings of the 1st IEEE
International Conference on Pervasive Computing and Communication, pp. 443-
451, Fort Worth, USA, March 2003.

[4] N. Dimakis, J. K. Soldatos, L. Polymenakos, P. Fleury, J. Curin, and J.
Kleindienst, “Integrated Development of Context-Aware Applications in Smart
Spaces” IEEE Pervasive Computing, vol. 7, no. 4, pp. 71- 79, Dec 2008.

[5] H. Chen, F. Perich, T. Finin, and A. Joshi. SOUPA: Standard Ontology for
Ubiquitous and Pervasive Applications. In the 1st Annual Int‟l Conf. on Mobile

and Ubiquitous systems:Networking and Services, Aug. 2004.

[6] PECES Consortium, PECES Use-Case Specification, Deliverable D 1.2, PAS,
http://www.ict-peces.eu, last accessed July 2010.

[7] PECES Consortium, PECES Context Ontology and Query Specification,
Deliverable D 2.1, PAS, http://www.ict-peces.eu, last accessed July 2011.

[8] PECES Consortium, PECES Addressing Scheme Specification, Deliverable D.3.1,
PAS, http://www.ict-peces.eu, last accessed July 2011

[9] PECES Consortium, PECES Communication Mechanisms and Registry Interface
Specification, Deliverable D.3.2, PAS, http://www.ict-peces.eu, last accessed July
2011

[10] Eclipse IDE, Eclipse Website, http://www.eclipse.org/,, last accessed July 2011

[11] PECES Consortium, PECES Secure Middleware Specification, Deliverable D 4.1,
PAS, http://www.ict-peces.eu, last accessed , last accessed July 2011

[12] PECES Ontologies, http://www.ict-peces.eu/ont/, last accessed July 2011

Neil Speirs obtained a 1st class Honours degree in Mathematics from
Newcastle University in 1980 and a doctorate in Theoretical Physics
from the University of Durham in 1985. Since 1987, he has been at the
University of Newcastle upon Tyne where he is currently a Senior
Lecturer in Computing Science. His main research interests are in
fault-tolerance, reliability and mobile distributed systems. He is the
Newcastle University Project Manager on the EU PECES Project.

Kirusnapillai Selvarajah completed his Ph.D. in Automatic Control
and Systems Engineering at Sheffield University in August 2006. He
obtained his B.Sc (Eng) with 1st class honours from the University of
Moratuwa, Sri Lanka in 2001. He worked as a Lecturer in the Dept. of
Electrical Engineering at the University of Moratuwa, Sri Lanka from
2001 to 2002. His research interests are Wireless Sensor Networks,
Pervasive Computing, Embedded Systems and Swarm Intelligence.
He has worked as a Research Associate on the EU PECES project and
previously on the EU EMMA project.

Ran Zhao is a doctoral student in Computing Science at Newcastle
University. Before he started his Ph.D. study, he completed his M.Sc.
in Computing Science from Newcastle University in 2007. Before that,
he received his B.Eng. in Software Engineering from South China
University of Technology, China.

