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Abstract—Information explosion is a problem for everyone 

nowadays. It is a great challenge to all kinds of businesses to 

maintain high quality of data in their information applications, 

such as data integration, text and web mining, information 

retrieval, search engine, etc. In such applications, matching 

names is one of the popular tasks. There are a number of name 

matching techniques available. Unfortunately, there is no existing 

name matching technique that performs the best in all situations. 

Therefore, a problem that every researcher or a practitioner has 

to face is how to select an appropriate technique for a given 

dataset.  This paper analyses and evaluates a set of popular name 

matching techniques on several carefully designed different 

datasets. The experimental comparison confirms the statement 

that there is no clear best technique. Some suggestions have been 

presented, which can be used as guidance for researchers and 

practitioners to select an appropriate name matching technique 

in a given dataset.  

 

Index Terms—name matching, duplicate, data integration, 

data cleaning 

 

I.  INTRODUCTION 

Information explosion is a problem for everyone nowadays. 

It is a great challenge to all kinds of businesses to maintain the 

high quality of data. There are many reasons for a business to 

fail. One of them is the poor data quality in the information 

system an organization has. If the data is not clean, the queries 

and reports generated in the system will be wrong, in which 

case directors/managers will either make wrong decisions or 

mistrust the reports and not make any decisions on them. This 

simply puts the value of the information system in question. 

Therefore, to be able to benefit from an information system, the 

data stored must have high quality. The higher the data quality 

is in the system, the better chance the business will have to 

secure a success. 

When data need to be integrated from multiple sources, such 

as comprehensive information systems, data warehousing 

applications, it always has a problem: how to identify data 

records that refer to equivalent entities, which is called a 

duplicate problem. For example, considering a person’s name 

in the name record, a same person can be represented as “John 

Smith” in one data source, while as “John Smtih” in another 

data source. It might introduce a duplicate error if these two 

entities are not treated as the same one when integrate the data 

from these two sources. Such kind of duplicate problems is 

also called the name matching problem. Generally speaking, 

name matching deals with the problem of whether two name 

strings refer to the same name. There are several reasons for 

databases to have such a problem, which include typos during 

data entry, variations in representation of names, etc., 

especially when multiple data sources need to be integrated, 

e.g., in data warehouses. 

Matching names in databases has been a persistent and well-

known problem for years [1]. There are several techniques 

available that deal with the problem [2, 3, 4, 5, 6, 7]. However, 

since there is no clear best technique for all kinds of datasets 

[8], a problem still existing for researchers and practitioners is 

how to select a technique for a given dataset [9].  In past 

decade, several researchers have challenged this problem [8, 

10, 11, 12, 13]. However, none of them have done such a 

comprehensive analysis and comparison work that is done in 

this paper. The contributions of this paper are to overview five 

popular character-based name matching techniques, evaluate 

whether the following factors will have effect on the 

performance: the error rate in a dataset, the threshold value, the 

selected type of strings in a dataset, the type of typos, i.e. typos 

occur at different part in a string and the size of a dataset, by 

using 42 carefully designed datasets. 

The rest of this paper is structured as follows. Related works 

are described in next section. Section III introduces techniques 

that will be examined. The main contribution of this paper is 

presented in section IV that describes the preparation of the 

datasets, the experiments, the analysis and comparisons. 

Finally, this paper is concluded and future work pointed out in 

section V. 

II. RELATED WORKS 

Bilenko et al [10] and Cohen et al [11] evaluated and 

compared a set of existing string matching techniques, which 

include popular character-based techniques, token-based 

techniques and hybrid techniques. They claimed that the 

Monge-Elkan performed best on average and SoftTF-IDF 

performed best overall. However, their works did not consider 

the effect of the error rate, the type of typos and the size of a 
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dataset on the performance. Besides, regarding the threshold 

value used for matching, their work only mentioned that a 

suitable threshold value was chosen, but not mentioned how 

and whether or not this value was universal for all considered 

techniques. 

Peter Christen [8] thoroughly discussed the characteristics of 

personal names and the potential sources of variations and 

errors in them, and also evaluated a number of commonly used 

name matching techniques, considering given names, surnames 

and full names separately, and proposed nine useful 

recommendations for technique selection when dealing with 

name matching problems.  Particularly, the author pointed out 

the importance of choosing a suitable threshold value. It was 

argued that it was a difficult task to select a proper threshold 

value and even small changes of the threshold could result in 

dramatic drops in matching quality. However, similar to Cohen 

et al’s work, the author did not consider any effect of the error 

rate, the type of typos and the size of a dataset. 

Hassanzadeh et al [12] presented an overview of several 

string matching techniques and thoroughly evaluated their 

accuracy on several datasets with different characteristics and 

common quality problems. The work was focused only on 

token-based string matching techniques. The effect of types of 

errors and the amount of errors were both considered. Types of 

errors considered include edit errors, token swap and 

abbreviation replacement. It was claimed that the threshold 

value used for the matching task would influence the individual 

performance of matching techniques. However the type of 

typos and the size of datasets were not considered. 

Recently, Peng et al [13] presented an evaluation work on 

techniques for name matching. The work considered a variety 

of factors, such as the error rate, the size of a dataset, which 

might have effect on the performance of such techniques. Their 

preliminary experimental results confirmed that there is no 

overall clear best technique, suggesting that in general Jaro-

Winkler and Jaro perform better that others in matching names. 

The work also claimed that the error rate in the dataset has 

effect on threshold values. However, they didn’t consider types 

of typos and first names.    

III. MATCHING TECHNIQUES 

Name matching can be defined as “the process of 

determining whether two name strings are instances of the 

same name” [14]. To deal with name matching, there are 

mainly two types of matching techniques: character-based and 

token-based techniques. Character-based similarity techniques 

are designed to handle well typographical errors. However, it is 

often the case that typographical conventions lead to 

rearrangement of words e.g., “John Smith” vs. “Smith, John”. 

In such cases, character-based techniques fail to capture the 

similarity of the entities. Token-based techniques are designed 

to compensate for this problem [7]. Therefore, character-based 

similarity techniques are good for the single word problem, 

while token-based for the matching with more than one word. 

Since our experiments are focused on single names, we 

evaluated five popular character-based techniques: Levenstein, 

Smith-Waterman, Jaro, Jaro-Winkler and Q-Gram. 

A. Levenshtein 

The Levenshtein distance [4] is defined to be the minimum 

number of edit operations required to transform string s1 into 

s2. Edit operations are delete, insert, substitute and copy.  

The Levenshtein similarity measure can be calculated by: 

 

 

 
where dist(s1, s2) refers to the actual Levenshtein distance 

function which returns a value of 0 if the strings are the same 

or a positive number of edits if they are different. The value of 

such a measure is between 0.0 and 1.0 where the bigger the 

value, the more similar between the two strings.

 B. Smith-Waterman 

This algorithm is based on a dynamic programming 

approach similar to Levenshtein distance, but allows gaps as 

well as character specific match scores [2]. Let t being the final 

best score obtained based on the dynamic programming matrix 

and g being the match score value. In this paper, smith-

waterman similarity measure between two strings s1 and s2 is 

calculated by: 

 

 

C. Jaro 

Jaro [3] introduced a string comparator that accounts for 

insertions, deletions and transpositions, which was mainly used 

for comparison of first and last names [7].  

Given strings s = s1…sk and t = t1 … tl, define a character si 

in s to be common with t iff there is a tj = si in t such that i-H ≤ 

j ≤ i+H, where H = min(|s|, |t|)/2. Let s
’
=s

’
1…s

’
k be the 

characters in s which are common with t (in the same order 

they appear in s) and let t
’ 

= t1
’…

tl
’ 

be the same in t. A 

transposition for s
’
, t

’
 is a position i  such that si

’
≠ t

’
i. Let 

 
be half the number of transpositions for s

’ 
and t

’
. Jaro similarity 

measure for string s and t is calculated by: 

 

 

D. Jaro-Winkler 

William Winkler proposed a variant of the Jaro metric based 

on empirical studies that fewer errors typically occur at the 

beginning of names [6]. Jaro-Winkler similarity measure 

between string s1 and s2 is calculated by: 
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where p=max(q, 4), and q is the longest common prefix of two 
strings s1 and s2. 

E. Q-Gram 

The Q-gram metric is based on the intuition that two strings 

are similar if they share a large number of common q-grams. 

Q-grams are sub-strings of length q [5]. Let Gq(s) denote all the 

q-grams of a string s obtained by sliding a window of length q 

over the characters of s. The q-gram similarity measure 

between strings s1 and s2 is calculated by: 

 

 

IV. EXPERIMENTS AND EVALUATION 

In our experiments, we focus on the performance of the 

above five popular string matching techniques on two types of 

strings, i.e., last name strings and first name strings. For last 

name strings, 8 different sizes of datasets ranging from 200 

records to 9454 records are used, while a 2300 record dataset 

for first name strings. In this paper, the error rate of a dataset is 

defined as the ratio of erroneous records and the whole number 

of records in the dataset. There are three error rates considered: 

low, medium and high with values of about 20%, 50% and 

70% respectively. For each size, three datasets with different 

error rates are used. 

Regarding the type of strings, only first name and last name 

strings are considered. We also consider three different types of 

typos in strings: typos occurring at front, middle and end of a 

string respectively. The datasets designed for such experiments 

only have 2300 records and have typos occurring either at all 

three parts, or only at the front part, or only at the end part of a 

string.  

A. Datasets Preparation 

In the absence of common datasets for data cleaning, we 

prepare our data for experiments as follows. 

With respect to last names, the datasets are based on a 

historical set of real Electoral Roll data. First, a one million 

record dataset was extracted, from which a personal last name 

list was created. This list contains 9454 clean, non-duplicate 

personal last names. Then, a last name dataset is generated, 

which contains these 9454 last names, with an ID number 

associated to each of the records. 

Erroneous records were created by doing the following four 

operations manually to the name field of records: inserting, 

deleting, substituting and replacing characters. There were in 

total twenty-four datasets generated and the number of records 

for these last name datasets ranges from 200 to 9454. For each 

size, there are three datasets generated having a different error 

rate associated with. For example, the following table 

summarized the last name datasets associated with low error 

rate used for the experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

Similar to the generation of last name datasets, a dataset 

containing 2300 clean, non-duplicate first names is created. 

The evaluation of the effect of the type of typos on 

performance is done by the experiment on three groups of first 

name datasets and three groups of last name datasets, which all 

include 2300 records with an error rate associated. There are 

total 18 datasets generated for this experiment. For example, 

table 2 and 3 summarized such datasets associated with high 

error rate:  

B. Measures 

A target string is a positive if it is returned by a technique; 

otherwise it is a negative. A positive is a true positive if the 

match does in fact denote the same entity; otherwise it is a false 

positive. A negative is a false negative if the un-match does in 

fact denote the same entity; otherwise it is a true negative. 

We evaluate the matching quality using the F-measure (F) 

that is based on precision and recall: 

 

RP

RP
F

2  

 

with P (precision) and R (recall) defined as: 

 

 

 

Clearly, a trade-off between recall and precision exists, if all 

targets are matched, recall will be 100% but precision will be 

low. Conversely if precision is high, recall will be low. F-

TABLE II 

FIRST NAME DATASETS WITH DIFFERENT TYPE OF TYPOS 

First name Dataset Error Rate Type of typo 

2300 Records  High Three parts 

2300 Records High Front part 

2300 Records High End part 

 

 

TABLE I 

LAST  NAME DATASET WITH LOW ERROR RATE 

Datasets Error Rate 

9454 Records Low 

7154 Records  Low 

5000 Records Low 

3600 Records  Low 

2300 Records Low 

1000 Records Low 

500 Records Low 

200 Records Low 

 

 

TABLE III 
LAST NAME DATASETS WITH DIFFERENT TYPE OF TYPOS 

Last name Dataset Error Rate Type of typo 

2300 Records  High Three parts 

2300 Records High Front part 

2300 Records High End part 
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measure is a way of combining the recall and precision into a 

single measure of overall performance [15]. In our 

experiments, precision, recall and F-measure are measured 

against different value of similarity thresholds, θ.  For the 

comparison of different techniques, the maximum F-measure 

score across different thresholds is used. 

C. Results and Evaluation 

In this section, testing results for both last name and first 

name datasets are analysed and evaluated based on the 

accuracy and timing performance of the five selected 

techniques. 

 

 

 

 

Without the consideration of types of typos 

Testing results without the consideration of types of typos in 

strings are analysed. The experiments are on the 24 datasets 

with records ranging from 200 to 9454 separately. Results 

show that in general, the size of a dataset is not sensitive to the 

accuracy relative to the threshold values when the size of the 

dataset is equal to or more than 1000, except Smith-Waterman. 

When the size is smaller than 1000, the best F-score is sensitive 

to the value of thresholds. Fig. 1 represents the results from 

datasets of 7154 records. It shows the accuracy relative to the 

value of thresholds on different datasets with different error 

rates. For all graphs, the horizontal axis is the value of 

threshold. 

1) Effect of Error Rates on Threshold Values: As shown 

in graphs in Fig. 1, for all techniques, the higher the error rate 

in the dataset, the lower the threshold value is required in 

order to achieve the best performance. For example, 

Levenshtein achieves the best F score over datasets with the 

high error rate at threshold 0.8, while it achieves the best over 

the datasets with medium and low error rate at threshold 0.85 

and 0.99 respectively when the size of a dataset is equal to or 

more than 1000. Jaro-Winkler is less sensitive and works well 

on datasets with both medium and high error rate at threshold 

0.95 when the size of a dataset is 500 or more. 

2) Effect of Error Rates on Performance: Experimental 

results towards all eight groups of last name datasets show that 

in general, all five techniques perform better on datasets with a 

lower error rate. For example, Fig. 2 and 3 show the 

performance (F-measure) of all five techniques on datasets of 

3600 and 7154 records with three different error rates, 

respectively. Leveshtein, Jaro, Jaro-Winkler and Q-gram 

perform equally the best among the five techniques on datasets 

with the low error rate. When the error rate is increased, the 

performance of techniques varies on different error rates. For 

example, Fig. 2 shows that the performance of all five 

techniques is in decreasing along with the increasing of the 

error rate. Looking at performance of individual techniques, 

Jaro performs the best, slightly better than Jaro-Winkler and 

Levenshtein on datasets of 3600 records with the medium and 

high error rate.  However, Fig. 3 shows that Jaro-Winkler 

performs the best on datasets of records 7154 with the high 

error rate. Overall, Smith-Waterman performs the worst of all 

the five techniques. The effect of size will be further discussed 

in next section. 

3) Effect of the Size of Datasets on Performance: As 

mentioned at the beginning of this section, the change of the 

size of a dataset is not sensitive to the acccuracy relative to the 

threshold except for Smith-Waterman when the size of the 

dataset is equal to or more than 1000. For example, Smith-

Waterman achieves the best F score over datasets of 7154 

records with high error rate at threshold 0.9, while it achieves 

the best over datasets of 3600 records with high error rate at 

threshold 0.85. However, the effect of the size of datasets on 

performance is significant when the size of a dataset is 

smaller. Table 4 summarises the comparison of performance 

 
Fig. 4: Time used (in seconds) for different techniques on datasets of 

7154 records with three different error rates 

 

 

 
Fig. 3: Maximum F score for different techniques on datasets of 7154 

records with three different error rates 

 
Fig. 2: Maximum F score for different techniques on datasets of 3600 

records with three different error rates 
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among the five techniques in different datasets in a decending 

order. 

This table shows that with the medium or high error rate, 

the performance of Jaro and Jaro-Winkler is better when the 

size of a dataset is more than 2300, while Levenstein is better 

with lower error rate when the size of a dataset is equal to and 

more than 2300. Levenstein is also the best on datasets with 

the medium and high error rate when the size is 200. Jaro-

Winkler becomes the best on datasets with a low error rate 

when the size is from 200 to 1000. 

4) Effect on Timing, As shown in Fig 4, in general, Jaro-

Winkler costs the least time among the five algorithms while 

Smith-Waterman costs the most time. The time used by Jaro is 

slightly more than that by Jaro-Winkler, and much better than 

the other three. Our experiments results agree that smaller 

datasets cost less time. However, the effect of error rates on 

timing is not significant. 

With the consideration of the type of typos: 

Testing results with the consideration of the type of typos in 

strings are based on experiments o n two sets of datasets. One 

set contains three groups of first name datasets with a size of 

2300. The other set contains three groups of last name datasets 

with the same size of 2300. Each group contains datasets 

associated with a predefined error rate. See table 2 and 3.  

Results show that in general, the effect of error rates on 
threshold value selection and performance are the same as the 
testing results of the previous last name datasets. That is, the 
higher the error rate in a dataset, the lower the threshold value 
is required in order to achieve the best performance, and 
techniques perform better in lower error rate datasets. Further 
comparisons with last name datasets indicate that the 
performance varies based on different types of typos, i.e., typos 
occurring at different positions of a string. 

1) Effect of the Type of Typos on Performance: 

Experimental results show that Jaro and Jaro-Winkler 

techniques are sensitive to the type of typos within a name 

stirng. Fig.5 and Fig.6 show the performance of the five 

techniques on first name datasets when typos occur at the front 

and the end part of a string respectively. It is clear to see that 

Jaro-Winkler and Jaro perform better when typos occur at the 

end part of a string, while Levenshtein performs better when 

typos occur at the front part of a string. 

 

 
Fig. 5:  Maximum F score for different techniques on first name datasets of 

2300 records when typos occur at the front part of a string. 

 
Fig. 6:  Maximum F score for different techniques on First name datasets of 

2300 records when typos occur at the end part of a string. 

2) Comparison of the Effect of the Type of Strings on 

Performance: Fig. 7 and Fig. 8 show performances of all five 

techniques on both first and last name datasets of 2300 records 

with three different error rates when typos occur at the front 

and the end part of a string respectively. Results show that in 

general, techniques perform better on first name datasets than 

last name datasets except Smith-Waterman that performs better 

on last name datasets when typos occur at the end part of a 

string. For first name datasets, Levenshtein performs 

significantly better when typos occur at the front part of a 

string. The figures also show that the difference of performance 

among the five techniques is more significant when the error 

rate is medium or high. 

 

 
Fig. 7:  Maximum F score for different techniques on First name and Last 

name datasets of 2300 records when typos occur at the front part of a string. 

 

TABLE IV 

A COMPARISON OF PERFORMANCE WITH SIZE CONSIDERED 

Low Medium High Data Size 

LE=J=Q>JW>SW J>JW>LE>Q>SW JW>LE>J>Q>SW 9454 

LE=J=Q>JW>SW JW>J>LE>Q>SW JW>J>LE>Q>SW 7154 

LE=J=Q>JW>SW  JW>J>LE>Q>SW JW>J>LE>Q>SW 5000 

LE=J=Q>JW>SW J>JW>LE>Q>SW J>JW>LE>Q>SW 3600 

LE=J=Q>JW>SW J>LE>JW>Q>SW JW>J>LE>Q>SW 2300 

JW>LE=J=Q>SW J>LE>JW>Q>SW JW>LE>J>Q>SW 1000 

JW=LE>J=Q>SW JW>LE>J>Q>SW J>JW>LE>Q>SW 500 

JW=LE=J=Q>SW LE>Q>J>JW>SW LE>Q>J>JW>SW 200 
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Fig. 8:  Maximum F score for different techniques on First name and Last 

name datasets of 2300 records when typos occur at the end part of a string. 

V. CONCLUSION AND FUTURE WORK 

This paper has analysed and evaluated five popular 
character-based name matching techniques. A comprehensive 
comparison of the five techniques has been done based on a 
series of experiments on different last name and first name 
datasets. The comparison results confirmed the statement that 
there is no clear best technique. The size of datasets, the error 
rate in datasets, the type of strings in a dataset and the type of 
typos in a string all have significant effect on performance of 
these five techniques. In general, Jaro-Winkler and Jaro 
perform better than others, especially on datasets with a higher 
error rate associated. This agrees with the statement that they 
mainly used for comparison of first and last names [7]. 
However, with a low error rate associated, Leveshtein, Jaro, 
Jaro-Winkler and Q-gram perform equally the best. 
Considering the type of strings, i.e., last name strings or first 
name strings, the experiments on 2300 record datasets show 
that techniques perform better on first name strings, in general. 
Whether this pattern is independent from the size of a dataset 
or not, it requires further investigation. The error rate also has 
effect on threshold values. The higher the error rate in the 
dataset, the lower the threshold value is required in order to 
achieve the best performance. Time used by these techniques 
on different datasets has also been analysed and compared. 
Overall, Jaro-Winkler and Jaro are significantly faster than 
others. Therefore, it is suggested that the selection of a 
technique should depend on the nature of a dataset. 

The work introduces a number of further investigations, 

including: 1) to do a comparison of the effect of the type of 

strings on more different sizes of datasets; 2) to do similar 

experiments on popular token-based string matching 

techniques, especially to evaluate whether the size of a dataset 

has effect on performance or not; 3) to do further analysis in 

order to evaluate whether there is a method to select a 

threshold value for any of the matching techniques on a given 

dataset. 
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Levenshtein 

 
 (a) Low Error Dataset                                (b) Medium Error Dataset                   (c) High Error Dataset                      

Jaro 

 
  (a) Low Error Dataset                             (b) Medium Error Dataset                     (c) High Error Dataset                      

Jaro-Winkler 

 
 (a) Low Error Dataset                             (b) Medium Error Dataset                      (c) High Error Dataset                      

Q-Gram 

 
 (a) Low Error Dataset                             (b) Medium Error Dataset                       (c) High Error Dataset                      

Smith-Waterman 

 
  (a) Low Error Dataset                             (b) Medium Error Dataset                      (c) High Error Dataset                      

 
Fig. 1: Accuracy relative to the value of threshold on different datasets with different error rates 
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