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Abstract—A method to analyze self-affinities is introduced, and 
applied to the large scale fold geometries of the Quaternary and 
Tertiary in the inner belt of the Northeast Honshu Arc. Based on 
this analysis, their geometries are found to be self-affine and can 
be differently scaled in different directions. We recognize the self-
affinities for the amplitude and the wavelength of folds, and 
discover a crossover from local to global altitude (vertical) 
variation of the geometries of folds in the Northeast Honshu Arc. 
Buckingham's Pi-theorem has been applied to similar systems of 
inhomogeneous viscous Newtonian fluid under similar boundary 
condition. However, Buckingham's Pi-theorem cannot give us the 
self-affinities of folds. A general renormalization-group argument 
is proposed to the applicability of the similarity theory. By this 
argument, we derive the self-affinities for the amplitude and the 
wavelength of folds as a parameter for the anisotropic stress field. 
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I. INTRODUCTION

    By the analysis of the large scale fold geometries of 
Quaternary and Tertiary in the inner belt of the northeast 
Honshu Arc. Kikuchi et al. [1] showed that self-affine in folds 
is given actually by 

𝑌 ∝ 𝑋! ,      𝐻 ≡
𝜈!
𝜈!
,  (1) 

where X and Y are x- and y-variances (horizontal and vertical 
direction), H is Hurst exponent, νx and νy are X and Y slopes, 
respectively (Fig. 1). In a particular case (νx = νy), the Hurst 
exponent H is equal to 1. This case indicates self-similarity for 
the analyzed fold curve. In a case (νx ≠  νy), the Hurst 
exponent H is not equal to 1, so this case indicates self-
affinities for the given fold curve. Moreover, Kikuchi et al. [1] 
pointed out that self-affinity for the crustal deformation is 
related to the b-value in the Gutenberg-Richter's law as the 
fractal dimension or the uniformity of the crustal 
fragmentation. Softening behavior of crusts can lead to 
localization of fold packets in layered materials and a 
progression to chaos with fractal geometries [2]. Why do 
fractal geometries exist, and what controls fractal dimension 
of fold [3]? 

Figure 1: Log-log plots of horizontal and vertical standard deviations (X and 
Y) and curve length N. Pairs (log X, log N) and (log Y, log N) are linearly
approximated by the method of least squares. 

     Shimamoto [4] examined the conditions of similarity for 
geometrically similar systems of inhomogeneous viscous 
Newtonian fluids under similar boundary conditions using the 
method of dimensional analysis based on Buckingham's Pi-
theorem [5]. Then, based on the complete similarity, he clearly 
derived a relationship between the wavelength of fold and 
initial thickness of folded layer. There, as Shimamoto [4] did 
not analyze the amplitude of a fold, his analyses could not 
derive the self-affinities between amplitude and length for 
folds. So the background of self-affinities for fold has been 
unknown from the view point of the dimension analysis. 
Dimensional analysis postulates physical quantities that tend 
to infinity or zero.  However, often physical quantities are not 
infinity or zero [6]. Barenblatt [6] gave finite or not zero case 
of dimensional analysis method. By an application of the 
general renormalization-group argument based on incomplete 
similarity theory (IS theory) to a physical system, so for the 
buckling folds, based on this Barenblatt's method, we can 
derive the self-affinities of folds expressed by the scaling 
between the normalized wave length and the length of 
deformable portion. This paper is an extended paper of the 
preliminary paper published in the conference proceedings of 
the 5th Annual International Conference on Geological & 
Earth Sciences (GEOS 2016) [7], with some modifications. 
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II. PI-THEOREM (DIMENSIONAL ANALYSIS) AND
APPLICATION TO FOLDING 

   The Pi theorem stated by Buckingham [5] can be expressed 
by a complite equation 

𝑎! = 𝑓 𝑎!, 𝑎!,⋯ , 𝑎! , 𝑎!!!,⋯ , 𝑎! ,  (2) 

whear 𝑎! is the dependent variable, 𝑎!, 𝑎!,⋯ , 𝑎! are variables 
and 𝑛 is total number of variables. In Eq. (2), control variables 
are 𝑎!, 𝑎!,⋯ , 𝑎! .  Futuremore, 𝑎!!!,⋯ , 𝑎!  is represented by 
control variables 

𝑎!!! = 𝑎! !!!! 𝑎! !!!!,⋯ , 𝑎! !!!!, 

⋮   (3) 

𝑎! = 𝑎! !! 𝑎! !! ,⋯ , 𝑎! !! . 

On the other hands, the dependent variable is represented by 
control variables 

𝑎! = 𝑎! ! 𝑎! ! ,⋯ , 𝑎! ! .  (4) 

Moreover, we define  (𝑛 − 𝑘 + 1 ) dimensionless products 
form  using Eqs. (3) and (4) as 

Π! =
𝑎!!!

𝑎!
!!!!𝑎!

!!!! ,⋯ , 𝑎!
!!!! , 

⋮ 

Π!!! =
𝑎!

𝑎!
!!𝑎!

!! ,⋯ , 𝑎!
!! ,  (5) 

Π =
𝑎!

𝑎!
!𝑎!

! ,⋯ , 𝑎!!
. 

Then, we can redefine Eq. (2) by Eq. (5) as follows: 

Π = 𝐹 𝑎!, 𝑎!,⋯ , 𝑎! ,Π!,Π!,⋯ ,Π!!! .     (6) 

In this case, control variable 𝑎! can be cahnged, 𝑎!,⋯ , 𝑎! and 
Π = 𝐹 are constant. Besides this mathematical form must be 
written by  

𝜕𝐹
𝜕𝑎!

=
𝜕𝐹
𝜕𝑎!

= ⋯ =
𝜕𝐹
𝜕𝑎!

= 0.  (7) 

So we can get a relationship between Π  and  (𝑛 − 𝑘) 
dimensionless products 

Π = 𝜙 Π!,Π!,⋯ ,Π!!! ,  (8) 

where the Π 's are independent power products of the 𝑎! 's 
which are dimensionless in the fundamental units (𝑖 = 1⋯ 𝑘), 
and 𝑘 is the rank of the dimensional matrix of the 𝑎! 's. 

Shimamoto showed similarity rule for a physical system 
under the boundary [4], and applied the Pi-theorem to the 
similarity criteria of slow deformation of inhomogeneous 
viscous fluid (Fig. 2).  

Figure 2: Initial configuration of a single layer and boundary medium (from 
Kikuchi and Nagahama [7]). The considered variables are initial height of the 
system (𝐻), initial width of the system (D), viscosity of the layer (𝜂!), viscosity 
of the medium (𝜂!), boundary velocity (V) and initial thickness of layer (h). 

The various quantities related to this problem and their 
dimensions can be listed as follows: 

TABLE I. NOTATION 1 

Name of quantity Symbol Dimension 

Initial width of system 𝐻 𝐿 
Initial height of system  𝐷 𝐿 
Wavelength of fold 𝑙 𝐿 
Viscosity of layer 𝜂! 𝑀𝐿!!𝑇!! 
Viscosity of medium 𝜂! 𝑀𝐿!!𝑇!! 
Boundary velocity 𝑉 𝐿!!𝑇!! 
Time 𝑡 𝑇 
Initial thickness of layer ℎ 𝐿 

Based on [4], the relation among these quantities can be 
written by 

𝑓 𝐻, ℎ, 𝑙, 𝜂!, 𝜂!,𝑉, 𝑡,𝐷 = 0.  (9) 

Since the number of total variables n in Eq. (9) is 8, and 
dimensional matrix k is 3 (see TABLEⅡ). 

TABLE II.   Dimensional matrix for complete similarity theory 

𝐻 𝐷 𝑙 𝜂! 𝜂! 𝑉 𝑡 ℎ 
𝑀 0 0 0 1 1 0 0 0 
𝐿 1 1 1 -1 -1 1 0 1 
𝑇 0 0 0 -1 -1 -1 1 0 
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In this case, so 𝑛 − 𝑘 is calculated by 

𝑛 − 𝑘 = 5.  (10) 

Therefore, Pi-theorem requires 5 dimensionless products. So, 
Eq. (9) can be reducible to the form: 

𝛷!
ℎ
𝐻
,
ℎ
𝐷
,
𝑙
ℎ
,
𝜂!
𝜂!
,
𝑉𝑡
𝐷

= 0.  (11) 

Moreover, width D of the system becomes (D − 2Vt) after time 
t. Employing the measure of natural or logarithmic strain
quantities can be written by

𝜀 = −log!
𝐷 −  2𝑉𝑡

𝐷
.  (12) 

Assuming 𝐻 ≫ h and D ≫ h, then h/𝐻  = 0, and  h/D  =  0. So 
Eq. (11) can be reduced into 

𝛷!
𝑙
ℎ
,
𝜂!
𝜂!
, 𝜀 = 0. 13

Solving Eq. (13) for l/h, Shimamoto [4] obtained 

𝑙
ℎ
= 𝛷!

𝜂!
𝜂!
, 𝜀 .  (14) 

Actually, Biot [8] shown that l/h is given by 

𝑙
ℎ
= 2𝜋

𝜂!
6𝜂!

!
 .  (15) 

Therefore, Eq. (14) is equivalent with Eq. (15). As mentioned 
above, Shimamoto [4] could elegantly derive the similarity 
(scaling) for the buckling folding by dimension analysis. 
However, this solution is related to self-similarity, but not self-
affinity. 

III. METHOD OF RENORMALIZATION GROUP: DERIVATION
OF SELF-AFFINITE FOR FOLDS 

We think limit equal to zero or infinite in Eq. (8). If we can 
use expornent 𝛼 in Eq. (8), when Π!!! 0, 

 Π = lim
!!!!→!

𝜙(Π!,Π!,⋯ ,Π!!!!!,Π!!!) 

     = Π!!!! 𝜙 Π!,Π!,⋯ ,Π!!!!! .          (16) 

Here, we difine a new dimensionless parameter by 

Π∗ =
Π

Π!!!! .  (17) 

Then, we can get a new equation 

Π∗ = 𝜙 Π!,Π!,⋯ ,Π!!!!! .          (18) 

Barenblatt [6] classified dimensional analysis: (i) not infinity
or not zero case is complete similarity, and (ii) zero or infinite 
case is incomplete similarity. A phenomenon is defined as 
similarity in a given dimensionless group.  

By this method, now let us consider the folding of a single 
viscous layer embedded in a thick incompetent viscous 
medium (Fig. 3).  

Figure 3: Initial configuration of a single layer and boundary medium by 
incomplete similarity theory (from Kikuchi and Nagahama [7]). The 
considered variables are initial height of system (𝐻), initial width of the 
system (D), viscosity of layer (𝜂!), viscosity of medium (𝜂!), boundary 
velocity (V), time (t), wave length (l), initial thickness of layer (h) and 
amplitude of fold (a). 

The various quantities related to this problem and their 
dimensions can be listed as follows: 

TABLE III. NOTATION 2 

Name of quantity Symbol Dimension 

Initial width of system 𝐻 𝐿 
Initial height of system  𝐷 𝐿 
Wavelength of fold 𝑙 𝐿 
Viscosity of layer 𝜂! 𝑀𝐿!!𝑇!! 
Viscosity of medium 𝜂! 𝑀𝐿!!𝑇!! 
Boundary velocity 𝑉 𝐿!!𝑇!! 
Time 𝑡 𝑇 
Initial thickness of layer ℎ 𝐿 
Amplitude of fold 𝑎 𝐿 
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The relation among these quantities can be written by 

𝑓 𝐻,𝐷, 𝑙, 𝜂!, 𝜂!,𝑉, 𝑡, ℎ, 𝑎 = 0.  (19) 

Since n = 9, and k = 3 in this case (see TABLE Ⅳ). 

TABLE IV. Dimensional matrix for IS theory 
TABLE V.𝐻 𝐷 𝑙 𝜂! 𝜂! 𝑉 𝑡 ℎ 𝑎 

𝑀 0 0 0 1 1 0 0 0 0 
𝐿 1 1 1 -1 -1 1 0 1 1 
𝑇 0 0 0 -1 -1 -1 1 0 0 

Pi-theorem requires n – k = 6 dimensionless products. Hence, 
Eq. (19) can be reducible to the form: 

𝛷!
𝑙
ℎ
,
ℎ
𝐷
,
ℎ
𝐻
,
𝜂!
𝜂!
,
𝑉𝑡
𝐷
,
𝑎
𝑙
= 0.  (20) 

Here, we apply Barenblatt's incomplete similarity theory to Eq. 
(20), and get 

𝑙
ℎ

!!

𝛷!
𝜂!
𝜂!
,
𝑉𝑡
𝐷
,
𝑎
𝑙
= 0,  (21) 

where 𝛿 is constant.  Then, using Eq.(12) and solving for a/l, 

𝑎
𝑙
=

𝑙
ℎ

!!

𝛷!
𝜂!
𝜂!
,
𝑉𝑡
𝑙

=
𝑙
ℎ

!!

𝛷!
𝜂!
𝜂!
, 𝜀

=  
𝑙
ℎ

!!!
𝜀!!!𝛷!

𝜂!
𝜂!

.  (22) 

Under Barenblatt's theory [6] and Eq. (20), we can derive 
the following relation between the amplitude and the 
wavelength of folds as 

𝑙!!!! ∝ 𝑎 .  (23) 

Eq. (23) shows self-affinity for the amplitude and length of 
fold. Hence, based on the general renormalization-group 
argument, we can derive the self-affinities for folds. 

IV. DISCUSSION AND CONCLUSIONS

For the self-affinities for the amplitude and the wavelength 
of folds pointed out by [1], in this paper we introduced 
incomplete similarity to fold systems, and Eq. (23) can be 
derived. So the index 𝛿! is equivalent to Hurst exponent H by 

1 − 𝛿! = 𝐻.  (24) 

In a particular case  (𝛿! = 0), the Hurst exponent H is equal to 
1. This case indicates self-similarity for the given fold curve,
and a scale invariance of the fold might not be affected by a
variety of tectonic processes under the anisotropic stress field.
In a case ( 𝛿! ≠ 0), the Hurst exponent H is not equal to 1, so
this case indicates self-affinities for the given fold curve, and a
scale invariance of the fold might be affected by a variety of

tectonic processes under the anisotropic stress field. For 
example, fault-related folding is caused by compressional 
asymmetric force and results in shortening [9]. These results 
imply that anisotropic stress fields by gravitation and tectonic 
stresses might cause self-affinities of folds. Self-similarity or 
self-affinities of the fold is affected by a variety of tectonic 
processes under the isotropy or anisotropic stress field. By an 
application of the general renormalization-group argument 
based on incomplete similarity theory for the system of 
folding, the scaling between the normalized wavelength and 
the length of deformable portion can be derived. Therefore, 
this index 𝛿  is an important parameter for the anisotropic 
stress field. 
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