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INTRODUCTION 

Soil survey reports provide information on various 

soil properties and their spatial distribution on a large 

scale for most of the counties of the USA. However, 

precision farming, designing site-specific 

management practices, and simulation modeling 

demand soil data at a more detailed scale than 

available in these reports. Thorough on-site sampling 

across the mapping units, land uses and management 

practices provides such data [1]. Accurate and 

detailed data are a prerequisite to precisely model 

vadose zone processes, such as retention and 

transport of water and solute [2]. Variability of soil 

properties is usually associated with spatial, temporal 

or management related factors and are strongly 

influenced by the relative magnitude of each source 

of variability as well as their combined effect [3]. 

Variance or a semivariogram function express 

variability of a soil property [4]. Geostatistical tools 

are commonly used for estimating the semivariogram 

function to characterize the spatial variability of soil 

properties [5], [6], [7]. Using existing geostatistical 

tools, the variability of soil properties and spatial 

dependence are reported for scales ranging from a 

few meters to several kilometers [8], [9], [10], [11], 

[12]. 
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ABSTRACT 
Knowledge of variability and spatial structure of soil 

properties is essential for optimal design for 

collecting soil samples and effectively applying 

management decisions in the field. The objective of 

this study is to compare some approaches for 

characterizing, and comparing spatial dependence of 

isotropic second-order stationary processes. The 

evaluated approaches are the nugget to sill ratio 

(NR), normalized (by fitted sill) semivariogram, 

correlograms, and two integral scales. Soil samples, 

collected at a regular 50 m × 50 m grid from 0-15 

cm depths, were analyzed for sand and clay, bulk 

density (ρb), saturated hydraulic conductivity (Ks), 

wilting point, available water content (AWC), 

pH, electrical conductivity (EC), nitrate-nitrogen 

(NO3- N), and chloride (Cl) were determined.  

Geostatistical software (GS+, Gamma Design Software, 

Plainwell, MI) was used to estimate the variance 

structure of various measured soil properties.  

Analysis include using data on the spatial variability of 

various properties from four published studies. NR 

displayed spatial dependence ignoring the 

influence of range, normalized semivariogram 

and correlogram provided the visual comparison, 

and both integral scales incorporated the influence of 

range and provided single number spatial dependence 

summaries. Either of the integral scale 

formulations can be used to characterize the 

spatial dependence of soil properties from agricultural 

fields. 
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The spatial variability analysis has several 

applications, it can be used to delineate areas into, for 

example, mapping contiguous patches of sodium 

contents or hydraulic conductivities [13]. Spatial 

variability analysis can also be done to design a 

strategy for collecting a limited number of spatially 

independent samples for future analysis [14]. While it 

may be more appropriate to look at the correlations at 

shorter lag intervals for the former or mapping 

exercise, it may be more appropriate to look at the 

larger lag intervals or the range for the latter. 

However, knowledge of the complete variogram is 

useful to make both decisions and understand the 

spatial structure of soil properties. 

Several methods can be used to classify spatial 

dependence of soil properties [15], [16], [17], [18], 

[19]. This paper includes: nugget to sill ratio (NR), 

relative structured variability (RSV), normalized 

semivariograms and correlograms, and integral scales 

[17], [20]. NR is based on the interpretation of 

variogram parameters and is commonly used to 

classify the spatial dependence of a soil property as 

strong (NR≤0.25), moderate (0.25<NR<0.75) or 

weak (NR≥0.75) [17]. The NR successfully classified 

spatial dependence of soil properties in several 

studies ([21], [22], [23], [24], [25].  Information of 

spatial structure is also associated with the range of 

spatial correlation of a soil property but NR approach 

largely ignores it.   The relative structured variability 

(RSV) is the degree to which variability is spatially 

structured [19] and is related to the NR through the 

relationship RSV=1-NR. Thus, the RSV, range and 

the semivariogram model all contain information 

about the degree of spatial structure [19].   

The degree of spatial structure is affected by more 

than one parameter or feature of the model and 

classifying and comparing spatial dependence of 

multiple processes can be complicated. 

Semivariograms provide visual summaries of spatial 

correlation and incorporate estimated semivariogram 

models and incorporate information on both 

variability and spatial structure. However, these 

graphs, although display range, do not provide a 

straightforward or simple comparison of the spatial 

structure of two processes and therefore are not 

usually used to classify spatial dependence. Plotting 

correlations as a function of distance provides a 

correlogram.  They provide a sort of spatial 

dependence profile and provide a basis for visually 

comparing spatial structures rather than using 

semivariograms [26].  

Integral scales provide a single number estimate of 

spatial dependence and incorporate information from 

all three facets of the estimated empirical 

semivariogram. They estimate the average distance 

for which observations are correlated and indicate the 

distance within which observations are highly 

correlated [15], [19], [27]. 

A closer examination of the semivariograms and 

integral scales show that both reflect the scale of 

measurement of the response variable. Consequently, 

integral scales can compare the spatial dependence of 

processes where distances have been measured on the 

same grid spacing and size of the fields. However, 

because of the scale influence on which distance is 

measured, NR is much easier for classifying spatial 

dependence. Even if distances have been measured 

on the same scale, using semivariograms to compare 

spatial dependence of different properties is 

complicated because semivariogram contains 

information about the response variability and spatial 

structure. This paper discusses approaches to 

exploring, characterizing, and comparing spatial 

dependence of isotropic second order stationary 

spatial processes.  

MATERIALS AND METHODS 

This study utilized the data collected from research 

conducted on an agricultural land area near Las 

Cruces, New Mexico [14]. Also, data were used from 

four published studies including, [11], [12], [17], and 

[28]. Selected data were from different regions and at 

different grid spacing. The purpose of data collection 

in these studies could be assumed different because 

attributes (or soil properties) determined were 

different. Various studies employ different sampling 

schemes. For example, one of the studies measured 

soil properties at 2 m lag distances enabling the 

nugget effect to be fitted to represent variation at less 

than 2 m lags. In contrast, another study has the 

shortest separation distance of 25 m, meaning that the 

nugget effect has to capture more variation. The 

experimental fields were of different size and scale of 

measurement of response variables were different 

among sites. In this study, comparison of various soil 

properties was made only to emphasize the role of 

range and spatial dependence determined by any 

given approach. For a given soil property, we also 

compared approaches for characterizing spatial 

dependence. 

Experimental Sites, Soil Sampling and Laboratory 

Analysis 
The study site for [14] was a 40 ha land area located 

at the Leyendecker Plant Science Research Center 

(LPSRC) near Las Cruces, New Mexico (3211.46’ 

N and 10644.30’ W). The crops in the study area 

were cotton (Gossypium spp.), sudan grass (Sorghum 
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sudanense), chile (Capsicum annuum L.), onion 

(Allium cepa L.), and pecan (Carya illinoinensis 

(Wangenh.)). The dominant soil types at the study 

site were Armijo (fine-silty, mixed, calcareous, 

thermic typic Torrifluvents) and Harkey (coarse-silty, 

mixed, calcareous, thermic typic Torrifluvents) series 

[29]. The average annual precipitation for the site 

was 25.4 cm, and the average annual temperature was 

17.7C. The Rio Grande river flows 85 m from the 

northwest border of the site, and a drainage ditch is 

15 m away from the east side of the area. The 

irrigation for the entire experimental site is using 

both ground and surface water. The study area 

comprised twelve agricultural fields under the same 

crop rotation scheme since 2010 [14]. Core and bulk 

soil samples were collected at the center of a regular 

grid with a separation distance of 50 m (151 samples) 

and at 2-, 5-, 10-, and 15-m intervals (135 samples) 

on some grid lines from 0-15 cm depth during Nov. 

2008 and 2009.  Non-normal data were transformed 

using a natural logarithm before geostatistical 

analysis. 

Reference [17] used a square grid sampling scheme 

to collect soil samples from 0-20 cm depth at 25 m 

increments from an area of 250 m × 250 m (total 121) 

in southern Boone County, Iowa. We also collected 

additional secondary samples at 2, 5, and 10 m 

intervals (total 120) to account for shorter range 

variability by providing a minimum lag distance of 2 

m. Non-normal data were log-transformed. Similarly

[11] collected 60 soil samples from a loam soil at 0 to

15 cm depth with 50 m × 25 m grid design at the 7.5

ha experimental area of the University of Agricultural

Sciences Vienna, Gross-Enzersdorf, Austria.

Geostatistical analysis used original data.  Reference

[28] collected a total of 209 soil profiles near

Perthshire, MS at a mean distance of 79.4 m apart

from 18 parallel transects on 162- ha cotton field.

Major soil types are Commerce (fine-silty, mixed,

superactive, nonacid, thermic Fluvaquentic 

Endoaquepts), Robinsonville (coarse-loamy, 

Rabenmixed, superactive, nonacid, thermic Typic 

Udifluvents), and Convent (coarse-silty, mixed, 

superactive, nonacid, thermic Fluvaquentic 

Endoaquepts). These samples determined several soil 

physical parameters, the variance structure, and 

ultimately the soil sampling strategy of the alluvial 

floodplain soils. Before the geostatistical analysis, 

significantly skewed variables were log transformed. 

Reference [12] used an irregular grid design (with 40 

samples on 100x100m grid) to collect soil samples in 

middle black sea region Turkey at 94 sampling 

locations in a 45- hectare area from 0-20 cm and 20-

40 cm depths, separately. The soil was Typic 

Ustifluvents (mostly clay) according to [30]. Soil 

properties determined include particle size 

distribution, gravimetric water content, bulk density, 

and penetration resistance on samples collected from 

0-20 cm depth. Non-normal data was log transformed

prior to the geostatistical analysis. Standard

laboratory methods determined the soil sampling and

soil properties presented in [17], [11], [28], [12], and

[14].

Semivariogram models 
Geostatistical tools including semivariograms and 

autocorrelations were used to determine the degree of 

spatial variability for each measured soil attribute (for 

example, [31]). Geostatistical software (GS+, 

Gamma Design Software, Plainwell, MI) was used to 

obtain the semivariograms for each measured soil 

variable. Theoretical variograms obtained by fitting 

spherical, exponential, and Gaussian models. A 

model was selected based on the least residual sum of 

squares between experimental and theoretical 

semivariograms and also using the correlation 

coefficient (r2) values for each soil property. 

Spherical and exponential models were the best fit 

models to the semivariograms of the measured soil 

properties, therefore, for the present study; we will 

only focus our discussion on the spherical and 

exponential semivariogram models. The spherical 

model is represented by: 
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Eq. 1 

where h is lag distance; C0 is the nugget effect, which 

is the local variation occurring at scales finer than the 

sampling interval or fine scale variability, 

measurement or sampling error; C0 + C1 is the sill or 

total variance; and a  is range of spatial dependence, 

the distance at which the semivariogram levels off to 

reach the sill value and beyond which sampling 

variables are not correlated [20].  

A frequent interpretation of the nugget is that it is the 

semivariance at a distance of zero.  However, by 

definition, both theoretical and empirical 

semivariograms attain a value of zero at h = 0. 

Measured values of a variable can be different at very 

small separation distances mainly due to the sampling 

error or fine scale variability.  Therefore, nugget 

variance is also reported to be due to the variability 

occurring at a scale smaller than the sampling scale. 

It is also reported to be due to measurement errors 

[32].  When this occurs, a nugget effect is present, 

and the semivariogram exhibits a jump (or 
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discontinuity) after the origin [20]. When there is no 

nugget effect (C0 = 0), the empirical correlation 

function for the spherical semivariogram model is: 
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Eq. 2 

When the nugget is nonzero, the correlation 

function becomes: 
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Eq. 3 

A nugget effect implies a discontinuity at the 

semivariogram origin and a discontinuity in the 

correlogram. The exponential model is as follows: 
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When C0 = 0, the correlation function is : 
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Eq. 5 

For h > 0, (1-NR) provides an upper bound on the 

correlation and when the semivariogram form and 

range are the same, it is reasonable to use NR to 

classify spatial dependence.  However, the estimated 

range can also differ along with the semivariogram 

model, and use of NR may be inadequate.  

Integral Scales 

Integral scales, while not unitless, provide a single 

number summary of the distance within which 

observations are highly [27], [33], [19].   Higher 

integral scale values indicate higher degrees of spatial 

dependence or structure.  Two forms of integral 

scales have appeared in the literature ( [15], [19], 

[27], [33]):   
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Eq. 6 

According to [27], J1 applies to one-dimensional 

second-order stationary processes while J2 applies to 

two-dimensional isotropic second-order stationary 

processes.  Reference [34] applied J1 to two-

dimensional data also. 

Reference [27] conducted simulation studies and 

explored the properties of the integral scale J2 and 

noted that transect sampling may result in 

underestimating J2 [15].  They also computed J2 two 

ways – based on the empirical semivariogram and 

based on a fitted exponential semivariogram and 

found estimates based on the fitted semivariogram to 

have a smaller bias. For the spherical model when 

there is a nugget effect: 
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Note that as the nugget increases relative to the sill, J1 

decreases faster than J2 and so in a sense is penalized 

more severely than J2. For the exponential model 

when there is a nugget effect:  
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When there is no nugget effect, in the Eq. 7 and 8, 

NR is equal to 0. 

RESULTS AND DISCUSSION 

Nugget Ratio 

The nugget ratio for various soil properties 

determined in all five studies are in Tables 1-5. 

According to the [17] classification, the spatial 

dependence of some properties in Tables 1, 2 and 5 

ranged from strong to weak ([14], [17], and [12], 

respectively).  For the [11] study, NR was always 

greater than 0.38 and spatial dependence ranged from 

moderate to weak (Table 3).  For [28], NR was 

between 0.18 and 0.33, and spatial dependence 

ranged from strong to moderate.  Both exponential 

and spherical models provided the best fit for soil 

properties under investigation.  Four out of five 

studies include clay content, and the best fit spherical 

model range varied from 109 to 379 m.  Four out of 

five studies reported a spherical model as the best-fit 

for soil bulk density with the range varying from 106 

to 433 m.   

In [14], the spatial variability of EC was strong in 

2008 but moderate in 2009, pH and Cl displayed 
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strong, and NO3-N displayed moderate spatial 

dependence during the two measurement years.  The 

range of dependence for pH and Cl were similar 

during the two measurement years and correlated 

with low pH and Cl variability among fields.  Tables 

1 to 5 indicate that even though soil properties were 

on a regular grid in each study, range of dependence 

displayed a large variability among various attributes 

included in a given study.  Overall no definite 

patterns were detected between NR and the range for 

the data presented in Tables 1 to 5.  Pooling all the 

data from Tables 1 to 5 also did not provide any 

correlation between NR and range (figure not 

shown). 

Normalized Semivariograms and Correlograms 

Dividing semivariance by their respective sills then 

plotting them on the same graph essentially removes 

the influence of variance and response variable scale 

and retains semivariogram information about spatial 

dependence; that is, for isotropic second-order 

stationary processes the normalized semivariogram 

simply provides an alternative representation of the 

spatial dependence profile.  Since correlograms start 

at one at zero lag distance, it is easier to plot 

correlograms of different soil properties and visually 

see or compare their spatial structure. Plotting 

normalized semivariogram (semivatiance/total sill) 

with respect to the lag distance provides the same 

advantage.  However, these two do not provide a 

single number estimate as provided by the NR or 

RSV. 

Figures 1A and 1B present empirical semivariograms 

and normalized semivariograms, respectively, for 

sand, clay, Ks, NO3-N 2008, and pH 2008. Table 1 

presents the semivariogram parameters.  For isotropic 

second order stationary processes, 

semivariance/sill=1-correlation, and the two graphs 

provide equivalent information.  Because they are 

negatively related, correlograms with higher values 

represent more spatially structured processes while 

semivariogram with higher values corresponds to less 

spatially structured processes.  The examination of 

the normalized semivariograms in Figure 1B shows 

that the semivariance reaches the sill (or the 

correlation, not shown, drops to almost zero) the 

quickest for pH, 2008. However, separation distance 

at which correlation goes to zero follows the order 

pH(2008)<NO3-N < clay <sand < Ks.  Such a 

variation indicates increasing range of spatial 

dependence from pH to Ks. The range of spatial 

dependence increases from 86 for pH to 563 m for Ks 

(Table 1). The range at which the correlogram goes 

to zero ranges from 24 m for particulate organic 

matter nitrogen (POM-N) to 486 m for mineral-

associated nitrogen (MAN) (Table 2), from 30 m for 

EC to 495 m for silt (Table 3), from 93 m for AWC 

to 741 for field capacity (FC), and from 91 m for PR 

to 433 m for bulk density (b) (Table 5). 

A 

B 

Figure 1 (A) Empirical semivariograms and (B) 

normalized semivariograms (semivariance/sill; 

normalized by fitted sill) for sand, clay, Ks, NO3-N 

(2009), and pH (2008). 

Table 1 Semivariogram model parameters of soil 

properties [14]. 
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†Variable Min Max §Model Nugget Sill Range 

M 

‡NR J1 

m 

J2 

m 

Sand 7.84 69.8 Exp. 18.4 121 410 0.15 116 178 

Clay 12.2 64.2 Sph. 0.1 109 325 0.00 122 145 

b 1.19 1.53 Sph. 0.00003 0.004 391 0.01 146 174 

Ks 3.36 76.1 Sph. 2.3 232 563 0.01 209 251 

FC 0.18 0.45 Sph. 1.91 33 355 0.06 125 254 

WP 0.10 0.37 Sph. 2.3 27 297 0.09 102 127 

AWC 0.05 0.19 Exp. 1.64 3.47 134 0.47 24 46 

pH (2008) 6.70 8.60 Exp. 0.006 0.086 86 0.07 27 39 

pH (2009) 6.40 8.50 Exp. 0.002 0.088 89 0.02 29 41 

EC (2008) 0.11 1.59 Exp. 0.013 0.122 95 0.11 28 42 

EC (2009) 0.12 1.39 Exp. 0.038 0.077 170 0.49 29 57 

Cl (2008) 0.40 106 Exp. 22.4 437 164 0.05 52 75 

Cl (2009) 2.40 79.8 Exp. 33.5 341 178 0.10 54 80 

NO3-N 

(2008) 0.01 38.0 Exp. 17.2 56 215 0.31 50 84 

NO3-N 

(2009) 1.00 39.0 Exp. 23.6 47 303 0.50 50 101 

†b = bulk density; Ks = saturated hydraulic 

conductivity; FC = field capacity, volumetric water 

content at -33 kPa; WP = wilting point, volumetric 

water content at -1500 kPa; AWC = available water 

content, calculated as the difference between -33, and 

-1500 kPa; EC= electrical conductivity (dS m-1);

NO3-N = nitrate-N (mg kg-1); Cl = chloride (mg kg-1).

§Sph. = spherical; Exp. = exponential.

‡NR = nugget semivariance/sill.

Impact of Semivariogram Model on Spatial 

Dependence   

Tables 1-5 presents the variogram model parameters 

for the data used from various studies.  In order to 

evaluate the impact of the semivariogram model on 

spatial dependence, we have selected the sand and 

clay data from [14] because this data-set and 

variogram analysis are available to us.  A set of 

exponential and spherical semivariogram models for 

sand and clay content, respectively were fitted to the 

experimental semivariogram (Table 1).  Both 

experimental semivariograms were divided by their 

respective fitted sills to obtain a normalized 

semivariogram with a sill value of one and a range of 

nearly 400 m (Figure 2A).  figure 2B shows the 

corresponding empirical correlation functions (or 

correlograms) for both sand and clay.  The 

normalized semivariograms and empirical correlation 

functions of WP and NO3-N, 2009 are presented in 

Figures 3A&B.  Both empirical semivariograms in 

Fig. 3A have a sill value of one and a range of nearly 

300 m. 

It is known that semivariograms exhibiting a more 

gradual increase near the origin correspond to 

smoother and more continuous processes ([19], [26]. 

Processes are smoother because they have higher 

correlations [26], and the correlogram of a smoother 

process drops more slowly from its value of one. 

Figures 2A&B and Figures 3A&B indicated that the 

spherical model corresponded to a smoother process 

than the exponential model.  The correlation is not 

uniformly higher at each equal range pair for the 

spherical model, but it is higher for smaller values of 

separation distance, and drops more slowly from a 

correlation of one at the origin (Figure 2B and 3B). 

More spatial structure is implied by the spherical 

model because the correlogram dropped more slowly 

from a value of one with increasing separation 

distance.  

Table 2 Semivariogram model parameters of soil 

properties [17]. 
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†Variable §Model Nugget Sill Range 

m 

‡NR J1 

m 

J2 

m 

OC Sph. 0.0001 0.102 104 0.00 39 46 

TN Sph. 0.0001 0.089 89 0.00 33 40 

MAC Sph. 0.007 0.108 110 0.06 39 48 

MAN Sph. 0.038 0.048 486 0.79 38 99 

POM C Sph. 0.175 0.362 118 0.48 23 38 

POM N Sph. 0.047 0.135 24 0.35 6 9 

MBC Sph. 0.048 0.153 46 0.31 12 17 

MBN Sph. 0.103 0.198 30 0.52 5 9 

ERG Sph. 0.029 0.0324 270 0.90 11 39 

MBP Sph. 0.029 0.127 70 0.23 20 27 

Respiration Sph. 0.066 0.391 68 0.17 21 28 

Kt Sph. 0.004 0.216 87 0.02 32 39 

KOC Sph. 0.02 0.075 71 0.27 20 27 

NO3-N Sph. 0.208 0.263 201 0.79 16 41 

Min N Sph. 68.6 119.5 38 0.57 6 11 

Bray's P Sph. 23.4 134.7 71 0.17 22 29 

b Sph. 0.0132 0.0356 129 0.37 30 46 

pH Sph. 0.062 0.76 117 0.08 40 50 

Macroaggregation Sph. 6.9 77.4 77 0.09 26 33 

†OC = total organic carbon; TN = total nitrogen; 

MAC and MAN = mineral-associated, (silt + clay) 

carbon and nitrogen; Min N = mineralizable N; POM 

C and POM N = participate organic matter carbon 

and nitrogen; MBC and MBN = microbial biomass 

carbon and nitrogen; ERG = ergosterol; MBP = 

microbial lipid P; Kt = sorption coefficient (atrazine); 

KOC = Kt •*• %OC; b = bulk density. 

§Sph. = spherical.

‡NR = nugget semivariance/sill.

Impact of the Range on Spatial Dependence   

In order to evaluate the impact of range on the spatial 

dependence of soil properties, the NO3-N, 2009 and 

EC, 2008 were selected (Table 1).  An exponential 

model determined the best fit to the semivariograms 

of both NO3-N, 2009 and EC, 2008.  For the NO3-N, 

2009 semivariogram, range was 303 m, a sill was 47, 

and a nugget was 23.6.  For EC, 2008, estimated 

range was 95 m, a sill was 0.122, and the nugget was 

0.013 (Table 1).  According to the NR, NO3-N, 2009 

displayed moderate spatial dependence (NR of 0.50) 

while EC, 2008 displayed strong spatial dependence 

(NR of 0.11).  

The empirical correlation function in Figure 4 

indicates that correlations were higher for NO3-N, 

2009 than EC, 2008 at all the corresponding lag 

distances except at 16 m where correlations were 

high for EC, 2008.  Correlations implied by the EC, 

2008 semivariogram model were negligible at a lag 

distance of 155 m but at the same lag; the 

correlations for NO3-N, 2009 were around 0.18. 

While the large NR for NO3-N, 2009 suggested 

moderate spatial dependence, due to the large range, 

the correlations decreased slowly from the ceiling 

provided by (1-NR).  Thus EC, 2008 measurements 

could be considered as spatially independent at a 

separation distance of 155 m, the NO3-N, 2009 

measurements could not be considered independent 

at 155 m.  Therefore, spatial dependence based on the 

NR method seemed inadequate to classify spatial 

dependence as NO3-N, 2009 measurements remain 

spatially correlated for a longer separation distance 

than EC, 2008 measurements. The correlations for 

smallest lag distances will be important for mapping 

exercise, and the entire empirical correlation function 

will be useful for collecting future independent 

samples. 
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Figure 2. Normalized semivariogram (normalized by 

fitted sill) functions (A) and empirical correlation 

functions (B) of sand and clay content for 

exponential and spherical semivariograms, 

respectively. 

Table 3 Semivariogram model parameters of soil 

properties [11]. 

†Vari

able 

Mod

el 

Nug

get 

Sill Ra

nge 

m 

‡

N

R 

J

1 

m 

J

2 

m 

Silt 

Sphe

rical 

12.0

8 

31.

76 495 

0.

38 

1

1

5 

1

7

4 

Clay 

Sphe

rical 5.24 

9.5

1 347 

0.

55 

5

8 

1

0

4 

b 

Sphe

rical 0.01 

0.0

2 131 

0.

50 

2

5 

4

1 

Ks 

Sphe

rical 0.06 

0.1

1 154 

0.

55 

2

6 

4

6 

pH 

Sphe

rical 0.01 

0.0

109 158 

0.

92 5 

2

0 

EC 

Sphe

rical 0.01 

0.0

2 30 

0.

50 6 9 

TC 

Sphe

rical 0.04 

0.0

7 163 

0.

57 

2

6 

4

8 

SOC 

Sphe

rical 8.68 

16.

64 184 

0.

52 

3

3 

5

7 

TN 

Sphe

rical 0.47 

0.6

1 

243

.6 

0.

77 

2

1 

5

2 

†b = bulk density; Ks = saturated hydraulic 

conductivity; EC= electrical conductivity; TC = 

organic carbon concentration; SOC = soil organic 

carbon; TN = soil nitrogen. 

‡NR = nugget semivariance/sill. 
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A 

B 

Figure 3. Empirical normalized semivariogram 

(normalized by fitted sill) functions (A) and empirical 

correlation functions (B) of nitrate-N 2009 and 

wilting point (WP) for exponential and spherical 

semivariograms, respectively. 

Table 4 Semivariogram model parameters of soil 

properties [28]. 

†Vari

able 

Model Nug

get 

Sil

l 

Ra

nge 

m 

‡

N

R 

J

1 

m 

J

2 

m 

b 

Expon

ential 

0.00

2 

0.0

07 106 

0.

29 

2

5 

4

2 

Ks 

Expon

ential 0.46 

1.5

06 94 

0.

31 

2

2 

3

7 

Sand 

Expon

ential 78 

42

7 421 

0.

18 

1

1

5 

1

7

9 

Clay 

Expon

ential 16 65 218 

0.

25 

5

5 

8

9 

FC 

Spheri

cal 16 60 741 

0.

27 

2

0

4 

2

8

4 

WP 

Spheri

cal 12 70 425 

0.

17 

1

3

2 

1

7

3 

AWC 

Expon

ential 4 12 93 

0.

33 

2

1 

3

6 

†b = bulk density; Ks = saturated hydraulic 

conductivity; FC = field capacity, volumetric water 

content at -33 kPa; WP = wilting point, volumetric 

water content at -1500 kPa; AWC = available water 

content, calculated as the difference between -33, and 

-1500 kPa.

‡NR = nugget semivariance/sill.

Similarly, we can consider an example from Table 2 

[17] to further explore the role of range in spatial

dependence profile.  We select MAN and particulate

organic matter nitrogen (POM-N) variograms from

[17]. A spherical model was the best-fit for the

variable MAN [17].  The model produced a range of

486 m, sill of 0.048 and nugget of 0.038.  The NR

was 0.79 suggesting that the MAN displayed weak

spatial dependence.  A spherical model was the best-

fit for POM-N with a range of 24 m, a sill of 0.135

and a nugget of 0.047.  The NR was 0.35 suggesting

that the POM-N is moderately spatially dependent

(Table 2).  As the range is larger for MAN and

autocorrelations are greater than for POM-N at most

separation distances, consequently, it is arguable that

MAN could have greater spatial structure than POM-

N.
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Table 5 Semivariogram model parameters of soil 

properties [12]. 

†Var

iable 

Mode

l 

Nug

get 

Sill Ra

nge 

m 

‡

N

R 

J

1 

m 

J

2 

m 

Clay 

Spheri

cal 12.5 

102.

6 379 

0.

12 

1

2

5 

1

5

9 

Silt 

Expon

ential 6.92 

14.3

7 297 

0.

48 

5

1 

1

0

1 

Sand 

Spheri

cal 

0.00

65 

0.10

5 372 

0.

62 

5

3 

1

0

3 

GWC 

Spheri

cal 7.73 

27.2

4 384 

0.

28 

1

0

3 

1

4

5 

b 

Spheri

cal 

0.00

783 

0.01

968 433 

0.

40 

9

8 

1

5

0 

PR 

Spheri

cal 

0.02

84 

0.29

38 91 

0.

97 1 7 

†GWC = gravimetric water content; b = bulk 

density; PR = penetration resistance. 

‡NR = nugget semivariance/sill. 

Figure 4. Empirical correlation functions for NO3-N, 

2009 (NR=0.50) and EC, 2008 (NR=0.11). 

The empirical correlation function for NO3-N, 2008 

and pH, 2008 presented in figure 5 shows that these 

two have large differences in the optimized range of 

spatial dependence.  For NO3-N, 2008, an 

exponential semivariogram was the best fit with a 

range of 215 m, a sill of 56, and a nugget of 17.2. 

For pH, 2008, exponential semivariogram was also 

the best fit with a range of 86 m, a sill of 0.086, and a 

nugget of 0.006.  The NR was 0.31 for NO3-N 

indicating moderate spatial dependence; while the 

NR for pH, 2008 was 0.07 exhibiting strong spatial 

dependence (Table 1).  At a lag distance of 16 m, the 

autocorrelation implied by the exponential 

semivariogram was 0.41 for NO3-N, 2008 and 0.69 

for pH, 2008.  But at all other lag distances, the 

correlations for NO3-N, 2008 were higher than pH, 

2008 until the correlations became negligible.  At a 

lag distance of 76 m, the autocorrelation for pH, 2008 

dropped to almost negligible while for NO3-N, 2008 

it was still 0.21.  The NO3-N, 2008 exhibited positive 

autocorrelation even at a lag distance of 217 m. 

Although NO3-N, 2008 showed higher 

autocorrelations at nearly all lag distances when 

compared with pH, 2008 still according to NR 

classification NO3-N, 2008 was classified as 

moderately spatially dependent whereas pH, 2008 as 

strongly spatially dependent.  Consequently, it is 

arguable that NO3-N, 2008 could have greater spatial 

structure than pH, 2008.  

So far the data showed that range has an important 

influence on characterizing spatial dependence.  Now 

the question is if range alone could be enough to 

characterize spatial dependence?  Figure 6 presents 

the correlograms for AWC and pH, 2008 (Table 1). 

For AWC, the range was 134 m and the NR was 

0.47; for pH, 2008 the range was 86 m and the NR 

was 0.07.  Based on the ranges, one would expect the 

spatial dependence profile of the AWC to reflect the 

greater spatial structure than pH, 2008.  But figure 6 

shows that autocorrelations are higher for pH, 2008 

than AWC and thus, pH, 2008 exhibits greater spatial 

structure than AWC.  Thus, for these two spatial 

processes, the difference in the NR values has a 

greater impact on the spatial dependence profile than 

the difference in the ranges for nearly all lag 

distances. While the NR contains information about 

the degree of spatial structure, so does the range and 

to a lesser extent, the semivariogram model form.  In 

some instances, particularly when the ranges of 

compared processes are vastly different, spatial 

dependence profiles may reflect differences in the 

ranges more than differences in NR values.  On the 

other hand, spatial dependence profiles may reflect 

differences in NR values more than differences in the 

range. 
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Figure 5. Empirical correlation functions for NO3-N, 

2008 (NR=0.31) and pH, 2008 (NR=0.07) 

In many cases, spatial dependence profiles may not 

uniformly reflect differences in either the range or the 

NR; rather spatial dependence profiles may compare 

differently at different intervals of lag values. 

Because, for lag distance > 0, (1-NR) is the upper 

bound on the correlation and serves as a 

multiplicative factor on the correlations and spatial 

dependence profile, (1-NR) scales the entire 

correlogram down.  But the range and the 

semivariogram model form determine how quickly 

correlations drop from (1-NR).  

Figure 6. Empirical correlation functions for AWC 

(range=134 m; NR = 0.47) and pH, 2008 (range = 86 

m; NR = 0.07). 

Integral Scales 

The nugget ratio classified all the soil physical 

properties in Table 1 as strongly spatially dependent 

except AWC.  Examination of soil pH with a low 

variability from 6.5 to 8 during the two years (Table 

1) indicated that according to NR, pH both years

displayed strong spatially dependent, in contrast

small integral scale values because of small range

displayed weak spatially dependent.  Similarly, NR

classified soil EC as strong spatially dependent in

contrast small integral scale values indicate low to 

moderate spatially dependent during both years.  As 

far as chloride is concerned, integral scale values 

were small describing them as weak spatially 

dependent whereas NR classified them as strong 

spatially dependent.  Overall, both models showed 

disagreement in classifying the spatial dependence of 

most of the measured parameters.  

A closer examination of the correlogram displayed in 

figure 3 indicated that the spatial dependence profiles 

were more consistent using integral scales.  Similar 

conclusions can be drawn for NO3-N (Fig. 4).  Table 

2 also showed disagreement between the two 

approaches in classifying the spatial dependence of 

the parameters.  The NR model classified all the 

parameters in Table 2 from weak to strong spatially 

dependent, in contrast, integral scale values were low 

indicating that the spatial dependence of the 

parameters was weak.  

EC was moderate spatially dependent (NR= 0.50) 

whereas soil nitrogen (TN) weak spatially dependent 

(NR= 0.77) [11], Table 3).  The integral scale values 

of J1 were 6 m and 21 m for EC and TN, respectively 

and estimated J2 values were 9 m and 52 m, 

respectively.  Again, the integral scales provide a 

very different picture of degrees of spatial 

dependence than the NR. 

Reference [28] also used NR classification to 

categorize the spatial dependence as strong, moderate 

and weak.  According to NR classification, sand 

displayed strong spatial dependence (NR= 0.18) and 

field capacity (FC) moderate spatial dependence 

(NR= 0.27).  The estimated J1 values were 115 m 

and 204 m for sand and FC, respectively while 

estimated J2 values were 179 m and 204 m, 

respectively.  Therefore, FC classified as moderate 

spatially dependent by NR had higher integral scale 

values than sand classified as strong spatially 

dependent by NR. 

The classification of spatial dependence showed a 

disagreement between NR and integral scales for 

some soil variables; it showed an agreement for 

several other soil variables.  For example, Table 5 

showed a consistency between NR and integral scale 

values (J1 and J2) for soil variables where with an 

increase in the NR values, J1, and J2 values 

decreased correspondingly and vice versa.  Thus, 

methods seem to be suited to comparing spatial 

dependence of different processes but not for 

classifying the spatial dependence as strong, 

moderate, or weak. Integral scales are useful when a 

single number summary is required for expressing the 

spatial dependence of soil properties. This is not 
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available with correlograms or normalized 

variograms. Integral scales include the range of 

spatial dependence and therefore replace 

correlograms or normalized semivariograms. 

However, when the purpose is to identify processes 

that remain highly correlated for a longer lag 

distances, use of correlogram seems a good option. 

The NR classification appeals to researchers 

attempting to summarize and compare the results of 

many spatial analyses. However,not enough 

information is available for mapping or future 

sampling design. Because the range has a strong 

effect on the spatial dependence profile, it is difficult 

to define an appropriate quantity that might be used 

to create a classification of spatial dependence 

strength that can be applied uniformly regardless of 

the context.  Such classifications tend to be based on 

unitless quantities or percent or proportion scales, but 

both the range and integral scales are in the units of 

measured distances; there is no upper bound on the 

value these quantities can assume.  Researchers who 

want to define spatial dependence categories using 

integral scales may have to come up with definitions 

that make sense in the context of their discipline. 

Either of the integral scales might be the basis for 

such a classification.   

Alternatively, spatial dependence classifications 

might also be defined based on correlations at 

specified distances.  While classifications exist for 

correlations [35], information is not available on a 

meaningful distance to base the classification by the 

soil property and the study region.  This classification 

can be based on the objectives of the analysis, for 

example, using higher correlations and closer lag 

distances for preparing contiguous maps. While using 

lower correlations or beyond the lag distance at 

which correlations are no longer significant for 

collecting independent samples. Correlograms for 

various soil properties can be plotted together for the 

ease of designing a future sampling strategy. 

Furthermore, information on spatial dependence of 

soil attributes may be used within a research context 

or to apply precision farming practices.  In a research 

context, knowing distances within which correlations 

are high or low might facilitate establishing blocks or 

might allow the researcher to know when 

experimental units are far enough apart that 

correlations are negligible.  When attempting to 

apply precision farming, sampling at intervals close 

enough can allow creating an accurate map of the 

entire field; again, knowing distances at which 

correlations are high or moderate might facilitate 

arriving at standardized sampling schemes. 

Consequently, another approach to characterizing 

spatial dependence might be to indicate whether 

correlations are high, moderate or weak at either a 

particular lag interval or at regular lag intervals such 

as h=15 m, 30 m, etc.  As an example, [35] suggested 

a scheme for classifying correlations with magnitudes 

less than 0.5 as weak, between 0.5 and 0.8 as 

moderate and above 0.8 as strong.  The lower bound 

of the classification based on correlations could be 

where it is no longer significant at 5% probability 

level.  

CONCLUSIONS 

Comparing spatial dependence of isotropic second 

order stationary processes by the semivariogram is 

complicated by the fact that the semivariogram 

contains information about both the variability and 

spatial dependence of the compared processes.  The 

semivariogram form, the range, and the NR 

contribute to the implied spatial dependence profile 

and further complicate the comparison.  However, 

dividing the semivariogram by the sill to obtain a 

normalized semivariogram creates a unitless spatial 

dependence profile that can be used to graphically 

compare spatial structures of different processes. 

Similarly, the correlogram, which is negatively 

related to the normalized semivariogram, also can be 

used to create graphs of spatial dependence profiles. 

Both can be easily used for the purpose of mapping 

as well as for designing a future sampling strategy 

involving collection of independent samples. Integral 

scales incorporate information from all three 

semivariogram model attributes – model form, range 

and NR – that inform the spatial dependence profile 

and can be used to obtain a single number summary 

of the spatial dependence.  While two integral scale 

forms have appeared in the literature, either form 

provides a reasonable basis for comparing spatial 

structure. Both scales can easily be used to identify 

the properties with the greater spatial structure as 

well as could be a useful tool for future independent 

sample collection strategy.  
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