View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by GSTF Digital Library (GSTF-DL): Open Journal Systems (Global Science and Technology...

A Massively Parallel 2D Rectangle Placement Method

Michael Moorman and Xinlian Liu
Department of Computer Science
Hood College
Frederick, Maryland 21701, USA
mem19@hood.edu, liu@hood.edu

Abstract—Layout design is a frequently occurring process that often
combines human and computer reasoning. Because of the combinatorial
nature of the problem, solving even a small size input involves searching
a prohibitively large state space. An algorithm PEMS (Pseudo-exhaustive
Edge Minimizing Search) is proposed for approximating a 2D rectangle
packing variant of the problem. The proposed method is inspired
by MERA (Minimum Enclosing of Rectangle Area) [1] and MEGA
(Minimum Enclosing Under Gravitational Attraction) [2], yet produces
higher quality solutions, in terms of final space utilization. To address
the performance cost, a CUDA based acceleration algorithm is developed
with significant speedup.

1. INTRODUCTION

AYOUT Design (LD) can be informally described as the as-

sembly of modules in a constrained space. LD problems man-
ifest themselves in a variety of disciplines and industries including
materials optimization, container cutting and packing, web design,
newspaper layout, and computer circuitry hardware design [3] [4].
These problems have been known for years to be NP-Hard [3] [5].
Finding an optimal solution with brute force is not always feasible,
as even a small number of modules corresponds to a massive search
space. Various algorithms have been devised to approximate solutions
under specific constraints.

2D rectangle packing is one variant of LD, and this variant is
explored here. This branch of LD applies to a wide array of domains
and the amount of available literature and solution efforts on this
subject is immense [6] [7] [8].

In the world of LD there are many different fitness metrics. The
goals of one layout designer may differ drastically from the next.
For instance, layouts may call for high degrees of homogeneity and
symmetry. Others may only be concerned about unused space or
total edge distance. In general, all LD problems share the boundary
constraint, where no module can be placed outside of a given bounds,
and the overlap constraint, where no module can be placed such that
it overlaps with another module.

A front runner in 2D rectangular packing is MERA [1] [2].
Genetic algorithm type heuristics are also effective in 2D rectangle
packing, but they are viewed as complimentary to heuristics like
MERA and the one proposed here, PEMS (Pseudo-exhaustive Edge
Minimizing Search). It is suggested that employing genetic algorithm
techniques can arrive at good solutions [9]. It is also suggested
that packing methods such as simulated annealing, taboo search,
and Naive Evolution show promising results as well. The problem
with these approaches is the lack of proper analytical techniques that
facilitates comparison with other heuristic techniques [10].

The MERA heuristic’s overall effectiveness to efficiency ratio as
in 2D rectangle packing is exceptional [11]. Moreover, MERA lends
itself heavily to implementation on parallelized systems hardware, as
is shown in [11]. The proposed method shares many architectural
similarities to MERA, most notably in the strategy of exhaustive
corner adjacency search.

DOI: 10.5176_2010-2283_1.4.114

II. 2D MODULE PACKING

A 2D module packing problem is defined as given a set of N
rectangles, place them on a given board such that the wasted area
is minimized. For the comparisons that follow, the problem set used
can be seen in Figure I below. It consists of 900 computer generated
rectangular modules of varied sizes, with a bin size of 160x160 units.

Figure 1.
bin.

An example problem set consisting of 900 modules in a 160x160

A more formalized list of constraints for this particular problem
are shown below:

1) The bin to be packed is rectangular in shape.

2) Modules to be packed may be rotated.

3) Modules are rectangular.

4) A module may not overlap any other module or any border of
the bin.

A. MERA

The MERA (Minimum Enclosing of Rectangle Area) placement
algorithm provides reasonably fast, pseudo exhaustive search that
produces beautiful solutions. As the name implies, the algorithm puts
an emphasis on minimizing the total enclosed rectangular area of the
solution for each placed module. The method is defined below in
Figure II.

https://core.ac.uk/display/233149692?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MERA(M,PM, BIN)
1 Sort M by area descending.
2 Place M[0] in corner of BIN
3 For each unplaced module K in M
4 For each placed module J in PM
5 Try placing K at every
adjacency of every corner
of J.
6 If can place, calculate
the ERA resultant of this
placement.
7 next
8 Place K at the position with
minimum ERA
9 next
Figure II. MERA pseudo code.

The search strategy used by MERA is what is called a “corner
adjacency search”, where-by every adjacency of every corner of
already placed module is considered in the search. This is shown
in Figure IIIL

Figure III. Corner adjacency search. In this example, module B can be placed
onto A in twelve different configurations, with the inside corner positions of
A being invalid.

The search space grows linearly with the number of placed
modules. Every placed module yields twelve possible positions for
placement of other modules, with the four inside corner positions
being easily ignored.

MERA tends to produce aesthetically pleasing, balanced, and
symmetrical solutions. An example of a solution produced by MERA
is shown in Figure IV.

Figure IV. Example of a MERA solution of a 160x160 problem set, with
900 modules.

The source of this aesthetic stems from the criteria used for
placement. MERA calculates each candidate module’s total distance

from every other module on the board. This process is depicted in
Figure V.

Figure V. Minimum Enclosing Rectangle

B. PEMS

The goal of PEMS (Pseudo-exhaustive Edge Minimizing Search)
is to produce a layout that minimizes the total number of edges
in the solution. This property has been used similarly by other
heuristic methods [12]. Like MERA, PEMS employs a corner ad-
jacency search to enumerate the search space. Unlike MERA, every
unplaced module is searched against every placed module at each
iteration. With MERA, only one “candidate” module is considered at
every placement iteration. In other words, MERA operates with the
restriction that modules must be considered for and placed in order

from largest to smallest module. PEMS does not abide by this. At
every iteration, every unplaced module is considered as a candidate
module. The PEMS method is defined in Figure VI below.

PEMS (M, PM, BIN)
1 For 1..Number of Modules:
2 For each unplaced module K in M:
3 For each placed module J in PM:
4 Try placing K at every
adjacency of every corner
of J.
5 If can place, calculate
the number of connected
edges for this
module at this placement.

6 next
7 next
8 Place the most connected
module/position combination.
9 next
Figure VI. PEMS pseudo code.

At every iteration, every unplaced module is tested at every
possible position in the corner adjacency search. Module position
pairings are evaluated on the criteria of maximum connectiveness, as
is depicted in Figure VIIL.

connected tiles =9

Figure VII. Edge Minimizing strategy.

The exhaustive search of PEMS produces a very high quality
solution. Figure VIII shows the resulting placement of the same
problem set used earlier for MERA.

Figure VIII. An example of a PEMS solution to a 160x160 unit problem
set with 900 modules. Compared with Figure IV, less white space represents
higher utilization of solution area.

Though the end result is pleasing, the amount of computational
work needed by PEMS is likely unacceptable for traditional plat-
forms. One way to mitigate this problem is to implement the heuristic
on a massively parallel architecture, where the time needed to perform
said computations can be drastically reduced. NVIDIA’'s CUDA
(Compute Unified Device Architecture) was selected for this purpose.

NVIDIA’s (CUDA) [13] is a software platform for massively par-
allel high performance computing on their GPUs. CUDA implements
an extremely fine grained paradigm of parallelism through use of the
single instruction, multiple thread model, or SIMT [14]. In this model,
millions of lightweight threads are employed to execute a common
function and each thread operates on different data. Although the
potential for speedup is great, designing algorithms that achieve
optimal hardware performance on the GPU is a difficult task, since
memory latency is rather high compared to a traditional CPU.

Parallelizing PEMS into SIMT (Single Instruction Multiple
Thread) architecture can be accomplished by dividing the algorithm
into two primary kernels; module evaluation and module reduc-
tion/placement. The flow of kernel invocations takes the form of:

CUDAPEMS (M, BIN)
initialize GPU resources
place M[0] in a corner
for 2 to len (M)
invoke module evaluation kernel
invoke module placement kernel
next

o U1 W N

Figure IX. Parallel PEMS pseudo code.

The module evaluation phase divides the computational work by
allocating N CUDA thread blocks, where N is the total number of
modules - 1. Within each thread block, 96 CUDA threads share the
responsibility of performing a corner adjacency search against each
already placed module. If a block’s module has already been placed,
it returns immediately. This kernel is shown in Figure X.

| Module UPM = Miblockidx.x] |

Module PM =
placedModules[threadldx.x]

1]

Evaluate placement of UPM on
every position of PM

v

Write the best module / position
to thread block shared memory

v

Synchronize threads ‘

f this block has
module / placement
In shared mem

Write this module / placement
To global memory

Figure X. Evaluation kernel flow (UPM is an “Unplaced Module”, PM is a
“Placed Module™)

Phase one ultimately produces n evaluation data points. Each
evaluation represents the best placement for a given module. In the
case of a module already being placed, a sentinel value occupies the
evaluation structure.

Phase two, the placement kernel, performs a reduction of the
evaluations found in phase one. It simply chooses the evaluation
with the highest fitness and places it onto the board. No speed up is
actually realized as a result of implementing this placement phase as
a GPU kernel; however, it does avoid the cumbersome task of having
to copy data back and forth between host and GPU memory [14].

C. Analysis of Algorithmic Complexities

MERA and PEMS share similar asymptotic upper bounds of
O(n®), where n is the total number of modules in the problem set.
The ERA calculation step of MERA sums the distances of every
already placed module to a candidate module, and it is bound by
O(n). This is multiplied by a O(n?) bound resultant from a doubly
nested loop. PEMS is bound by O(n?) due to a triply nested loop.
The calculation step of PEMS is constant with respect to n.

Although PEMS and MERA share asymptotically similar upper
bounds, their practical run times differ heavily, with MERA greatly
outperforming PEMS by a constant factor. This is the case because
MERA forgoes the ERA calculation step (O(n) cost) when a shape
placement is not valid for given iteration. Thus, the performance gap
between the two methods relates directly (1/P) to the probability
that a single MERA iteration will result in a valid shape placement.
P was observed to be between .01 and .03 for the problem sets used
in this study.

D. Implementation Notes

Results for this study were gathered from C/C++ implementations
of MERA, PEMS, and a CUDA implementation of PEMS. The
specifications for the hardware used are shown in Table I.

CPU Intel Core 17 CPU 950 @ 3.06 GHz
Memory | 12 GB

GPU 1 GeForce GT 430 w/ 1GB RAM
GPU 2 Tesla C2050 w/ 2.5GB RAM

TABLE I
TEST SYSTEM HARDWARE

The methodology used to compare space utilization between PEMS
and MERA was to repeatedly generate solutions for randomly gen-
erated problem sets. These problem sets consist of a list of modules
that have a total area equal to the bin size. The ideal case is a
solution that successfully places all of the modules in a problem,
equating to 100 percent utilization. Two additional constraints placed
on the generation of random problem sets were the specification of
the minimum length for a module dimension and the total number of
modules in problem. The total number of modules in problem sets are
always configured as a perfect square of some number i.e. 4¥4=16
5*%5=25 6*6=36. The purpose of the minimum length constraint is to
make problem sets more difficult to reassemble. For example, it is
trivial to pack rectangles with dimensions of 1x1.

In this study, PEMS CUDAPEMS, and MERA are implemented
such that each method shares common routines and data structures.
All three implementations use an array of bits (bit matrix) to represent
the solution space. The three methods also share a common predicate
routine “canPlace”, which performs a naive overlap and boundary
constraint check on the solution space to determine the validity of
a rectangle placement. Each implementation also shares a common
method “place”, which effectively places a rectangle onto the solution
space.

All tests were conducted on an Intel based server running the
x86_64 version of Fedora 14 and the NVIDIA CUDA driver and
toolkit version 4.0. Only the Tesla card was used for this study. The
additional GeForce 430 was used for console display only.

ITI. RESULTS

Figure XI compares solution space utilization between PEMS and
MERA for many instances of automatically generated problem sets.

(=3
ST
- B ge HYTE]] . s e
?gﬂngﬂuaggﬂgiiﬁiiﬁiiggggEEEEEgEEE TR
oeg °
@ :
21 .
S o
@
8
3 A
=4 ° a® ° a
S . R
3 . B
g 5] ° ae
5 o . .
© : a%a
@ - 2 - R
o a, “
2 s | o PEMS “ . N
% A MERA B L L
T T T T T T T
0 500 1000 1500 2000 2500 3000
Number of Modules in Problem Set
Figure XI. PEMS and MERA solution space utilization (solution quality)

using generated problem sets for 160x160 unit bin sizes, with a minimum
module dimension constraint of 2.

PEMS yielded a higher quality solution in almost every recorded
test. Exceptions to this occurred only in problem sets with less than 81
modules. PEMS’ exhaustive evaluation of module placement based on
edge minimizing produces more tightly packed solutions as compared
to MERA.

Figure XII compares performance between CUDAPEMS and
MERA for a varying number of total modules. After accelerating
PEMS with CUDA, the total run times are very similar to the serial
implementation of MERA. As the problem set size increases , the
CUDA PEMS implementation begins to outperform MERA. The
cause of this phenomenon is likely attributed to the constant costs
associated with using the GPU, e.g the initial time required to
allocate and copy memory onto the GPU device.

s

° O PEMS accelerated with CUDA

2 A MERA

a

o

3 4
) N
S a
IS o B
3
é g PO
£ « £
c 8"
sz 2 | s o
E A I
o e
° a8,
@ o o
£ g

gt
VL
o Nl
g 8
gl
. alld
THS
o - -——-ausm!ﬂ““

0 1000 2000 3000 4000 5000

Number of Modules in Problem Set

Figure XII. Performance of CUDA accelerated PEMS vs MERA using
generated problem sets for 160x160 unit bin sizes, with a minimum module
dimension constraint of 2.

Figure XIII compares performance between CUDAPEMS and
PEMS for a varying number of modules. The parallel implementation
vastly outperforms the serial version, with a maximum recorded
speedup of 130x.

o O PEMS accelerated with CUDA 8

8 - | & PEMS serial

=1 a

s

o
8 9 2
T ©
3 N
]
%} a
£ o
5 8- \
R
g
8 s
=] 8 — a
= <
[
E 3
=

a

o a

S

~N a

a
.o
a
aa? °
© —| amecse66885c0000000 00 0 o 0 o 8 o o ©
T T T T T T T T
0 200 400 600 800 1000 1200 1400

Number of Modules in Problem Set

Figure XIII. PEMS parallel vs PEMS serial performance using generated
problem sets for 160x160 unit bin sizes, with a minimum module dimension
constraint of 2.

The CUDA version of PEMS outperforms its serial predecessor
by a wide margin due to massive parallelization. At each iteration of
CUDAPEMS, A CUDA thread block is assigned to each unplaced
module. Each thread block consists of 1 to 1024 threads; this study
found the optimal number of threads per block to be 96. To exemplify
this parallelism, consider a scenario where 256 modules have already
been placed on the board and 256 modules remain to be placed. In
this case, 256 %96 = 24576 lightweight CUDA threads are employed
to perform an iteration of PEMS. The 448 CUDA cores on the Tesla
C2050 GPU [15] dispatch these threads simultaneously.

Optimization played a significant role in accelerating PEMS on
CUDA. Early on in the study, a matrix of 32 bit integers was used as
the underlying solution data structure for all three implementations.
Only a 5-20 times speed up was demonstrated in that rendition.
Total global memory required for the rectilinear representation in
this case was 160 * 160 x 32 = 819200 bits, or 819200/8 = 102400
bytes. Global memory accesses are expensive in CUDA [14], even
though best efforts are made by the architecture to coalesce and
optimize these accesses among thread blocks [14]. Accesses to this
data structure occur often by each thread, which likely bottle necked
the flow of execution in this early implementation. Replacing the
integer matrix with a bit matrix was a great boon for the acceleration
of PEMS. The total memory footprint for the solution representation
was reduced by a factor of 32, yielding 160 * 160 = 25600 bits, or
25600/8 = 3200 bytes. Total execution time was faster by a factor
of at least 4 after implementing the bit matrix.

Another optimization was the removal of all unnecessary registers
for the kernels. This allows thread blocks to achieve a higher
occupancy level in the GPU, thus expanding the run time’s ability
to perform thread switching, a critical strategy that the GPU uses to
hide high-latency operations.

A third optimization method used was the strategy of using thread
block shared memory to reduce memory latency in the evaluation
kernel. In CUDA, shared memory is a specialized type of storage
that is shared among threads in a thread block [14]. Accesses to
shared memory are much faster than accesses to global memory
[14]. This strategy involved threads cooperatively copying the entire
solution data structure into thread blocks at the beginning of a PEMS
evaluation iteration. The idea was to coalesce accesses to global

memory as much as possible. A small speed up was realized as a
result of this optimization attempt, likely due to the fact that a large
percentage of the thread blocks short circuit their execution in the
case of an unplacable module. These blocks tend to have little or no
accesses to shared memory, but would still incur the cost of copying
in the entire representation. Further investigation into this avenue of
optimization could result in an even higher speed up.

All source code for this study is available to the public under the
GPLV3 open source license at http://sourceforge.net/p/pemsproject/.

IV. CONCLUSIONS

The PEMS method produces high quality solutions with regard to
space utilization for the problem sets used in this study. In every
case tested, PEMS produced more compacted solutions than MERA.
PEMS is likely prohibitively computationally expensive for imple-
mentation on traditional systems. PEMS implemented on CUDA is
shown to yield up to a 130 times speed up over the serial version.
Though not implemented here, it is likely that the parallelized version
of MERA outperforms CUDA PEMS. Nevertheless, PEMS produces
higher utilization quality solutions than MERA regardless of the
implementation. The pseudo-exhaustive search employed by PEMS is
computationally expensive, but implementation of PEMS on CUDA
mitigates these costs to an acceptable level. Finally, applications that
require high utilization quality in 2D rectangular layout design could
benefit significantly from the use of PEMS, especially when the
number of modules under consideration is numbering in the low
thousands or less.

ACKNOWLEDGMENT

The NVIDIA CUDA Center at Hood College is acknowledged for
providing us with computer hardware.

REFERENCES

[1] K. H. M. H. I. Abdul-Rahim Ahmad, Otman A. Basir, “Improved
placement algorithm for layout optimization.”

[2] K. H. Abdul-Rahim Ahmad, Muhammad Hasan Imam, “A placement
algorithm for efficient generation of superior decision alternatives in
layout design,” 2004.

[3] H. M. Shigetoshi Nakatari, Kunihiro Fujiyoshi and Y. Kajitani, “Module
placement on bsg-structure and ic layout applications,” 1996.

[4] S. N. Y. K. Hiroshi Murata, Kunihiro Fujiyoshi, “Rectangle-packing-
based module placement,” 1995.

[5] S. Jakobs, “On genetic algorithms for packing of polygons,” 1999.

[6] G. Zhang, “A 3-approximation algorithm for two dimensional bin
packing.” 2005.

[7]1 R. V. S. R. Harreni, “Packing rectangles into 2 opt bins using rotations.”

[8] R. S.-O. K. Jansen, “New approximability results for 2-dimensional
packing problems.”

[91 A. L. Ping Chen Zhaohuri Fu and B. Rodrigues, “Two-dimensional
packing for irregular shaped objects,” 2003.

[10] T. B. Hopper, E., “An empirical investigation of meta-heuristic and
heuristic algorithms for a 2d packing problem,” 2001.

[11] I. W. D. Amina Y. Maarouf, “High speed hardware implementation of
a hueristic 2d rectangle placement algorithm,” 2006.

[12] M. S. W. H. Duanbing Chen, Yan Fu, “A quasi-human heuristic
algorithm for the 2d rectangular strip packing problem.” 2008.

[13] (2011). [Online]. Available:
http://www.nvidia.com/object/cuda_home.html

[14] (2011). [Online]. Available:
http://developer.download.nvidia.com/compute/cuda/

[15] (2011). [Online]. Available:

http://www.nvidia.com/object/cuda_home.html

