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Abstract—Although the cost of storage components are reported
accurately by the vendors, it is not clear whether the performance (IOps,
MiBps) and power consumption (W) specifications they provide are ac-
curate under ‘typical’ workloads. Accurately measuring this information
is a vital step in providing input for optimal storage systems design. This
paper measures storage disk performance and power consumption using
‘typical’ workloads. The workloads are generated using an open source
version of the (industry standard) SPC-1 benchmark. This benchmark
creates a realistic synthetic workload that aggregates multiple users
utilizing data storage simultaneously. A flexible current sensor board has
also been developed to measure various storage devices simultaneously.

This work represents a significant contribution to data storage bench-
marking resources (both performance and power consumption) as we
have embedded the open source SPC-1 benchmark spc1 within an open
source workload generator fio, in addition to our flexible current sensor
development. The integration provides an easily available benchmark for
researchers developing new storage technologies. This benchmark should
give a reasonable estimation of performance with the official SPC-1
benchmark for systems that do not yet fulfill all the requirements for an
official SPC-1 benchmark. With accurate information, our framework
shows promise in alleviating much of the complexity in future storage
systems design.

Index Terms—Performance, Power Consumption, Benchmark, Mea-
surement, Storage Component, HDD, SSD, Open Source SPC-1

I. INTRODUCTION

With an increasing number of networked users and growing volume
of complex data, information is becoming more valuable and access
to that information is critical in many organizations. This necessitates
modern storage systems with large capacity that are fast and reliable
capacity. High performing storage systems, for example, deliver a
high number of operations (IOps), high throughput (MiBps) and low
response times (ms). The current generation of such systems mainly
consist of storage components made up of a large number of HDDs
and SSDs. These disks have greatly improved over time, both in
density (higher volume) and cost (lower price).

Storage systems such as Storage Area Networks (SANs), are
becoming more versatile as they need to be able to accommodate
many different types of workload on the same system. Instead of
using a different server with customized disk configurations (e.g.,
one set-up for email, another for a database, one for web, one for
video streaming and so on), organizations are centralizing their data
storage and using the same storage system to simultaneously support
all services. Critical design factors for storage system development
include: 1) total system cost; 2) system performance; and 3) power
usage. Therefore, mathematical models [36], [37] developed to design
storage systems rely on accurate information about cost, performance
and power consumption of storage components. In addition, as more
storage components and different device types emerge, technologies
have also been focused towards components that are more ‘green-
friendly’ so as to reduce the amount of power consumption. For
example, it is estimated that globally installed disk storage has
increased by 57% between 2006 and 2011, with a 19% increase of
power consumption [32].

Storage architects are often confronted with a multitude of choices
when designing storage systems. When selecting the best option,
architects take into account a large number of metrics such as
performance, quantity, cost, power consumption, etc. Often the best
systems will use various types of disks to support differing workloads
so as to increase total performance, yet decrease costs. In addition,
finding disk configurations and data management policies that yield
low total power consumption is of rising importance in storage
systems. Mathematical models have automatically designed SANs
[39] and core-edge SANs [37] for various end-user demands, but, in
many instances, the demands are not known before the storage system
is designed. In these cases, typical workload is the best benchmark,
hence the properties of the components under typical workload need
to be accurate. Our framework should become established as a
barometer for vendor-supplied values, such as performance and power
consumption, under typical workload.

For practical evaluation of storage devices, various open source
tools have been utilized by the technical and research community.
Data storage benchmarks have been developed with many parameters
to build specific workloads for examining; a file system [8], a web
server [6], a network [9] and so on. However, benchmarks for cutting
edge storage systems need to create a workload that combines the
workload for the file system, web server, network and other services.

Producing synthetic benchmarks with a realistic workload to cap-
ture overall performance is a non-trivial task because it is difficult to
model systematic user behavior. Typically, communities have chosen
their own set of methods to represent a typical workload. Results
from these methods are, however, subject to the parameters and
configurations particular to each community. To date, especially
for storage systems, few tools have attempted to capture overall
performance of storage systems.

Another issue is the variability of power consumption reported by
individual disks depending on the workload benchmarked. Realistic
readings could be different to the vendor’s specified reports, which
can be lower or higher depending on the application workloads [5].
Also, power consumption measurement is non-trivial because the disk
does not have an internal power sensor for reporting. A current-
meter is needed to independently read the currents flowing through
each rail (such as 12V, 5V and 3.3V) so as to compute the total
power (W). These measurements need to be recorded and computed
simultaneously for multiple storage disks, so require a flexible sensor
system that is scalable to a large number of disks of different types.
To date, little research has attempted to develop set-ups to measure
disk power consumption for a set of disks simultaneously.

Broadly our research advances storage systems technology in two
important ways. First, it provides a framework for benchmarking
performance and power consumption on various storage components
such as HDDs, SSDs, RAID arrays and entire storage systems.
The performance is measured by using the industry standard SPC-1
benchmark (open source ‘typical’ workload generator) and the power
consumption is measured by using a Current Sensor Board developed
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during this research. Second, our work then uses the proposed frame-
work for the validation of vendor specifications of storage compo-
nents. We demonstrate our framework using different configurations
of commodity storage devices. The properties of these configurations
are vital inputs to mathematical models that promise to alleviate
much of the design complexity currently faced by storage architects.
Ultimately we would like to develop a mathematical model that, given
vendor information as an input, produces an accurate estimate of
performance and power. This model will provide valuable input into
our existing mathematical models and corresponding optimization
algorithms for storage system design.

In Section II, we introduce the workload generator developed
by combining the open source SPC-1 library spc1 [19] and an
open source workload generator fio [3]. We describe how this
integrated tool produces typical workloads for benchmarking storage
components. Despite the wide range of benchmarking tools available,
no practical studies have been done using the open source SPC-1
library. We also describe our Current Sensor Board (CSB), a current-
sensor kit that measures the current flowing through individual rails of
multiple disks, in order to obtain their power usage, both passively
and simultaneously. In Section III, we present experiment results.
Sections IV and V discuss related work and summarize our findings.

II. MEASUREMENT

Widely used disk benchmarking tools such as IOmeter [7]
measure performance by generating as much IO as possible to disk,
thus obtaining upper bounds on IO operations (IOps), throughput
(MiBps) and response times (ms). Often four types of conventional
workload – sequential read, sequential write, random read and random
write – are tested, and to mimic ‘typical’ (user) workloads, the
proportions of sequential/random, read/write requests are adjusted
and the block size of requests are similarly tuned. While such tools
are designed for flexibility, they do not generate typical IO workloads
to practically represent the workload experienced by a centralized
storage system.

The SPC-1 benchmark tool (developed by the Storage Performance
Council – SPC) [13] has the ability to produce typical workloads for
evaluating different storage systems and is the first industry standard
tool with supporting members from large commercial vendors of
storage systems (e.g., HP, IBM, NetApp, Oracle). SPC-1 particularly
focuses on mixed behaviors of simultaneous, and multiple user
workloads which were empirically obtained from various real user
workloads for OLTP, databases, mail servers and so on. It performs
differently from other tools in that it has built-in proportions of ran-
dom/sequential read/write requests that aggregate to give an overall
request level and it uses a threshold (of 30ms) for an acceptable
response time.

Specifically, SPC-1 generates a population of Business Scaling
Units (BSUs) which each generate 50 IOs per second (IOps), all
in (minimum) 4KiB blocks. Each BSU workload produces the IO
requests to read/write to one of three individual Application Storage
Units (ASUs) – ASU-1 [Data Store], ASU-2 [User Store], and ASU-3
[Log]. Both ASU-1 and ASU-2 receive varying random/sequential
read/write requests, whereas ASU-3 receives sequential write re-
quests. The proportion of IO requests to ASU-1, ASU-2, and ASU-3
are 59.6%, 12.3%, and 28.1% respectively. For example, a population
consisting of two BSUs (generating 100 IOps) will produce about
59.6 IOps to ASU-1, 12.3 IOps to ASU-2, and 28.1 IOps to ASU-3.
Also, physical storage capacity is allocated at 45%, 45%, and 10%
for ASU-1, ASU-2, and ASU-3 respectively. Higher IO workloads
are generated by increasing the number of BSUs, and the benchmark
measures the average response time (ms) to evaluate the performance.
Its detailed specifications are documented in [14].

The official SPC-1 benchmark is, however, aimed at use by com-
mercial storage vendors, particularly the industrial members of the
SPC, with associated fees. It is unavailable for experimental storage
systems that are not commercially available. It is also not available for
testing individual storage components themselves, thereby excluding
most of the research community. Further, use of SPC-1 for research
publications is subject to permission being granted by the SPC. To
date, only a few publications from the industry members of the SPC
have used the official tool to validate their research [17], [25], [29],
[42].

The open source SPC-1 library (spc1) has been developed by
Daniel and Faith [19]. This library reliably emulates and closely
conforms to the official SPC-1 specification. The library produces
SPC-1-like IO requests with timestamps, but requires a workload
generator to send these requests to a storage system. For example,
Fig. 1 shows scatter plots of IO request streams to the ASUs,
for 20 BSUs accessing the ASU on a 1TB disk (262144 in 4KiB
block). ASU-3 for instance shows IO requests for sequential write
– increasing the BSU counts further produces more variable IO
write behavior. The behavior matches the specifications described
in the Tables 3-1, 3-2 and 3-3 in [14]. Here, the 4KiB block
length distributions are drawn from the set {1, 2, 4, 8, 16} with
converging proportions of the read IO [33.1%, 2.5%, 2.1%, 0.8%,
0.8%] (39.4%) and the write IO [43.8%, 6.8%, 5.6%, 2.2%, 2.2%]
(60.6%) respectively. For any reasonable workload duration of IO
requests, we observe an average IO block size of 6.75KiB read and
8.82KiB write, which results in an average of 8KiB per IO request;
twice of the block size. This means that we can indeed multiply the
total IO requests by 8KiB to calculate the total throughput requests.

Unfortunately, the actual workload generator used by Daniel and
Faith is proprietary [18] and so no readily available tools exist that
integrate the library in practice. Without integrating the library into a
workload generator, only simulations of the library’s workload can be
conducted. Excluding the original study [19], the open source SPC-1
library has only been used for simulation [20], [28].

A. The fiospc1 tool

An open source IO tool used for benchmarking hardware systems
is fio [3]. It is highly flexible with a wide range of options
supported, e.g., different IO engines and configurations of read/write
mixes. It works at both a block level and a file level and provides
detailed statistics of various IO performance measures. Here, we have
produced fiospc1 – an integration of fio and the spc1 – which,
when executed, generates IO requests in accordance with the SPC-1
benchmark via spc1 and sends these requests to the storage system
defined within fio. The integrated version is now available in [4]
and a simple one line command

fio --spc1 spc1.config

executes the fiospc1. The spc1.config file contains simple
arguments such as disk device locations, number of BSUs, test
duration and IO engine selections.

B. Current Sensor Board

Storage devices come in different physical sizes (1.8′′, 2.5′′ and
3.5′′) and voltage rail requirements (3.3V, 5V and 12V). For example,
often 3.5′′ disks require 5V and 12V to be operational, 2.5′′ disks
often require 5V, and 1.8′′ disks require 3.3V. Depending on the
disk type, it may also require all of the rails to be operational. To
obtain the power consumption of a disk requires a way to measure
the current (A) of individual rails simultaneously without interrupting
the benchmark activities.
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Fig. 1. IO workload distributions by the ASU streams: ASU-1 [Data Store] (stream 00–03), ASU-2 [User Store] (stream 04–06), ASU-3 [Log] (stream 07)

Fig. 2. Current Sensor Board (CSB)

We have built our own Current Sensor Board (CSB), shown in
Fig. 2. The CSB allows us to passively examine power consumption
of multiple disks in a scalable way. It can measure up to 14 current
rails simultaneously and log the results using a Data Acquisition
(DAQ) device. Each rail is measured (magnetically) by the Hall-Effect
current transducer and the analogue to digital conversion (ADC) is
performed with 16 bit resolution. Using these transducers has the
advantage over current-shunt methods of adding no resistance to the
rails. The transducers are rated 6A which means each rail can measure
up to 19.8W, 30W and 72W for 3.3V, 5V and 12V respectively. A
single disk typically uses less than 1A each rail, so each transducer
scales well and can also measure multiple disks aggregated together.
Both the transducer and DAQ specifications are detailed in [2] and
[10] respectively.

C. System Components and Storage Devices

The test system has Intel 2.53Ghz CPU processors (2xE5630,
8 cores), Intel 5520 chipset (18GB DDR3-1333, ICH10R) and a
separate HW RAID controller (LSI SAS 2108 BBU with 512MB
DDR2 [1]). We use two commodity disk types (regarded generally

as high-end); HDDs1 and SSDs2 (six disks each) which are powered
individually through the CSB from a separate power supply. Both
disks are configured to HW-RAID and SW-RAID, for x1, x3 and
x6 RAID0 mode. For HW RAID, we followed the recommended
configuration from the vendor [11] – [Read-Ahead, Write-Back] is
set for HDDs and [Read-Normal, Write-Through] is set for SSDs.
For SW RAID, we use the mdadm tool. All RAID stripe sizes are
8KiB, direct IO with disk cache enabled for optimal performance
for transaction/random IO. The disks are then partitioned into ASU-
1, ASU-2 and ASU-3 capacity to receive the IO workloads. 64-bit
Linux OS (Ubuntu 10.04 LTS, April-2010) is installed.

Benchmarks are run with the asynchronous (libaio) IO engine
following the original study by Daniel and Faith [19] closely. Since
we are not benchmarking a complete storage system in this work,
we started from the smallest IO requests – BSU=1 (50 IO requests
per second) and increased consistently until the disk bottlenecked.
Also, based on Daniel and Faith’s scaling method [19], the IO
depth is incremented every 25 IO requests, i.e., (BSU=1, depth=2),
(BSU=2, depth=4), and so on. We then observed the behavior of the
performance and power consumption.

Generally, HDDs perform better for sequential read/write requests
than the SSDs, especially when the disk’s edge sections are utilized
(e.g., short-stroking). However, HDDs perform worse for random
read/write requests due to a mechanical movements within the disk.
For the SPC-1 IO workload patterns, consisting of both random and
sequential requests, HDDs would be expected to score in between the
conventional random and sequential IO workload. We have bench-
marked individual ASU workloads on each disk, JBOD configurations
and also low-end HDDs and SSDs. The results for the low-end disks
are reported in [26]. The work here focuses on combined ASUs under
the SPC-1 workload in a RAID0 (HW and SW) environment.

The work here could be expanded by testing a variety of storage
devices with different characteristics available in the market. How-
ever, the focus of this work is the development of a consistent and
easily repeatable testing framework. Benchmarking with other types
of disks and different storage configurations (such as distributed file
systems using Ceph [40] and XtreemFS [22]) is ongoing research

1WD Caviar Black 64MB, 2TB – WD2001FASS [16]
2OCZ Vertex 2, 60GB – OCZSSD2-2VTXE60G [12]
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Fig. 3. Measurement of HW RAID0 for x1, x3 and x6 disk configuration – Left: HDD, Right: SSD
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Fig. 4. Measurement of SW RAID0 for x1, x3 and x6 disk configuration – Left: HDD, Right: SSD

that will utilize the framework described here.

III. EXPERIMENTS AND OBSERVATIONS

A. HW RAID and SW RAID

Fig. 3 shows the performance measurements from HW RAID
configurations: the first two plots show the IOps and MiBps and
response time measurements respectively for the HDDs, and the
last two plots show the same for the SSDs. For HDDs, the IOps
initially increase with increasing BSU count (IO request per second)
and after peaking, decrease in an exponential manner. Increasing
IOps for lower BSU counts shows that the disk spends time waiting
between requests (resulting in low IOps) and as more requests become
available (as the BSU count increases) the disk “keeps up” and the
IOps increase. The rate of increase of IOps increments is observed
to be the same for all disk configurations because SPC-1 specifically
does not push more than 50 IO requests per second for a single BSU.
Striping more disks resulted a higher IOps peak, e.g., x1: BSU=30,
x3: BSU=50, and x6: BSU=80. The highest throughput measured is
just over 30MiBps for x6.

Once the BSU count increases past a given number, the IOps begin
to decrease. This shows that the disk is unable to keep pace with the
number of IO requests and so the requests are queued, resulting in
less IOps and longer response times. For example, requesting 30s of
100 BSUs took 130s, 70s and 37s for x1, x3 and x6 configurations
respectively. For 200 BSUs, it took much longer: 330s, 185s and
130s respectively. As mentioned previously, the BSU increase results
in requests to the ASUs that are more diverse (including ASU-3
which experiences sequential write requests at low BSU counts),
ultimately generating random IO behaviors. The plots also show some
of the conventional IO workload patterns (50% read, 50% write, 8KiB
random IO) measured with varying IO depths and threads (shown as
horizontal lines). We observe that the disks handle the increasingly
random SPC-1 workload better than other ‘full-random’ IO patterns.

In general, if response times from a storage device remain low with
increasing IO requests, then the storage device (in our case, the disk)
is regarded as capable of handling multiple tasks simultaneously. For
the HDDs, at a lower BSU range (<10), the response time stayed

constant at about 100ms, and as the BSU count increases up to the
peak IOps, the response time increases accordingly. The response
times are greatly reduced when using a multiple disk configuration,
e.g., x1 to x3, but only slightly reduced when using more disks, e.g.,
from x3 to x6. We also find that average IO lengths queued by the
disks (measured using iostat) correlate with the response time
measurements.

SSD configuration response times also reach their own peak IOps,
with much higher IOps than the HDDs, e.g., x1: BSU=15k, x3:
BSU=43k, and x6: BSU=59k. Conversely, SSD response times do
not decrease exponentially but plateau for higher BSU counts. This
behavior also shows that the SSDs can have sustainable throughput
even when the IO patterns received are more random. Furthermore,
SSDs report consistently low response times, e.g., 80ms until IOps
peaks, and slowly increase linearly (x3 and x6). Thus, SSDs overall
outperforms HDDs in many aspects.

Fig. 4 plots measurement results from the SW RAID configuration.
Generally the plots show similar shape to the previous HW config-
uration plots. In particular, we observe that the HDDs performed
poorly, e.g., at highest peak IOps, SW reached 33%, 50% and
65% of HW’s IOps. Also after the peak IOps, the performance
deteriorates to a lower level than for the HW configuration. The
response time is also observed to be a lot longer (e.g., at 15k IO
request, x1 peaks 1.7s compared to HW’s 5.2s). This shows that the
HW RAID controller takes advantage of built-in memory to improve
the performance. Changing from Write-Back to Write-Through mode,
thereby effectively disabling the controller’s cache, produced the
similar results to the SW RAID configurations. On the other hand,
SW RAID configurations for the SSDs appear to have no distinct
disadvantage when compared with using HW RAID controller, as
shown in the two plots on the right in Fig. 4.

In our previous work measuring low-end HDDs and SSDs [26], we
found that the low-end disks’ performance will quickly deteriorate
after the peak IOps unlike the slow exponential curves we have
observed for high-end disks. First generation low-end SSDs, known
to suffer random-writes, performed much worse as the IO workload
produces over 60% writes. For more details see [26].
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Fig. 5. Power Measurement for x6 disk configuration

B. Power Consumption

We find that in general each disk reaches a stable power consump-
tion level, and these levels are observed to be correlated with peak
IOps performance, e.g., high peak IOps (and throughput) coincided
with a high stable power consumption level. The general pattern of
power consumption is that an increase in power consumption occurs
with an initial increase in IO requests, but then power consumption
peaks and stays fairly constant for any further increase in IO requests.
For high-end disks the increase happens slowly, but for low-end disks
the power consumption reaches its peak quickly. For the HDDs we
observed the power consumption ranged between 8W and 11W per
disk; the most power (W) was consumed when the disk experienced
the highest workload with random read/write IO requests requiring
the most mechanical movement. When the disks receive sequential
write requests (e.g., ASU-3), especially when configured in JBOD,
they consumed the least power. As long as the disks are active with
high IO requests, we find that individual disks consumed similar
power to the vendor-supplied specifications.

Fig. 5 shows the x6 configured HDDs and SSDs power consump-
tions. Disks consume the least power at low IO requests and the most
at around peak IOps (2.6k IO requests), and their power consumption
actually drops after reaching the peak IOps. SSDs consumed the
lowest power among all the disk types; as the IO requests increase,
they consumed on average from 0.7W to 1.5W per disk. Again we
observe power consumed was the highest at peak IOps (59k IO
requests). Another advantage of the SSDs over the HDDs is that
the power level variation is a lot smaller making it easier to plan for
their power usage.

We also measured the power efficiency per IO request (mW/IOps)
and clearly HDDs require a much higher mW/IOps than SSDs.
We find that at low levels of IO requests, HDDs required about
950mW/IOps, and then drop to optimum point of 25mW/IOps.
Similarly, SSDs start at 80mW/IOps and drop to an optimal point
of 0.1mW/IOps. Generally, as IO requests increase mW/IOps drops
quickly to the optimum point and then slowly increases again,
indicating that the disks use more power per request for higher
numbers of IO requests.

IV. RELATED WORK

One of the benchmarking standards that is related to SPC-1 is the
TPC-C [15], which is an OLTP workload focusing only on database
transactions (order-entry process) with its own measurement unit,
transactions per minute (tpmC), for evaluating systems. Our CSB
measurement functions similarly to the device used in [23], but ours
do not use a current-shunt approach to find voltage-drops on the
rails, and is modularized with separable parts to enable the changing
of instruments (for example, to include a DAQ).

Performance and power consumption studies have been examined
from small to large scales. For example, at the large scale of a
cloud storage system, distributed meta-data servers (such as in [40])
are utilized to spread the load across multiple storage nodes and

to increase reliability. Also, storage nodes can be configured to
conserve energy with error correction [21] and with redundancy
[38] approaches. A system-wide energy consumption model in [27]
measures individual components of the CPU, DRAM, HDD, fan and
system board, to combine them for benchmarking and predicting
overall energy consumption. One of the conclusions of this study
is that even when examining a single disk, there were varying results
due to a diversity of application workloads.

Disk power management policies have been widely researched
in particular. For instance, studies in [30], [35], [41] examined
various optimal time-out selections for disk spin-up/spin-down to
maximize the energy conservation while minimizing the impact on
performance. Results of those studies were highly dependent on the
workload generated by the user applications. Riska and Riedel [33]
measured disk workload behaviors examining longitudinal traces.
They observed that characteristics such as request/response times are
environment dependent, however the ratio of read/write and access
patterns are application dependent. They also found that the disk load
is variable over a period of time, e.g., write traffic is more bursty than
read traffic [34].

Allalouf et al. [17] measured separately 5V (board) and 12V
(spindle) power values to model energy consumption behavior dur-
ing random and sequential read/write requests. For example, with
reasonable accuracy, a single IO per Watt is calculated to linearly
approximate the total disk energy. Similarly, Hylick and Sohan [24]
modeled power consumption levels of a disk’s mechanical properties,
e.g., estimating transfer and seek energy as well as finding major
power level differences between the outer and inner section of a disk
partition. Performance and energy measurement has also been studied
in other system fields, such as in network routers [31].

V. SUMMARY

With a wide range of versatile system configurations available,
proper modeling and design of storage systems’ configurations is
becoming more important. Critical design factors within these models
rely on accurate information about cost, performance and power
consumption of storage system components. Our study introduced a
measurement framework which has the ability to benchmark storage
devices under ‘typical’ workload and measure performance and power
consumption. In particular, we introduced the (fiospc1) tool for
generating typical workloads and a CSB for power consumption
measurement.

We tested our framework on commodity storage disks. We found
that each disk has its range of performance (IOps and MiBps) with
increasing IO requests. For instance, the IOps increase with increasing
IO requests to a peak, and the IOps decrease after that. Behaviors
across different disks and configurations were similar but the location
and height of the peak depends on the disk and configuration used.
Also, HDDs benefited a lot from using a HW RAID controller by
IOps (improvement was shown over SW RAID of up to a factor of
3), while SSDs showed no apparent gain.

We also found that the power consumption by individual disks are
similar to the vendor-supplied specifications or to that determined by
conventional benchmarking. Nevertheless, one significant lesson is
that one should not rely on vendor specifications for disk power usage
without allowing for at least as much variability as we have observed
in this study. Additionally, when designing storage systems, one can
optimize the configuration of the ASUs on to the available disk types.
For example, since ASU-1 generates mainly random read/write IO
requests, high performing SSDs can be utilized. Also, since ASU-3
generates only the sequential writes, HDDs can be utilized, provided
that the IO requests are kept low enough for the request pattern to
remain “mostly” sequential.
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Testing the different characteristics of various disk types available
in the market would improve the diversity of our benchmark results,
however measuring more disks in different configurations (e.g.,
including RAID 1) and testing distributed file system environments
is ongoing research to be performed using our framework. Designing
storage systems with good performance, low power use, high capacity
and low total cost is our ultimate goal. The work presented here is
a first step towards building a model that incorporates performance
and power consumption of storage devices under typical workload.
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