
 

  
Abstract— In safety critical system like power plant system, 

the problem of detecting the occurrence of faults is of paramount 
importance due to their disastrous consequences. To allow 
efficient performance under different operating conditions, a 
power plant system requires the integration of many subsystems. 
This results in a complex system which will inevitably be 
subjected to faults caused by actuators, sensors or subsystems 
faults during operation. One of the major subsystems, in power 
plant is U-tube Steam Generator (UTSG). This paper is 
concerned with Fault Detection and Isolation (FDI) of UTSG 
system using fuzzy model. These methods aims at checking the 
consistency between observed and predicted behaviour by 
residuals. When an inconsistency is detected between the 
measured and predicted behaviours obtained using a faultless 
system model, a fault can be indicated. Simulation results 
presented in the final part of the paper confirm the effectiveness 
of this approach. 
 

Index Terms— Fault detection; Fuzzy model; PWR Power 
Plant; Steam generator 

I. INTRODUCTION 

INCE no system in the real world can work perfectly at all 
time under all conditions, it is crucial to be able to detect 

and identify the possible faults in the system as early as 
possible so that measures can be taken to prevent significant 
performance degradation or damages to the system. This is 
particularly true in safety critical applications, such as power 
plants. 
Power plants generate electricity by driving the armature 
coupled to a steam turbine using the heat produced from 
continuous fission of fuel. As shown in Fig.1, for a PWR 
power plant to perform the function of generating electricity, 
there are approximately one hundred support systems. In 
addition, for emergencies, there are dedicated systems to 
mitigate the consequences of accidents. This results in a 
complex system which will inevitably be subjected to faults 
caused by actuators, sensors or systems faults during 
operation. If faults occur, it is very difficult for a human 
operator to perform routine tasks, such as distinguishing 
normal from abnormal conditions and predicting future states, 
etc. A minor and often benign fault could potentially develop 
into catastrophic events if left unattended for or incorrectly 
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responded to. Therefore proper and timely fault diagnosis is of 
premier importance to guarantee the safe and reliable 
operation. 
In PWR power plants, the design of a single system to detect 
and isolate all faults would be difficult due to the size of the 
Fault Detection and Isolation (FDI) problem. To overcome 
this problem, a modular FDI architecture can be designed for 
individual PWR systems. Each system of the PWR with 
measurable inputs and outputs can be isolated from the rest of 
the plant and can be diagnosed separately. This allows the 
problem of FDI to be broken down into the more controllable 
tasks. One of the major subsystems, in PWR power plant is U-
tube Steam Generator (UTSG). This paper is concerned with 
fault detection of UTSG system using fuzzy model. 
A fault is defined as the unpermitted deviations of at least one 
characteristic property or parameter (feature) of the system 
from the acceptable, usual, standard condition. The goal of 
fault detection (Ding, 2008; Isermann, 2006), is the 
determination of faults present in a system and their instant of 
detection. Model-based fault detection methods rely on the 
concept of analytical redundancy. The simplest analytical 
redundancy scheme consists in the comparison of system 
output measurements with the corresponding analytically 
computed values, obtained from measurements of other 
variables and/or from previous measurements of the same 
variable by means of a model. In the general case, different 
estimations of a same variable, measured or not, can be 
compared. The resultant differences are called residuals, 
which are indicative of faults in the system. Under ideal 
conditions, residuals are zero in the absence of faults and non-
zero when a fault is present. In this paper, the fault detection 
problem for UTSG nonlinear systems is addressed.  
The remainder of this paper is organized as follows: in Section 
2, UTSG dynamic is reviewed. Fuzzy model applied to Fault 
Detection is recalled in Section 3. Result are shown in Section 
4. Finally, the major conclusions are drawn in Section 5. 
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Fig.1:A schematic of the PWR and main steam subsystems. 

II. UTSG DYNAMICS 

A. UTSG nonlinear model 
In UTSG operation, high pressure liquid from the power 

plant primary loop flows in and out of primary side (also 
called the tube side). The primary side liquid flow path is up 
from the hot leg inlet, to a semicircular turnaround and then 
down to the cold leg exit Fig.1. Feedwater enters the UTSG 
from the steam plant. At this junction, the feed-water mixes 
with the liquid being discharged from the liquid-vapor 
separation devices. The liquid mixture flows downward 
through the annular downcomer region. After a turn at the 
bottom of the downcomer, the liquid is heated during an 
upward passage outside the U-tubes in the tube bundle region. 
The heat transferred across the tube bundles causes 
evaporation of some of the liquid and a two-phase mixture 
exits from the tube bundle entering the riser. The liquid and 
vapor are partially separated by swirl vanes at the top of the 
riser and more separation occurs near the top of the UTSG. 
The vapor that results from this is saturated with a quality of 
about 99.75%. This vapor is then fed to the turbine units and 
other auxiliary equipment. 

UTSG is a highly nonlinear, unstable and multivariable 
thermal-hydraulic process system. The three outputs of a 

UTSG which are usually measured are the water level wLy = , 

the cold-leg temperature clT , and the secondary steam 

pressure satP . The five disturbances acting upon the system are 

the hot-leg temperature hlT , the primary pressure prP , the 

primary mass flow rate prq
(always a constant within small 

random variations), the feedwater temperature fwT , and steam 

flow rate stqv = . There is only one manipulated control input 

which is the feedwater flow rate fwqu = . Changes in the 
power demand are translated to changes in the UTSG steam 
flow rate and this signal provides the persistent excitation 
needed for effective system identification. The hot-leg 
temperature and the feedwater temperature are usually 
expressed as functions of the operating power, and given the 
current operating power level they can all be calculated in a 
straightforward manner. 

A UTSG simulator developed by Strohmayer (1982) and 
modified by Choi (1987) is adopted for the purpose of this 
work. The simulator was developed using lumped parameter, 
mass, momentum, and energy conservation equations. An 
integrated secondary recirculation-loop momentum equation 
has been incorporated into simulator to calculate the water 
level. There are seven control volumes in the model spatial 
domain: four on the secondary side, the steam dome-
downcomer (SDD) region, the tube bundle region and the 
riser region, which is divided into a saturated volume and a 
subcooled volume. The three control volumes on the primary 
side are the inlet plenum, the outlet plenum, and the fluid 
volume within the tube bundle region.  

B. Fault scenarios 
From the continuous-time non-linear equations described in 

previous section, a simulator has been implemented in 
Matlab/Simulink. In the simulations, three different cases of 
faults in the steam generator have been diagnosed. The 
proposed faults are: the closure of main steam isolation valve 
[f1], the main feedwater valve opening increase[f2], and the 
main feedwater valve opening decrease [f3]. Faults are 
inserted in the UTSG simulator. The simulation is run for 600 
s. Faults create changes in several residuals obtained by using 
dynamic NF models of the process under examination. Both 
normal and faulty operation data were generated using the 
UTSG simulator. 

III. FAULT DETECTION USING FUZZY MODEL 

The model-based technique proposed in (Mendonça et al. 
2009) uses a fuzzy model for the process running in normal 
operation, and one model for each of the faults to be detected. 
Suppose that a process is running, and n possible faults can be 
detected. The fault detection and isolation system for these n 
faults is depicted in Fig. 2. The multidimensional input of the 
system, u, enters both the process and a model (observer) in 
normal operation. The vector of residuals e is defined as 

 

yye ˆ−=  

where y is the output of the system and ŷ is the output of the 
model in normal operation. When any component of e is 
bigger than a certain threshold, the system detects a fault. 

A. Fault isolation using fuzzy model 
In the FDI architecture (see Fig. 2), fault isolation is 

obtained by residual evaluation of each of the n models, one 
for each fault. At each time instant k, a   residual ei is 
computed for each fault  

 
( ) iii yyke ˆ−=  
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Fig. 2. Fault detection and isolation scheme. 

 
where ŷi is the output of the observer for the fault i, with   

i=1,2,...,n. the residual ei is a vector with dimension m, which 
is equal to the number of outputs. Each scalar residual can be 
noted as 

 
( ) ijijij yyke ˆ−=  

 
where ŷij is the output of the observer for the fault i, and 

output j, with j=1,...,m.  
1) Membership functions based on the residuals 

A membership function µeij is derived for each residual eij. 
The membership functions are trapezoidal, as this type 
revealed to be the most appropriate to describe the residuals in 
a simple and effective way. The spread of these membership 
functions is chosen based on the maximum and minimum 
variations of the residuals, which can be obtained 
experimentally. The core of each membership function 
indicates the possible isolation of a fault, i.e., if eij is zero, then 
the value of the membership function µeij should be one. To 
accommodate process noise, disturbances and model-plant 
mismatches, the core is a small interval around zero. The size 
of this interval is again determined based on experimental 
data.  

The m membership functions µi1,…,µim must be aggregated 
using a conjunction operator, which assures that a fault is 
isolated only when all the residuals eij are close to zero. The 
aggregation can be given by 

 
( )imii t µµγ ,,1 K=  

 
where t is a triangular norm, which is in this paper the 

minimum operator. Other t-norms could be used, but the min 
is used for the sake of simplicity. The function γi resulting 
from aggregating the membership functions µeij will be used to 
isolate the faults. 

2) Fuzzy decision factors 
At each time instant the outputs yi(k) are read from a sensor. 

The outputs of each faulty fuzzy model ŷi(k) are computed, as 
well as the residuals eij(k). Note that these computations are 
simple and fast (multiplications and additions). This 
characteristic can be very important for real-time 
implementations. Further, at each time instant the value of 
each function γi can also be computed in an easy and fast way. 

Let di(k)∈[0,1] be the value of γi at time instant k. We called 
di(k) a fuzzy decision factor. A fuzzy decision factor di(k) is 
high only if all the residuals are close to zero. 

To isolate a fault i, the value of di(k) must be higher than a 
threshold T, which must be close to one. The threshold is 
obtained experimentally and defines the regions of fault and 
no fault. In practice, the definition of this value revealed to be 
relatively easy, and a value around T=0.7 isolate the faults 
properly. This value can suffer a slight change in others 
processes. Note that several di(k) can be above the threshold at 
a certain time k. Therefore, a fault i is isolated only when the 
remaining faults are below T. However, if only one fault is 
above the threshold at a certain time instant, it can occur due 
to noise or model errors. Therefore, this approach considers 
that a fault is isolated when di is above the threshold T and the 
remaining dl decision factors are below the same threshold for 
tk consecutive time instants. 

B. Fuzzy modeling 
The Takagi-Sugeno-Kang (TSK) fuzzy models are suitable 

to model a large class of nonlinear systems, they can describe 
complex and highly nonlinear models only with a small 
number of rules see (Takagi T., 1985), (Sugeno M., 1993). 
TSK fuzzy model consists of if-then rules with fuzzy 
antecedents and mathematical functions in the consequent 
part. The antecedent fuzzy sets divide the input space into a 
number of fuzzy regions, while the consequent functions 
describe the system’s behavior in these regions. Assume that 
data from an unknown system y=F(x) is observed. The aim is 
to use this data to construct a deterministic function y=f(x) 
that can approximate F(x). The function f is represented as a 
collection of fuzzy if–then rules. 

Fuzzy modeling and identification from measured data are 
effective tools for approximation of uncertain nonlinear 
systems. Such a modeling technique is applied successfully to 
a large class of single-input, single-output (SISO), as well as 
multi-input, single-output (MISO) nonlinear dynamic systems. 
The simplest and most widely used approach for modeling 
nonlinear dynamics using TSK fuzzy model is extending the 
ARX Auto Regressive with EXogenous inputs model to form 
the so called Nonlinear Auto Regressive with EXogenous 
inputs (NARX) model, The TSK fuzzy model consists of a set 
of rules with the following structure: 

 

iiiininii bxayAxAxR +=thenisandandisif: 11 L    

 
with i=1,…,K . Here, Ri is the ith rule, Ai1,…, Ain are fuzzy 

sets defined in the antecedent space, x=[x1,…, xn]T is the 
antecedent vector, ai=[ai1,…,ain]T and bi are model parameters 
to be determined, and yi is the rule output variable. K denotes 
the number of rules in the rule base, and the aggregated output 
of the model, ŷ, is calculated by taking the weighted average 
of the rule consequents: 
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where βi is the degree of activation of the ith rule:  

∏ =
=

n

j Ai ij1
µβ , i=1,…,K and µAij is the membership 

function of the fuzzy set Aij in the antecedent of Ri. The 
nonlinear identification problem is solved in two steps: 
structure identification, and parameter estimation. 

1) Structure identification 
The structure of the model must be determined first. To 

identify the fuzzy model, the regression matrix X and an 
output vector y are constructed from the available data:  

 

[ ] [ ]T
N

T
N yyYX ,,,x,,x 11 KK ==  

 
Thus, the matrix to be clustered is given by Z=[X,Y]T. The 

parameter N»n is the number of samples used for 
identification. In this step, the significant inputs are chosen. A 
decision tree search approach have been proposed for input 
selection in fuzzy modeling (Mendonça, Vieira, & Sousa, 
2007). That paper proposed two different approaches of 
decision tree search algorithms: bottom–up and top–down. 
The branching decision at each node of the tree is made based 
on the accuracy of the model available at the node. The 
bottom–up approach starts with only one input, and increases 
the number of inputs until a given performance criterion does 
not improve. This method leads to simple and accurate fuzzy 
models, as desired in model based FDI applications. Note that 
the smaller the vector x, the faster the model. Moreover, the 
fuzzy models for FDI must be both simple and accurate 
models to detect the faults as fast as possible. Therefore, the 
fuzzy modeling approach used in this paper uses the bottom–
up approach. 

2) Parameter estimation 
The antecedent fuzzy sets, Aij, and the consequent 

parameters, ai, bi, are determined in this step. The Gustafson–
Kessel fuzzy clustering algorithm computes a fuzzy partition 
matrix U, whose ikth element uik∈ [0 1] is the membership 
degree of the data object zk in cluster i. 

The fuzzy sets in the antecedent of the rules are obtained 
from the partition matrix U. One-dimensional fuzzy sets Aij 
are obtained from the multidimensional fuzzy sets defined 
point-wise in the ith row of the partition matrix by projections 
onto the space of the input variables.  

The point-wise defined fuzzy sets Aij are approximated by 
suitable parametric functions to compute µAij(xj) for any value 
of xj (Babuška, 1998). The consequent parameters for each 
rule are obtained as a weighted ordinary least-square estimate.  
More details of this fuzzy identification method can be found 
in (Babuška 1998). 

IV. SIMULATION RESULTS 

A. Faultless scenario 
This scenario is used to test the fuzzy model in faultless 

situation. The fuzzy model identified using the fault free data 
gathered from the simulator can be used for residual 
generation. The residual signals are calculated as difference 
between estimated outputs given by the fuzzy model and the 
actual value of the outputs. The responses of the proposed 
fuzzy models and the responses of the real system are shown 
in Figs. 3–4. A similar comparison between the responses of 
the proposed models with the outputs of the simulator shows 
the effectiveness and feasibility of the developed models in 
terms of more accurate and less deviation between the 
responses of the models and the real outputs. This validates 
the accuracy of the proposed models over the operating 
ranges. It should be emphasized that the models could 
accurately describe the behavior of the steam generator for 
specific operating conditions. Thus, they are not global and 
could not be considered as reliable models outside that range. 
Nevertheless, it is possible to achieve some limited numbers 
of models over a full range of input–output data to cover the 
wide range of operation. A nuclear plant usually operates at 
100% full power, and this is the power level of interest for 
fault diagnosis. The simulated data belongs to the normal 
operation of the steam generator with full power of the plant. 
The proposed models are merely valid for these conditions. 
Thus, conditions such as the start up, or the cases when the 
plant is working with very low power, requires different 
models, with the same and/or different modeling approaches. 

B. faulty Scenario 
The UTSG simulator was run with the fault free and then 

all faulty scenarios appearing one by one over the operating 
ranges. The generated residuals for the closure of main steam 
isolation valve are presented in Figs. 5–6. The residuals are 
close to zero before fault inception at 100 s. Subsequently, 
residuals deviate from zero in different manners. A large set 
of data was generated for the fuzzy decision factors. The 
fuzzy decision factors has been computed using this data set 
as explained in section 3. In all the simulation experiments 
faults were detected timely using this FDI method. 
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Fig.3: Fuzzy model performance for steam generator water level. 
 

 
Fig.4: Fuzzy model performance for steam generator secondary steam 
pressure. 
 

V. CONCLUSIONS 

 
The accurate and timely fault diagnosis of safety critical 

systems is important because it can decrease the probability of 
catastrophic failures, increase the life of the plant, and reduce 
maintenance costs. In this paper, a multiple-model FDI  
scheme has been presented for a steam generator. Fuzzy 
techniques have been applied for both residual generation and 
fault isolation. In the first step of FDI, the use of fuzzy model 
is considered as an important extension to the traditional 
model-based approach for residual generation.  Simulation 
results show the effectiveness of the used approach. The fault 
detection results obtained using the proposed approach show 
good performance in the considered scenarios. Future research 
will consider the extension of the proposed FDI scheme to a 
larger number of faults. 
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Fig.5: Generated residual of steam generator water level for f1. 

 
Fig.6: Generated residual of secondary steam pressure for f1. 
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