
A Comparison of Techniques for Name Matching

Taoxin Peng, Lin Li, Jessie Kennedy

School of Computing

Edinburgh Napier University

Edinburgh, UK

{t.peng, l.li, j.kennedy}@napier.ac.uk

Abstract—Information explosion is a problem for everyone

nowadays. It is a great challenge to all kinds of businesses to

maintain high quality of data in their information applications,

such as data integration, text and web mining, information

retrieval, search engine, etc. In such applications, matching

names is one of the popular tasks. There are a number of name

matching techniques available. Unfortunately, there is no existing

name matching technique that performs the best in all situations.

Therefore, a problem that every researcher or a practitioner has

to face is how to select an appropriate technique for a given

dataset. This paper analyses and evaluates a set of popular name

matching techniques on several carefully designed different

datasets. The experimental comparison confirms the statement

that there is no clear best technique. Some suggestions have been

presented, which can be used as guidance for researchers and

practitioners to select an appropriate name matching technique

in a given dataset.

Index Terms—name matching, duplicate, data integration,

data cleaning

I. INTRODUCTION

Information explosion is a problem for everyone nowadays.

It is a great challenge to all kinds of businesses to maintain the

high quality of data. There are many reasons for a business to

fail. One of them is the poor data quality in the information

system an organization has. If the data is not clean, the queries

and reports generated in the system will be wrong, in which

case directors/managers will either make wrong decisions or

mistrust the reports and not make any decisions on them. This

simply puts the value of the information system in question.

Therefore, to be able to benefit from an information system, the

data stored must have high quality. The higher the data quality

is in the system, the better chance the business will have to

secure a success.

When data need to be integrated from multiple sources, such

as comprehensive information systems, data warehousing

applications, it always has a problem: how to identify data

records that refer to equivalent entities, which is called a

duplicate problem. For example, considering a person’s name

in the name record, a same person can be represented as “John

Smith” in one data source, while as “John Smtih” in another

data source. It might introduce a duplicate error if these two

entities are not treated as the same one when integrate the data

from these two sources. Such kind of duplicate problems is

also called the name matching problem. Generally speaking,

name matching deals with the problem of whether two name

strings refer to the same name. There are several reasons for

databases to have such a problem, which include typos during

data entry, variations in representation of names, etc.,

especially when multiple data sources need to be integrated,

e.g., in data warehouses.

Matching names in databases has been a persistent and well-

known problem for years [1]. There are several techniques

available that deal with the problem [2, 3, 4, 5, 6, 7]. However,

since there is no clear best technique for all kinds of datasets

[8], a problem still existing for researchers and practitioners is

how to select a technique for a given dataset [9]. In past

decade, several researchers have challenged this problem [8,

10, 11, 12, 13]. However, none of them have done such a

comprehensive analysis and comparison work that is done in

this paper. The contributions of this paper are to overview five

popular character-based name matching techniques, evaluate

whether the following factors will have effect on the

performance: the error rate in a dataset, the threshold value, the

selected type of strings in a dataset, the type of typos, i.e. typos

occur at different part in a string and the size of a dataset, by

using 42 carefully designed datasets.

The rest of this paper is structured as follows. Related works

are described in next section. Section III introduces techniques

that will be examined. The main contribution of this paper is

presented in section IV that describes the preparation of the

datasets, the experiments, the analysis and comparisons.

Finally, this paper is concluded and future work pointed out in

section V.

II. RELATED WORKS

Bilenko et al [10] and Cohen et al [11] evaluated and

compared a set of existing string matching techniques, which

include popular character-based techniques, token-based

techniques and hybrid techniques. They claimed that the

Monge-Elkan performed best on average and SoftTF-IDF

performed best overall. However, their works did not consider

the effect of the error rate, the type of typos and the size of a

DOI: 10.5176_2010-2283_2.1.128

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

55 © 2012 GSTF

dataset on the performance. Besides, regarding the threshold

value used for matching, their work only mentioned that a

suitable threshold value was chosen, but not mentioned how

and whether or not this value was universal for all considered

techniques.

Peter Christen [8] thoroughly discussed the characteristics of

personal names and the potential sources of variations and

errors in them, and also evaluated a number of commonly used

name matching techniques, considering given names, surnames

and full names separately, and proposed nine useful

recommendations for technique selection when dealing with

name matching problems. Particularly, the author pointed out

the importance of choosing a suitable threshold value. It was

argued that it was a difficult task to select a proper threshold

value and even small changes of the threshold could result in

dramatic drops in matching quality. However, similar to Cohen

et al’s work, the author did not consider any effect of the error

rate, the type of typos and the size of a dataset.

Hassanzadeh et al [12] presented an overview of several

string matching techniques and thoroughly evaluated their

accuracy on several datasets with different characteristics and

common quality problems. The work was focused only on

token-based string matching techniques. The effect of types of

errors and the amount of errors were both considered. Types of

errors considered include edit errors, token swap and

abbreviation replacement. It was claimed that the threshold

value used for the matching task would influence the individual

performance of matching techniques. However the type of

typos and the size of datasets were not considered.

Recently, Peng et al [13] presented an evaluation work on

techniques for name matching. The work considered a variety

of factors, such as the error rate, the size of a dataset, which

might have effect on the performance of such techniques. Their

preliminary experimental results confirmed that there is no

overall clear best technique, suggesting that in general Jaro-

Winkler and Jaro perform better that others in matching names.

The work also claimed that the error rate in the dataset has

effect on threshold values. However, they didn’t consider types

of typos and first names.

III. MATCHING TECHNIQUES

Name matching can be defined as “the process of

determining whether two name strings are instances of the

same name” [14]. To deal with name matching, there are

mainly two types of matching techniques: character-based and

token-based techniques. Character-based similarity techniques

are designed to handle well typographical errors. However, it is

often the case that typographical conventions lead to

rearrangement of words e.g., “John Smith” vs. “Smith, John”.

In such cases, character-based techniques fail to capture the

similarity of the entities. Token-based techniques are designed

to compensate for this problem [7]. Therefore, character-based

similarity techniques are good for the single word problem,

while token-based for the matching with more than one word.

Since our experiments are focused on single names, we

evaluated five popular character-based techniques: Levenstein,

Smith-Waterman, Jaro, Jaro-Winkler and Q-Gram.

A. Levenshtein

The Levenshtein distance [4] is defined to be the minimum

number of edit operations required to transform string s1 into

s2. Edit operations are delete, insert, substitute and copy.

The Levenshtein similarity measure can be calculated by:

where dist(s1, s2) refers to the actual Levenshtein distance

function which returns a value of 0 if the strings are the same

or a positive number of edits if they are different. The value of

such a measure is between 0.0 and 1.0 where the bigger the

value, the more similar between the two strings.

 B. Smith-Waterman

This algorithm is based on a dynamic programming

approach similar to Levenshtein distance, but allows gaps as

well as character specific match scores [2]. Let t being the final

best score obtained based on the dynamic programming matrix

and g being the match score value. In this paper, smith-

waterman similarity measure between two strings s1 and s2 is

calculated by:

C. Jaro

Jaro [3] introduced a string comparator that accounts for

insertions, deletions and transpositions, which was mainly used

for comparison of first and last names [7].

Given strings s = s1…sk and t = t1 … tl, define a character si

in s to be common with t iff there is a tj = si in t such that i-H ≤

j ≤ i+H, where H = min(|s|, |t|)/2. Let s
’
=s

’
1…s

’
k be the

characters in s which are common with t (in the same order

they appear in s) and let t
’

= t1
’…

tl
’

be the same in t. A

transposition for s
’
, t

’
 is a position i such that si

’
≠ t

’
i. Let

be half the number of transpositions for s

’
and t

’
. Jaro similarity

measure for string s and t is calculated by:

D. Jaro-Winkler

William Winkler proposed a variant of the Jaro metric based

on empirical studies that fewer errors typically occur at the

beginning of names [6]. Jaro-Winkler similarity measure

between string s1 and s2 is calculated by:

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

56 © 2012 GSTF

where p=max(q, 4), and q is the longest common prefix of two
strings s1 and s2.

E. Q-Gram

The Q-gram metric is based on the intuition that two strings

are similar if they share a large number of common q-grams.

Q-grams are sub-strings of length q [5]. Let Gq(s) denote all the

q-grams of a string s obtained by sliding a window of length q

over the characters of s. The q-gram similarity measure

between strings s1 and s2 is calculated by:

IV. EXPERIMENTS AND EVALUATION

In our experiments, we focus on the performance of the

above five popular string matching techniques on two types of

strings, i.e., last name strings and first name strings. For last

name strings, 8 different sizes of datasets ranging from 200

records to 9454 records are used, while a 2300 record dataset

for first name strings. In this paper, the error rate of a dataset is

defined as the ratio of erroneous records and the whole number

of records in the dataset. There are three error rates considered:

low, medium and high with values of about 20%, 50% and

70% respectively. For each size, three datasets with different

error rates are used.

Regarding the type of strings, only first name and last name

strings are considered. We also consider three different types of

typos in strings: typos occurring at front, middle and end of a

string respectively. The datasets designed for such experiments

only have 2300 records and have typos occurring either at all

three parts, or only at the front part, or only at the end part of a

string.

A. Datasets Preparation

In the absence of common datasets for data cleaning, we

prepare our data for experiments as follows.

With respect to last names, the datasets are based on a

historical set of real Electoral Roll data. First, a one million

record dataset was extracted, from which a personal last name

list was created. This list contains 9454 clean, non-duplicate

personal last names. Then, a last name dataset is generated,

which contains these 9454 last names, with an ID number

associated to each of the records.

Erroneous records were created by doing the following four

operations manually to the name field of records: inserting,

deleting, substituting and replacing characters. There were in

total twenty-four datasets generated and the number of records

for these last name datasets ranges from 200 to 9454. For each

size, there are three datasets generated having a different error

rate associated with. For example, the following table

summarized the last name datasets associated with low error

rate used for the experiments.

Similar to the generation of last name datasets, a dataset

containing 2300 clean, non-duplicate first names is created.

The evaluation of the effect of the type of typos on

performance is done by the experiment on three groups of first

name datasets and three groups of last name datasets, which all

include 2300 records with an error rate associated. There are

total 18 datasets generated for this experiment. For example,

table 2 and 3 summarized such datasets associated with high

error rate:

B. Measures

A target string is a positive if it is returned by a technique;

otherwise it is a negative. A positive is a true positive if the

match does in fact denote the same entity; otherwise it is a false

positive. A negative is a false negative if the un-match does in

fact denote the same entity; otherwise it is a true negative.

We evaluate the matching quality using the F-measure (F)

that is based on precision and recall:

RP

RP
F

2

with P (precision) and R (recall) defined as:

Clearly, a trade-off between recall and precision exists, if all

targets are matched, recall will be 100% but precision will be

low. Conversely if precision is high, recall will be low. F-

TABLE II

FIRST NAME DATASETS WITH DIFFERENT TYPE OF TYPOS

First name Dataset Error Rate Type of typo

2300 Records High Three parts

2300 Records High Front part

2300 Records High End part

TABLE I

LAST NAME DATASET WITH LOW ERROR RATE

Datasets Error Rate

9454 Records Low

7154 Records Low

5000 Records Low

3600 Records Low

2300 Records Low

1000 Records Low

500 Records Low

200 Records Low

TABLE III
LAST NAME DATASETS WITH DIFFERENT TYPE OF TYPOS

Last name Dataset Error Rate Type of typo

2300 Records High Three parts

2300 Records High Front part

2300 Records High End part

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

57 © 2012 GSTF

measure is a way of combining the recall and precision into a

single measure of overall performance [15]. In our

experiments, precision, recall and F-measure are measured

against different value of similarity thresholds, θ. For the

comparison of different techniques, the maximum F-measure

score across different thresholds is used.

C. Results and Evaluation

In this section, testing results for both last name and first

name datasets are analysed and evaluated based on the

accuracy and timing performance of the five selected

techniques.

Without the consideration of types of typos

Testing results without the consideration of types of typos in

strings are analysed. The experiments are on the 24 datasets

with records ranging from 200 to 9454 separately. Results

show that in general, the size of a dataset is not sensitive to the

accuracy relative to the threshold values when the size of the

dataset is equal to or more than 1000, except Smith-Waterman.

When the size is smaller than 1000, the best F-score is sensitive

to the value of thresholds. Fig. 1 represents the results from

datasets of 7154 records. It shows the accuracy relative to the

value of thresholds on different datasets with different error

rates. For all graphs, the horizontal axis is the value of

threshold.

1) Effect of Error Rates on Threshold Values: As shown

in graphs in Fig. 1, for all techniques, the higher the error rate

in the dataset, the lower the threshold value is required in

order to achieve the best performance. For example,

Levenshtein achieves the best F score over datasets with the

high error rate at threshold 0.8, while it achieves the best over

the datasets with medium and low error rate at threshold 0.85

and 0.99 respectively when the size of a dataset is equal to or

more than 1000. Jaro-Winkler is less sensitive and works well

on datasets with both medium and high error rate at threshold

0.95 when the size of a dataset is 500 or more.

2) Effect of Error Rates on Performance: Experimental

results towards all eight groups of last name datasets show that

in general, all five techniques perform better on datasets with a

lower error rate. For example, Fig. 2 and 3 show the

performance (F-measure) of all five techniques on datasets of

3600 and 7154 records with three different error rates,

respectively. Leveshtein, Jaro, Jaro-Winkler and Q-gram

perform equally the best among the five techniques on datasets

with the low error rate. When the error rate is increased, the

performance of techniques varies on different error rates. For

example, Fig. 2 shows that the performance of all five

techniques is in decreasing along with the increasing of the

error rate. Looking at performance of individual techniques,

Jaro performs the best, slightly better than Jaro-Winkler and

Levenshtein on datasets of 3600 records with the medium and

high error rate. However, Fig. 3 shows that Jaro-Winkler

performs the best on datasets of records 7154 with the high

error rate. Overall, Smith-Waterman performs the worst of all

the five techniques. The effect of size will be further discussed

in next section.

3) Effect of the Size of Datasets on Performance: As

mentioned at the beginning of this section, the change of the

size of a dataset is not sensitive to the acccuracy relative to the

threshold except for Smith-Waterman when the size of the

dataset is equal to or more than 1000. For example, Smith-

Waterman achieves the best F score over datasets of 7154

records with high error rate at threshold 0.9, while it achieves

the best over datasets of 3600 records with high error rate at

threshold 0.85. However, the effect of the size of datasets on

performance is significant when the size of a dataset is

smaller. Table 4 summarises the comparison of performance

Fig. 4: Time used (in seconds) for different techniques on datasets of

7154 records with three different error rates

Fig. 3: Maximum F score for different techniques on datasets of 7154

records with three different error rates

Fig. 2: Maximum F score for different techniques on datasets of 3600

records with three different error rates

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

58 © 2012 GSTF

among the five techniques in different datasets in a decending

order.

This table shows that with the medium or high error rate,

the performance of Jaro and Jaro-Winkler is better when the

size of a dataset is more than 2300, while Levenstein is better

with lower error rate when the size of a dataset is equal to and

more than 2300. Levenstein is also the best on datasets with

the medium and high error rate when the size is 200. Jaro-

Winkler becomes the best on datasets with a low error rate

when the size is from 200 to 1000.

4) Effect on Timing, As shown in Fig 4, in general, Jaro-

Winkler costs the least time among the five algorithms while

Smith-Waterman costs the most time. The time used by Jaro is

slightly more than that by Jaro-Winkler, and much better than

the other three. Our experiments results agree that smaller

datasets cost less time. However, the effect of error rates on

timing is not significant.

With the consideration of the type of typos:

Testing results with the consideration of the type of typos in

strings are based on experiments o n two sets of datasets. One

set contains three groups of first name datasets with a size of

2300. The other set contains three groups of last name datasets

with the same size of 2300. Each group contains datasets

associated with a predefined error rate. See table 2 and 3.

Results show that in general, the effect of error rates on
threshold value selection and performance are the same as the
testing results of the previous last name datasets. That is, the
higher the error rate in a dataset, the lower the threshold value
is required in order to achieve the best performance, and
techniques perform better in lower error rate datasets. Further
comparisons with last name datasets indicate that the
performance varies based on different types of typos, i.e., typos
occurring at different positions of a string.

1) Effect of the Type of Typos on Performance:

Experimental results show that Jaro and Jaro-Winkler

techniques are sensitive to the type of typos within a name

stirng. Fig.5 and Fig.6 show the performance of the five

techniques on first name datasets when typos occur at the front

and the end part of a string respectively. It is clear to see that

Jaro-Winkler and Jaro perform better when typos occur at the

end part of a string, while Levenshtein performs better when

typos occur at the front part of a string.

Fig. 5: Maximum F score for different techniques on first name datasets of

2300 records when typos occur at the front part of a string.

Fig. 6: Maximum F score for different techniques on First name datasets of

2300 records when typos occur at the end part of a string.

2) Comparison of the Effect of the Type of Strings on

Performance: Fig. 7 and Fig. 8 show performances of all five

techniques on both first and last name datasets of 2300 records

with three different error rates when typos occur at the front

and the end part of a string respectively. Results show that in

general, techniques perform better on first name datasets than

last name datasets except Smith-Waterman that performs better

on last name datasets when typos occur at the end part of a

string. For first name datasets, Levenshtein performs

significantly better when typos occur at the front part of a

string. The figures also show that the difference of performance

among the five techniques is more significant when the error

rate is medium or high.

Fig. 7: Maximum F score for different techniques on First name and Last

name datasets of 2300 records when typos occur at the front part of a string.

TABLE IV

A COMPARISON OF PERFORMANCE WITH SIZE CONSIDERED

Low Medium High Data Size

LE=J=Q>JW>SW J>JW>LE>Q>SW JW>LE>J>Q>SW 9454

LE=J=Q>JW>SW JW>J>LE>Q>SW JW>J>LE>Q>SW 7154

LE=J=Q>JW>SW JW>J>LE>Q>SW JW>J>LE>Q>SW 5000

LE=J=Q>JW>SW J>JW>LE>Q>SW J>JW>LE>Q>SW 3600

LE=J=Q>JW>SW J>LE>JW>Q>SW JW>J>LE>Q>SW 2300

JW>LE=J=Q>SW J>LE>JW>Q>SW JW>LE>J>Q>SW 1000

JW=LE>J=Q>SW JW>LE>J>Q>SW J>JW>LE>Q>SW 500

JW=LE=J=Q>SW LE>Q>J>JW>SW LE>Q>J>JW>SW 200

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

59 © 2012 GSTF

Fig. 8: Maximum F score for different techniques on First name and Last

name datasets of 2300 records when typos occur at the end part of a string.

V. CONCLUSION AND FUTURE WORK

This paper has analysed and evaluated five popular
character-based name matching techniques. A comprehensive
comparison of the five techniques has been done based on a
series of experiments on different last name and first name
datasets. The comparison results confirmed the statement that
there is no clear best technique. The size of datasets, the error
rate in datasets, the type of strings in a dataset and the type of
typos in a string all have significant effect on performance of
these five techniques. In general, Jaro-Winkler and Jaro
perform better than others, especially on datasets with a higher
error rate associated. This agrees with the statement that they
mainly used for comparison of first and last names [7].
However, with a low error rate associated, Leveshtein, Jaro,
Jaro-Winkler and Q-gram perform equally the best.
Considering the type of strings, i.e., last name strings or first
name strings, the experiments on 2300 record datasets show
that techniques perform better on first name strings, in general.
Whether this pattern is independent from the size of a dataset
or not, it requires further investigation. The error rate also has
effect on threshold values. The higher the error rate in the
dataset, the lower the threshold value is required in order to
achieve the best performance. Time used by these techniques
on different datasets has also been analysed and compared.
Overall, Jaro-Winkler and Jaro are significantly faster than
others. Therefore, it is suggested that the selection of a
technique should depend on the nature of a dataset.

The work introduces a number of further investigations,

including: 1) to do a comparison of the effect of the type of

strings on more different sizes of datasets; 2) to do similar

experiments on popular token-based string matching

techniques, especially to evaluate whether the size of a dataset

has effect on performance or not; 3) to do further analysis in

order to evaluate whether there is a method to select a

threshold value for any of the matching techniques on a given

dataset.

REFERENCES

[1] J. Hermansen, “Automatic Name Searching in Large Databases of
International Names”, Georgetown University Dissertation, Washington,
DC, 1985.

[2] T. Smith and M. Waterman, “Identification of Common Molecular
Subsequences”, J. Mol. Biol., Vol. 147, pp.195-197, 1981.

[3] M. Jaro, ”Advances in Record-Linkage Methodology as Applied to
Matching the 1985 Census of Tampa,Florida”, Journal of the American
Statistical Associations, Vol. 89, pp. 414-420, 1989.

[4] G Navarro, “A guided tour to approximate string matching”, ACM
Computing Surveys, Vol. 33, No. 1, pp.31–88, 2001.

[5] E. Ukkonen, “Approximate string matching with q-grams and maximal
matches”, Theoretical Computer Science, Vol. 92, No. 1, pp. 191-211,
1992.

[6] W. Winkler, “String Comparator Metrics and Enhanced Decision Rules
in the Fellegi-Sunter Model of Record Linkage”, Proceedings of the
Section on Survey Research Methods, American Statistical Association,
354-359, 1990.

[7] A. Elmagarmid, P. Ipeirotis, and V. VeryKios, “Duplicate Record
Detection: A Survey”, IEEE Trans. Knowl.Data Eng., Vol.19, No.1, pp.
1-16, 2007.

[8] P. Christen, “A Comparison of Personal Name Matching: Techniques
and Practical Issues”, Proceedings of the Sixth IEEE International
Conference on Data Mining - Workshops (ICDMW '06). IEEE
Computer Society, Washington, DC, USA, pp.290-294, 2006.

[9] L. Li, T. Peng, and J. Kennedy, “A Rule Based Taxonomy of Dirty
Data”, GSTF International Journal on Computing, Vol. 1, No. 2, 2011.

[10] M. Bilenko, R. Mooney, W. Cohen, P. Ravikumar, and S. Fienberg,
“Adaptive Name Matching in Information Integration”, IEEE Intelligent
Systems, vol. 18, no. 5, pp. 16-23, 2003.

[11] W. Cohen, P. Ravikumar, and S. Fienberg, “A comparison of string
distance metrics for name-matching tasks”, Proceedings of the IJCAI-
2003 Workshop on Information Integration on the Web, pp.73-78, 2003.

[12] O. Hassanzadeh, M. Sadoghi, and R. Miller, “Accuracy of Approximate
String Joins Using Grams”, Proceedings of QDB'2007, pp.11-18, 2007.

[13] T. Peng, L. Li and J. Kennedy, “An Evaluation of Techniques for Name
Matching”, Proceedings of Annual International Conference on Data
Analysis, Data Quality and Metadata Management, Singapore, June,
2011

[14] F. Patman and P. Thompson, “Names: A New Frontier in text Mininin”
ISI-2003, Springer LNC 2665, p. 27-38, 2003.

[15] C. Rijsbergen, Information Retrieval. 2nd ed., London: Butterworths,
1979.

Dr. Taoxin Peng He received his BSc degree in applied
mathematics in 1982, his MSc degree in operational research

in 1988, China, and his PhD in computer science from the

University of Greenwich, London, UK in 2000.
 He started his academic career as an Assistant Lecturer in

China from 1982. He joined the Department of Artificial Intelligence at the

University of Edinburgh, as a Research Associate in 1998. Since 1999, he
became a Lecturer in the School of Computing at Edinburgh Napier

University. His research findings have been published in both peer reviewed

international conferences and journals. His current research interests include
data quality, data cleaning, data mining and data warehousing.

Dr. Peng is a Fellow of Higher Education Academy (HEA), UK.

Mr. Lin Li received his BSc degree in computer science
from Shenyang Aerospace University, China in 2004, and his

MSc degree in software engineering from the University of

Manchester, UK in 2006. Currently he is doing his PhD
research study in School of Computing at Edinburgh Napier

University, UK.

 He has published several research papers. His research interests include data
quality, data cleaning and software engineering.

Prof. Jessie Kennedy was born in UK. She received her BSc

Honours degree in biology in 1980, and her MPhil degree in
ecological database management from the University of

Paisley, UK in 1983.

 She has been with Edinburgh Napier University since 1986,
where she has held the post of professor since 2000 and is

currently Director of the Institute for Informatics and Digital Innovation. She
has published widely with over 90 peer reviewed publications, has had over

£1 million in research funding, has been programme chair, committee member

and organiser of many international conferences and acts as reviewer for
many national computer science funding bodies. She main research interests

are in information visualization and database systems.

 Professor Kennedy bas been a Member of EPSRC Peer Review College
since 1996 and is a Fellow of the BCS, UK.

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

60 © 2012 GSTF

Levenshtein

 (a) Low Error Dataset (b) Medium Error Dataset (c) High Error Dataset

Jaro

 (a) Low Error Dataset (b) Medium Error Dataset (c) High Error Dataset

Jaro-Winkler

 (a) Low Error Dataset (b) Medium Error Dataset (c) High Error Dataset

Q-Gram

 (a) Low Error Dataset (b) Medium Error Dataset (c) High Error Dataset

Smith-Waterman

 (a) Low Error Dataset (b) Medium Error Dataset (c) High Error Dataset

Fig. 1: Accuracy relative to the value of threshold on different datasets with different error rates

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

61 © 2012 GSTF

