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Abstract—This paper aims at better possibilities to solve
problems of exponential complexity. Our special focus is the
combination of the computational power of four cores of a
standard PC with better approaches in the application domain.
As the main example we selected the unate covering problem
which must be solved, among others, in the process of circuit
synthesis and for graph-covering (domination) problems.

We introduce into the wide field of problems that can be
solved using Boolean models. We explain the models and the
classic solutions, and discuss the results of a selected model by
using a benchmark set. Subsequently we study sources of par-
allelism in the application domain and explore improvements
given by the parallel utilization of the available four cores of
a PC. Starting with a uniform splitting of the problem, we
suggest improvements by means of an adaptive division and
an intelligent master. Our experimental results confirm that
the combination of improvements of the application models
and of the algorithmic domain leads to a remarkable speedup
and an overall improvement factor of more than 35 millions
in comparison with the improved basic approach.

Keywords-covering; XBOOLE; ternary vector; parallel; mes-
sage passing interface; unate SAT problems; Boolean models

I. INTRODUCTION

The recent improvements in computer hardware [3] lead
to new challenges for software development. The increased
computation power of modern PCs is realized by the multi-
core architecture. However, many of the available programs
use only a single core.

Distributed parallel computing is known from special
large machines or clusters. We focus in this paper on the
growing field of multi-core PCs. For our experiments we
use a 4-core CPU. In order to point out possible restrictions
of the memory we take into account a 32-bit architecture.

The Boolean space of n variables consists of 2n Boolean
vectors. Therefore many Boolean problems [4], [6], [7], [8],
[13] have an exponential complexity [16]. Such Boolean
problems must be solved, for instance, to develop more
powerful prospective computers. Taking into account this
particular challenge, we selected one Boolean problem as
the main example, the unate covering problem [1]. Problems
of this type must be solved, for instance, in the area of
logic design in order to find minimal circuits. The unate

covering problem is a special satisfiability problems (SAT)
[14]. The characteristic property of such a problem: none of
the variables is negated. In opposition to [1] we compute all
exactly minimal solutions of a given unate covering problem.

II. BOOLEAN MODELING

The complete representation of this topic requires a lot of
space, therefore we restrict ourselves to some indications.
We consider finite sets (mostly very large) of objects: O =
{o1, . . . , on}, the objects will be often enumerated by binary
coding, and properties will be given by Boolean functions.

A. Properties of objects

The presence of a given property for an object oi will be
given by a logic function ϕ(oi):

ϕ(oi) =

{
1 if the property is present
0 otherwise

Example. We want to describe properties of a chess
board. There are 64 objects, i.e. 64 fields, and it must be
chosen between a direct coding by one bit for the fields a1,
a2 to h7, h8. This results in 64 bits altogether. The other
possibility is a binary coding by six bits, from (000000)
to (111111). If, for instance, the function ϕ is supposed
to describe the black fields, then we have ϕ(a1) = 1,
ϕ(a2) = 0 etc. The white fields will be given by ϕ.

Example.The fields of a Sudoku game can be occupied
by numbers 1, . . . , 9, and the fields themselves can be
enumerated according to 9 columns and 9 rows. This can
be described and computationally handled by variables

xijk =

{
1 if the the value on the field (i, j) = k
0 otherwise

Here it is very easy to express the respective constraints
of the game: if one field is occupied by one value, then
this value must not be repeated in the same row, the same
column and the same subsquare:
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x111 = 1→ x211 = x311 = . . . = x911 =
x121 = x131 = . . . = x191 =
x221 = x321 = . . . = x331 = 0.

It is surprising that this coding works very well in spite
of the huge number of 729 or even 4096 Boolean variables
(for a Sudoku board of 16 × 16 with numbers 1, . . . , 16)
[15].

Example. Let be given a grid with n × m nodes. Each
node can be occupied by one of four colors. The first
possibility is the use of four variables for each grid point:

xijr = 1 means that the point (i, j) shows the color red.
Then the following four vectors represent the possibilities
for one node including the constraints:

red green blue yellow
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Another possibility would be the coding of the colors by
two bits for each node.

xij1 xij2

0 0 red
0 1 green
1 0 blue
1 1 yellow

These two representations can be used for the repre-
sentation and solution of coloring problems. One popular
challenging problem is, for instance, the distribution of the
colors in such a way that there is no rectangle of any size
where the four rectangles show the same color. We take, for
instance, the four grid points x11, x21, x12 and x22. At least
one point must have a color which is different from the color
of the other points. The following array shows the opposite
(complementary) case:

x111 x112 x211 x212 x121 x122 x221 x222 ϕ
0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 0
1 1 1 1 1 1 1 1 0

The solution of the problem cannot include these vec-
tors. In this way we write down the forbidden vectors for
each rectangle. The intersection of the complements of the
respective complements gives the final solution (all vectors
with ϕ = 1) .

B. Graph Problems

The nodes can be again coded by binary vectors, accord-
ing to the number of nodes. Sometimes it is already sufficient
simply to enumerate the nodes (by natural numbers). Edges
are mostly given by using the starting and the ending node
in this order. This means that (s, e) would be an edge from
node s to node e. The set of edges of a given graph g can
be introduced by the following definition:

g(s, e) =

{
1 if there is an edge from node s to node e
0 otherwise

If the first node is coded by, for instance, (010), the second
by (111), then (010111) would be an edge from the node
(010) to (111), the vector (111010) indicates an edge in
the reverse direction. This model is an excellent approach
to solve all kinds of path problems in graphs. The solution
of finding all kinds of Hamiltonian paths or Hamiltonian
circuits [12] mainly requires the input of the graphs which
can be rather time-consuming for large graphs. The solution
of the problem itself is straightforward.

C. Relations

Relations can be translated into the graph of the relation
and treated as before.

As a tiny example we take the set {0, 1, 2, 3} and represent
the relation < which can be represented by the following
array:

< 0 1 2 3
0 = (00) • • •
1 = (01) • •
2 = (10) •
3 = (11)

Using the coding given in brackets, a function ϕ precisely
defines this relation:

x11 x12 x21 x22 ϕ
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 1 0 1
0 1 1 1 1
1 0 1 1 1

It can be expressed as

ϕ = x11x21 ∨ x12x21x22 ∨ x11x12x22.

D. Circuit Design

There is no doubt that the design of circuits and many
problems related to this area are best-known. Therefore, we
will only mention this area, there is a numberless set of
explorations and investigations related to this area. One of
them is the unate covering problem which we selected as
example for detailed studies in this paper.
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III. UNATE COVERING - THE PROBLEM

Based on the given assumptions, the equation to be solved
is given as a conjunctive form [10], i.e. as a conjunction
of clauses. The clauses are disjunctions of variables, and
in the special case of a unate covering problem none of
the variables is negated. Functions described in this way
are called Petrick functions P (x). The given expression (1)
shows an example that has been used. The Petrick function
defined by (1) depends on 8 variables and is given by eight
clauses:

(x4 ∨ x5 ∨ x6 ∨ x8) ∧ (x2 ∨ x3 ∨ x4 ∨ x7 ∨ x8)
(x1 ∨ x3 ∨ x4 ∨ x7 ∨ x8) ∧ (x1 ∨ x4 ∨ x5 ∨ x7 ∨ x8)
(x1 ∨ x2 ∨ x5 ∨ x6) ∧ (x4 ∨ x5 ∨ x6 ∨ x7 ∨ x8)
(x1 ∨ x4 ∨ x5 ∨ x6 ∨ x7 ∨ x8) ∧ (x4 ∨ x6 ∨ x7)

= 1.
(1)

Equations of this type always have a solution: at least the
assignment xi = 1, i = 1, . . . , n is a (trivial) solution of
the equation. We are, however, interested in solutions with
the smallest number of variables equal to 1. For the given
example, the values x1 = 1 and x4 = 1, expressed by the
ternary vector (1 − −1 − − − −), are such a solution. At
least one of these two variables appears in each clause. Due
to the six dashes, the mentioned solution vector describes a
total of 26 = 64 solutions. The single exact minimal solution
containing in the ternary vector (1−−1−−−−) is described
by the Boolean vector (10010000).

IV. BASIC APPROACH

A. Theoretical Background

The classical approach to solve the unate covering prob-
lem is the application of the distributive law [4]

(a ∨ b) ∧ (c ∨ d) = a c ∨ a d ∨ b c ∨ b d (2)

from the left to the right for all clauses. The sign of the
AND-operation ’∧’ will often be dropped. The emerging
conjunctions will be longer and longer, the maximally pos-
sible length is equal to the number of clauses. However,
if a variable appears more than once in a conjunction, the
idempotence law [4]

a ∧ a = a (3)

will be used.
The application of (2) and (3) during the solution process

of equation (1) results in 180, 000 conjunctions. A time of
8.097 seconds has been measured on a 3 GHz PC for the
computation of these 180, 000 conjunctions using a single
processor core.

Both the runtime and the huge number of basic solutions
make any improvement very desirable. The absorption law

xxxx xxxx
0000 0000
1234 5678
=========
1--1 ----
-1-1 ----
---1 1---
---1 -1--
11-- -1--
1-1- -1--
--1- 11--
---- -11-
---- -1-1
1--- --11
---- 1-1-
-1-- --11(a)

xxxx xxxx
0000 0000
1234 5678
=========
1--1 ----
-1-1 ----
---1 1---
---1 -1--
---- -11-
---- -1-1
---- 1-1-(b)

Figure 1. Solutions of the simple covering problem (1): (a) all 12 minimal
irredundant solutions; (b) all 7 wanted exact minimal solutions

[4] allows to remove conjunctions from the solution set
which are covered by conjunctions of less variables:

a ∨ a b = a . (4)

The absorption is very powerful. Its application to the dis-
junction of the 180, 000 conjunctions leads to a disjunction
of 12 conjunctions, see Figure 1 (a), that solve equation (1).
This simplification needs 75.646 seconds on the same PC
using a single processor core again.

These 12 solutions are minimal (irredundant) solutions
with the following properties (see the example above):

• After assigning the value 1 to the variables of the
solution conjunction, the remaining variables can take
any value. Therefore, a solution with k variables of a
Petrick function P (x) of n variables describes 2n−k

solutions.
• If the value 0 is assigned to the variables that do not

appear in the solution conjunction, and additionally the
value 0 is assigned to one variable of the solution, then
we get P (x) = 0.

• The solution vectors describe solution sets which are
not disjoint. Hence, the number of solutions of the
equation cannot be calculated directly.

Only a subset of this set of irredundant solutions is the
wanted solution with the minimal number of variables. The
set of 12 solution vectors consists of 7 solutions with 2 vari-
ables, see Figure 1 (b), and 5 solutions with 3 variables. The
wanted minimal solutions can simply be found by counting
the number of variables of the solution conjunctions (i.e. the
values 1 in the ternary solution vectors).

B. Practical Algorithm

A practical algorithm that solves the unate covering
problem can be implemented such that the idempotency law
(3) is applied implicitly. The application of the distributive
law (2) to two sets of r and s conjunctions results in a
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Figure 2. Change of the number of row applying the distributive and
absorption law consecutively in the loop of the computation of the solution
for the covering problem of 16 variables and 32 clauses

set of r · s conjunctions. The complexity of this part of the
algorithm for a Petrick function of n variables that consists
of c clauses is equal to O(nc). The absorption (4) strongly
reduces the number of conjunctions. Hence, the absorption
has been used after each application of the distributive law.
This change in the algorithm reduced the runtime for the
above example by a factor of 13,957. The same 7 solution
vectors with 2 variables were found within 6 milliseconds
instead of 83.743 seconds.

Figure 2 visualizes the solution process for the largest
solvable example using the suggested algorithm within a
time limit of 10 minutes. Figure 2 shows on the one hand
that the execution of the distributive law for one clause
result quickly in a much larger number of rows, which
represent intermediated solutions. On the other hand this
Figure shows also that it is time consuming to exclude
such intermediated solutions which are absorbed by other
intermediated solutions. The different local maximal values
of this process depend on both the last reduced number of
rows and the number of literals in the used clause.

Table I shows the experimental results of the suggested
basic approach. This approach is acceptable for Petrick
functions of 8 variables. It is too much time consuming to
compensate the complexity of O(nc) for the distributive law
by the application of the absorption law for larger functions
– as can be seen already for Petrick functions of 16 variables.

The practical requirement to solve such covering problems
for larger numbers of variables on the one hand and the
extremely growing of runtime on the other hand forces to
search for alternative approaches which utilize the complete
parallel computation power of modern PCs.

In order to increase the number of variables and to reduce
the runtime, respectively, we now consider parallel ap-

Table I
BENCHMARK RESULTS FOR THE BASIC APPROACH

Lite- Clau- Solu- Minimal Minimal Total Time
rals ses tions Number of Number of (ms)

Variables Solutions
8 8 12 2 7 6
8 16 13 2 4 13
8 32 8 4 3 13
8 64 5 5 4 86
8 128 4 5 3 68
8 256 2 6 2 16

16 8 110 2 8 1,761
16 16 199 2 1 11,218
16 32 320 3 9 299,928

proaches to solve the given problem. It is our aim to present
approaches that can be widely used for the detailed studied
covering problem as well as for similar SAT problems on
typical modern PCs.

V. PARALLELISM IN THE APPLICATION DOMAIN

Having ncore cores in the PC, it is an obvious approach
to use the known techniques [2], [5] to adapt the previous
algorithm to several cores that can contribute simultaneously
to the solution of the problem. Due to the exponential
complexity of the problem, the additionally possible number
of variables n+ is restricted to n+ = log2 ncore.

Furthermore, due to Amdahl’s law, the reachable speedup
will be in most cases less than the number of cores working
in parallel. Taking into account that we concentrate on a
small number of cores and already achieved a speedup of
more than 13,000, we will study first the application domain
for alternative faster approaches.

As mentioned above, a solution vector including k of n
variables describes 2n−k solutions. This shows that for n
Boolean variables the exponential size 2n of the search space
will be easier manageable when 2n−k Boolean vectors are
represented by a single ternary vector and, generally, ternary
vectors are used as the respective data structure. XBOOLE
[4], [9], [11], [13] is a library that utilizes this approach
consistently for both the representation of Boolean functions
and the respective computations.

The solution set of a characteristic equation with a dis-
junctive form [10] on the left hand side can be found in
constant time. Hence, an alternative approach to solve the
equation P (x) = 1 is the transformation of the Petrick func-
tion P (x) given in conjunctive form [10] into an equivalent
disjunctive form AS(x) that describes all solutions of this
equation as well. We use the following two properties:

1) Two successive negations do not change a Boolean
function: f(x) = f(x).

2) The negation using de Morgan’s law alternates be-
tween conjunctive and disjunctive form.

Using the XBOOLE-operators NDM(f(x)) for the nega-
tion according to de Morgan’s law and CPL(f(x)) for
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Table II
BENCHMARK RESULTS FOR THE ALGORITHM: CPL(NDM(f ))

Benchmark All TV Solution Time
L C Solutions Count L C ms
8 8 198 16 2 7 0
8 16 183 24 2 4 0
8 32 43 12 4 3 0
8 64 19 12 5 4 1
8 128 16 7 5 3 1
8 256 6 6 6 2 1
16 8 62,260 189 2 8 1
16 16 57,727 469 2 1 1
16 32 51,899 1,552 3 9 3
16 64 45,710 2,403 4 15 5
16 128 42,624 2,854 4 4 8
16 256 22010 2,933 5 2 12
24 8 16,748,287 1,198 2 38 3
24 16 16,500,394 8,231 3 147 22
24 32 16,186,932 16,508 3 19 66
24 64 15,950,753 33,909 4 128 225
24 128 14,894,860 95,316 4 1 1,737
24 256 14,495,195 200,368 5 3 7,849
32 8 4,292,102,982 5,206 2 61 14
32 16 4,289,047,266 20,718 2 8 96
32 32 4,286,710,172 91,058 3 79 1,556
32 64 4,261,521,507 334,172 4 398 23,594
32 128 4,249,596,098 1,001,493 4 22 220,184
32 256 3,186,686,031 1,649,871 5 38 734,171

the calculation of the complement, we get the following
algorithm:

AS(x) = CPL(NDM(P (x)) . (5)

The XBOOLE-operator NDM(f(x)) has a complexity of
O(1). The main computational effort is required by the
XBOOLE-operator CPL. The benefits of this approach in
comparison to the application of the distributive law are as
follows:

1) The solution is represented by an orthogonal set of
ternary vectors [4].

2) Each ternary vector that includes d dash elements
represents 2d solutions.

3) Due to the orthogonal representation, the wanted exact
minimal solutions can be selected by counting the 1-
elements in the solution vectors.

Table II shows the experimental results for the approach of
using formula (5). L indicates the number of variables (liter-
als), C the number of clauses. We used the same benchmark
set for these experiments. Due to the higher power of the
CPL(NDM(f ))-approach, we could solve significantly larger
covering problems. Due to the orthogonal representation of
the solution it is possible to calculate the number of all
solutions of the solved equation. These values are given in
the third column of Table II. The number of ternary vectors
which represent all solutions is given in the forth column
of Table II. The benefit of the applied ternary representation
becomes visible by comparing column 3 and 4 of Table

1000

10000

100000

5 10 15 20 25 30 35

speedup

number of clauses

Figure 3. Speedup reached by the XBOOLE-approach CPL(NDM(f )) (5) in
comparison to the already strongly improved iterative basic algorithm using
the distributive and absorption law for covering problems of 16 variables

II. Based on the largest benchmark solved with the basic
approach (16 × 32), the CPL(NDM(f ))-approach reached
a speedup of a factor of 99,976. The same nine solution
vectors with 3 variables were found in 3 milliseconds instead
of 299.928 seconds using a single processor core.

Figure 3 show the serious speedup in the range of more
than 1,000 up to nearly 100,000 reached by the XBOOLE-
approach CPL(NDM(f ))-approach (5) for identical covering
examples of 16 variables and 8 up to 32 clauses. This strong
improvement confirms that the utilization of properties given
by the application domain should be combined with power
of the common use of several processors working in parallel.

VI. PARALLEL SOLUTION USING A 4-CORE PC

A. Uniform Distribution

A concurrent processing on several cores can be imple-
mented by threads of a single process or a set of processes.
Due to the common use of the same program functions
and some local control variables in these functions, threads
cannot be used when the same XBOOLE operation must
be applied concurrently. Hence, we must use the message-
passing interface (MPI) [2] for the concurrent solution of
the covering problem on the available 4 cores.

The main task of the unate covering problem is solved
by the CPL-operation. After the execution of h(x) =
CPL(g(x)), the function h(x) is equal to 1 for such patterns
x of the Boolean space Bn for which the function g(x)
is equal to 0. Hence, the CPL-operation calculates the
difference between the whole Boolean space and the 1-
patterns of the given function g(x). The XBOOLE-operation
DIF(f, g) calculates f(x) ∧ g(x).

An obvious approach for the parallel solution of the
covering problem is the partition of the Boolean space into
subspaces of comparable size and the concurrent execution
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Table III
BENCHMARK RESULTS FOR THE CONCURRENT ALGORITHM:

DIF(f1
ss(2, r,x0)NDM(P (x)) USING 4 CORES

Bench- Solution Time in Milliseconds
mark L/C T0 T1 T2 T3 Total
24x8 2/38 3 1 0 0 3
24x16 3/147 29 12 3 1 29
24x32 3/19 61 19 28 11 61
24x64 4/128 138 44 41 10 139

24x128 4/1 679 127 293 67 679
24x256 5/3 1,873 691 874 175 1,873
32x8 2/61 22 11 11 7 22
32x16 2/8 99 16 37 4 100
32x32 3/79 956 104 128 32 956
32x64 4/398 9,674 568 1,623 178 9,674

32x128 4/22 78,106 3,785 8,004 284 78,107
32x256 5/38 241 31,931 25,952 4,960 31,931

of the DIF-operation for these subspaces. For a compact
representation of the problems we use

• f1(x) for the function that is equal to 1 for any x, and
• f1

ss(k, i,x0) for the function that is equal to 1 for any
x0 of the i-th of 2k subspaces.

Using r as an index of the respective process, on each core
the subtask

AS[r](x) = DIF(f1
ss(2, r,x0)NDM(P (x)) (6)

must be solved. The final solution for the special case of 4
cores can be calculated by

AS(x) =
3∨

r=0

AS[r](x) . (7)

Due to the orthogonality of f1
ss(2, r,x0) the partial solu-

tion set AS[r](x) of (7) are orthogonal too. For that reason
the disjunctions in (7) can be realized by concatenation of
partial solution sets, which can be done in constant time.

Table III shows the results for the application of (6) and
(7) using 4 cores. Due to the very short runtime we did not
include the benchmark results for 8 and 16 variables.

Columns T0, . . ., T3 show the runtime for the four dif-
ferent subspaces. Despite the same size of the subproblems,
these runtimes vary in a wide range:

1) Depending on the given Petrick function, the repre-
sentation of the partial solution in the subspace can
require different numbers of ternary vectors.

2) The computation with different numbers of ternary
vectors requires different time intervals.

3) The final evaluation of the solution set with regard
to the wanted minimal solution requires different time
intervals depending on both the number of ternary vec-
tors and the iteration when the first minimal solution
is found.

Therefore the runtime for a subspace can even be higher
than the runtime for the whole covering problem, especially
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Figure 4. Comparison of the XBOOLE-approaches UNI(DIF(NDM(f [r])))
(6), (7) and CPL(NDM(f )) (5) for covering problems of 24 and 32 variables

for relatively small problems. Figure 4 shows in the left
half this weakness of a uniform division of the Boolean
space. On the other hand, the same reasons lead to a super-
linear speedup of 22.99 for the solution of the unate covering
problem of 32 literals and 256 clauses using 4 cores. Figure 4
shows on the right half that for larger numbers of clauses the
simple XBOOLE-approaches UNI(DIF(NDM(f [r]))) reaches
linear or even super-linear speedups.

The observed bad load balancing of the uniform division
of the Boolean space forced ourselves to suggest an im-
proved parallel solution that will be discussed in the next
subsection.

B. Adaptive Distribution

Basically the Boolean space Bn can be maximally divided
into 2n subspaces. For the concurrent computation on ncore

cores we need at least ncore subspaces. This minimal number
of subspaces was used in the previous approach and caused
a bad load balancing. Hence we decided to split the covering
problem into subproblems for a larger number of subspaces.

The larger the number of subspaces, the better the load
balancing that can be achieved. However, the creation of too
many subspaces contradicts the very valuable improvements
by means of ternary vectors. Each ternary vector itself
represents a subspace that is directly defined by the context
of the problem to be solved. As a compromise we use
nss = 26 = 64 subspaces for our PC with 4 cores.

In order to improve the load balance, the subspaces must
be assigned to the processes in such a way that all work-
ing processes will finish approximately at the same time.
Hence, one of the processes must control the assignment
of the subtasks. Therefore we implemented a master-worker
architecture (see Figure 5). The master process controls the
assignment of the subtasks to the worker processes. Hence,
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Figure 5. Master - Worker Architecture of a PC with 4 Cores

Table IV
BENCHMARK RESULTS FOR THE ADAPTIVE CONCURRENT

ALGORITHM: DIF(f1
ss(6, i,x0)NDM(P (x)) USING 4 CORES

Bench- Solution Time in Milliseconds Speedup
mark L/C T1 T2 T3 Total
24x8 2/38 3 3 3 3 1.0
24x16 3/147 8 10 8 10 2.2
24x32 3/19 24 25 25 25 2.6
24x64 4/128 52 53 52 53 4.2

24x128 4/1 168 168 167 168 10.3
24x256 5/3 335 335 333 335 23.4

32x8 2/61 13 13 13 13 1.1
32x16 2/8 34 34 34 34 2.8
32x32 3/79 172 174 171 174 8.9
32x64 4/398 684 750 689 750 31.5

32x128 4/22 3,028 3,856 3,307 3,856 57.1
32x256 5/38 3,096 3,099 3,097 3,099 236.9

we lost one core for the direct problem solution.
The concurrent algorithm follows the previous approach.

Using i as index of the Boolean subspace, the three worker
processes solve the assigned subtask

AS[i](x) = DIF(f1
ss(6, i,x0)NDM(P (x)) . (8)

The aggregate solutions for the special case of 4 cores
can be calculated by

AS(x) =

nss∨
i=0

= AS[i](x) . (9)

This architecture is very profitable because the master can
assign the next unsolved subtask to the worker immediately
on request of the worker.

Table IV shows the experimental results for the adaptive
approach of formulas (8) and (9) using 4 cores. The columns
T1, T2, and T3 of Table IV show the runtime of the three
workers. No speedup is reached for the small benchmarks
which need in all improved approaches only few millisec-
onds.

Despite the restriction to three workers, the highest
speedup in comparison to the single core solution is 236.9.
The reason of this impressive speedup is based on a special
utilization of the implemented concurrent approach. Each
worker sends the results of the unate covering problem for
the assigned subspace to the master process. These results
include both the minimal number of values 1 in this partial
solution and the number of such minimal solutions. The
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Figure 6. Speedup reached by the adaptive XBOOLE-approache UNI
(DIF(NDM(f [r]))) (8), (9) in comparison to CPL(NDM(f )) (5) for covering
problems of 24 and 32 variables and 64 and more clauses

master process handles the partial solutions in the following
way:

• If the master process already knows solutions with a
smaller number of values 1, the received solutions with
a larger number of values 1 are omitted immediately.

• If the master process already knows solutions with the
same number of values 1, the received solutions are
accumulated.

• If the master process knows so far only solutions
with more values 1, the stored accumulated solution
is replaced by the new better solution.

Using this simple algorithm, the master process knows the
smallest number of values 1 found so far by the concurrent
worker processes. On each request of a worker for the
next subtask, the master process sends both the number of
the next subspace and the smallest solution found so far.
This information helps the worker process to simplify the
evaluation algorithm because large solutions must not be
taken into account anymore.

Small tasks, where the CPL(NDM(f )) approach (5) needs a
couple of milliseconds only, should solved by single proces-
sor core. Convenient thresholds for the covering problems
are 24 variables and 64 clauses. Figure 6 shows the reached
speedups for the solved tasks above these thresholds using
the approach of adaptive distribution. In all these cases we
reached a super-linear speedup. It is notable that the super-
linear speedup rises even strongly for larger tasks. This
observation leads to an important general conclusion: the
available set of processor cores should not be use simply for
computation of the assigned subtasks but mainly as source of
knowledge that restricts effort for the subsequent subtasks.
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Table V
BENCHMARK RESULTS FOR THE APPROACH THAT COMBINED THE

ADAPTIVE CONCURRENT ALGORITHM DIF(f1
ss(6, i,x0)NDM(P (x))

AND THE INTELLIGENT MASTER USING 4 CORES

Bench- Solution Time in Speedup Efficiency
mark L/C Milliseconds
32x8 2/61 38 0.4 0.1
32x16 2/8 75 1.3 0.3
32x32 3/79 234 6.6 1.6
32x64 4/398 535 44.1 11.0

32x128 4/22 1,295 170.0 42.5
32x256 5/38 2,061 356.2 89.0

C. Intelligent Master

In the previous approach a master process is required to
control the adaptive assignment of the subtask to the worker.
The master process waits most of the time for the requests of
the workers. An additional worker thread inside the master
process can cause delays to answer the worker requests.
Hence, the chosen master-worker architecture of Figure 5
should not change.

In the previous adaptive approach we saw the positive
effect of distributing the smallest number of values 1 known
so far. Up to now this knowledge has been used only by
the workers. In a further approach the same knowledge is
used by the master itself. Such an intelligent master process
allows the additional reduction of the runtime for large
problems.

This approach of an intelligent master relies on the fol-
lowing property: we are searching only for solution vectors
with the smallest number of values 1. A subspace is defined
by fixing a certain number of variables; (x1 = 1, x2 =
0, x3 = 1, x4 = 1, x5 = 0) defines, for instance, one of 32
subspaces where the first 5 variables are fixed. If a solution
of two values 1 is already known, it can be concluded that
no solution results from this subspace since already three
variables have the value set to 1.

Such an evaluation can be realized by the master when
it is waiting for a request of a worker. Subspaces in which
no solution can exist are excluded by the intelligent master
without detailed calculations in the subspace itself.

We implemented this intelligent master approach too. This
approach should be applied especially for large benchmarks.
Due to this intelligent behavior of the master it is possible
to extend the division of the Boolean space into more
subspaces. As a compromise we used nss = 210 = 1024
subspaces for our PC with 4 cores. In that way, we get a
much better load balancing – we measured exactly the same
runtime for all 3 concurrent processes. Another positive
effect is the reduction of the required memory space. The
number of necessary ternary vectors is reduced by a factor
of nss = 210 = 1024.

Table V shows that this approach should be used for large
unate covering problems. We suggest an implementation
where the applied approach is selected depending on the
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Figure 7. Sspeedup reached by the intelligent master XBOOLE-approache
based on UNI(DIF(NDM(f [r]))) (8), (9) in comparison to CPL(NDM(f )) (5)
for covering problems of 32 variables and 32 and more clauses

known number of variables. The speedup in column 4 is the
ratio between the improved approach of Table II on a single
core and the approach of Table V using 4 cores. Due to
Amdahl’s law the speedup is typically less than the number
of used cores. This is true for the two smallest evaluation
benchmarks. Such small tasks can be solved in a couple of
milliseconds on a single core; no parallel approach must be
applied. The speedup for the largest executed benchmark is
equal to 356.2. Hence, without substantial computations the
intelligent master approach reduces the required runtime by
one third.

It is an important property of the suggested intelligent
master approach that the speedup grows with larger tasks. A
second evaluation parameter is the efficiency. The efficiency
is defined as quotient between the speedup and the number
of used cores. An ideal implementation is reached if the
value of the efficiency is equal to 1. For benchmarks
larger than 32 variables and 32 clauses the approach of the
intelligent master holds this ideal value. It is a remarkable
result that the efficiency grows strongly with the size of the
problem. The efficiency for the largest benchmark is 89.

Figure 7 shows in comparison to Figure 6 the further
improvement of the intelligent master approach over the
approach of adaptive distribution. The super-linear speedup
is reached already for the covering problem of 32 variables
and 32 clauses. The suggested enhancement of the simple
master to an intelligent one improved the reached speedup
by further 50%.

VII. CONCLUSIONS

We selected for our studies in this paper one task be-
longing to the set of the most complex problems, the
unate covering problem. These problems have an exponential
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complexity. Our approaches utilize special properties of this
task, but these approaches can be mapped to other Boolean
problems of the same high complexity.

The main instrument to deal with the exponential increase
of the time required to solve such tasks is the parallelism.
Thinking about parallelism associates recently to supercom-
puters of thousands of processor cores. Of course, such
expensive computers can be the final way to solve extreme
tasks. We showed that the utilization of both much cheaper
computers and well analyzed properties of the task to be
solved lead to unbelievable improvements.

In detail we confirmed the following facts.
• The order of operations has a strong influence on the

runtime. Replacing a single absorption after the applica-
tion of the distributive law for all clauses by a repeated
absorption after the application of the distributive law
for each single clause reduced the runtime for the
simplest 8× 8 benchmark by a factor of 13,957.

• The utilization of the parallelism in the application
domain is the crucial factor to solve larger Boolean
problems of exponential complexity. The application of
operations of the XBOOLE library reduces the runtime
to solve the largest benchmark solvable by the improved
basic approach (16 × 32) by another factor of 99,976.

• The division of the Boolean space into uniform sub-
spaces for the available cores in a parallel implementa-
tion does not lead to a similar runtime of the subtasks.
The runtime of the cores in such a solution differs by
a factor of more than 10.

• An adaptive approach improves the load balancing.
Therefore a larger number of subspaces is necessary.
Fixing a larger number of variables contradicts the par-
allel approach in the application domain. The division
into 64 subspaces was found as a good compromise for
a 4-core PC.

• The distributed solution itself is a source for an addi-
tional speedup, even when a small number of cores is
used. The exchange of the simplest solution found so
far between the worker by the help of the master allows
to restrict the analysis task of the workers and leads to
a speedup of 236.9 using only 4 cores.

• The additional utilization of the simplest solution found
so far by the intelligent master on a higher level
improves the speedup by another 50%.

• An implementation should combine several approaches
and select the most suitable approach depending on the
size of the task to be solved.

• In comparison to the improved basic approach which
was 13,957 times faster than the basic approach with a
single absorption we reached an overall improvement
factor of more than 35 million where nearly hundred
thousand comes from utilization of properties in the
application domain and more than 350 by a super-linear
speedup of four processor cores only.

The improvement factors were calculated from the largest
comparable benchmark examples. More detailed compar-
isons confirm that these factors are not constant but func-
tions which increase their values for larger tasks. In future
research we will explore unate covering problems depending
on even more variables and clauses. We see the key for fur-
ther improvements in the combined utilization of approaches
of both the application domain and the parallelism of the
used computer equipment.
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