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16 Abstract 

17 Oxygen (O2) plays a critical and yet poorly understood role in regulating nitrous oxide 

18 (N2O) production in well-structured agricultural soils. We investigated the effects of in 

19 situ O2 dynamics on N2O production in a typical intensively managed Chinese cropping 

20 system under a range of environmental conditions (temperature, moisture, ammonium, 

21 nitrate, dissolved organic carbon etc.). Climate and management (fertilization, 

22 irrigation, precipitation and temperature), and their interactions significantly affected 

23 soil O2 and N2O concentrations (P<0.05). Soil O2 concentration was the most 

24 significant factor correlating with soil N2O concentration (r= -0.71) when compared 

25 with temperature, water-filled pore space and ammonium concentration (r= 0.30, 0.25 

26 and 0.26, respectively). Soil N2O concentration increased exponentially with 

27 decreasing soil O2 concentrations. The exponential model of N treatments and 

28 fertilization with irrigation/precipitation events predicted 74-90% and 58% of the 

29 variance in soil N2O concentrations, respectively. Our results highlight that soil O2 

30 status is the proximal, direct and the most decisive environmental trigger for N2O 

31 production outweighing the effects of other factors, and could be a key variable 

32 integrating the aggregated effects of various complex interacting variables. This study 

33 offers new opportunities for developing more sensitive approaches to predicting and 

34 through appropriate management interventions mitigating N2O emissions from 

35 agricultural soils. 

36 Keywords: soil oxygen, nitrous oxide, nitrogen fertilization, extreme rainfall, irrigation, 

37 in situ upland soil
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38 Introduction 

39 Agricultural emissions of the greenhouse gas nitrous oxide (N2O) have become a global 

40 concern given its role as the second largest non-carbon dioxide (CO2) climate forcing 

41 agent following methane (CH4) and the most significant ozone-depleting gas emitted to 

42 the stratosphere.1-2 Agricultural soils are responsible for around 60% of global 

43 anthropogenic N2O emissions.3-5 Although it is known that microbial nitrification and 

44 denitrification are main processes of N2O production in soils,6 the key biological 

45 mechanisms of N2O production, and the interaction between regulating environmental 

46 variables, remain difficult to predict. 

47 Of these, soil oxygen (O2) is the key proximal factor simultaneously controlling 

48 nitrification and denitrification by influencing these processes at the cellular-level, and 

49 further determining the partitioning of the end products between dinitrogen (N2) and 

50 N2O.7-8 Other major factors particularly soil moisture, nitrogen (N) and oxidizable 

51 carbon (C), together with soil texture and aggregate structure play a role primarily 

52 through their influence on the availability of O2.7 Thus, soil texture and aggregate 

53 structure together determine soil physical factors such as the total porosity, air-filled 

54 porosity, water retention, and tortuosity and interconnectivity of the pore system that 

55 determine O2 diffusion rates into the soil, and the O2 availability varying across the 

56 aggregate radius. This is recognized as a major driving force in the fate of N 

57 transformations and N2O production in aggregates.9-11 Despite the central role of O2 in 

58 determining the processes and rates of N2O production, there is little quantitative 

59 evaluation of the effects of O2 on N2O formation in soils particularly in field conditions, 
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60 and how these relations are affected by the complex interactions between soil, climate 

61 and management factors. As a result, there is a missed opportunity to use O2 as a 

62 powerful predictor of N2O production, and improve understanding of underlying 

63 processes.12

64 For a given site, O2 dynamics would be mainly regulated by changing climate factors 

65 within the year (temperature and precipitation), and agronomic management (cropping 

66 systems, fertilization, irrigation etc.). A limited number of studies have measured O2 

67 dynamics in contrasting wetland ecosystems, especially paddy soils, humid forest soils, 

68 urine-amended pastures and riparian wetlands.8,13-17 Unlike aquatic systems 

69 experiencing nearly constant anoxia throughout the year, many agricultural soils have 

70 been shown to have both spatially and temporally fluctuating redox status and 

71 experience intermittent low redox potentials associated with precipitation or irrigation 

72 events.13,18 However, few studies have considered the changes in O2 concentration that 

73 occur in agricultural soils which are typically associated with well-aerated conditions,19 

74 and thus impede our understanding of how O2 responses to climate and management 

75 regulate soil trace gas emissions.

76 Knowledge regarding O2-regulated N2O production is derived mostly from pure 

77 culture and soil microcosm studies.20-22 Nitrification was found to be the main source 

78 of N2O at O2 concentrations greater than 0.35%.21-22 The amount of N2O-N generated 

79 as per unit of N nitrified is highly sensitive to O2 concentrations and can increase nearly 

80 tenfold from 0.16% to 1.48% when O2 concentration is reduced from 20.4% to 0.8%, 

81 indicating that N2O produced by nitrification could be a significant source process at 
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82 reduced O2 concentrations mainly via nitrifier denitrification, especially in ammonium 

83 (NH4
+)-N fertilized soils.12,22 As soil O2 concentrations decrease, the denitrification 

84 rates also increase, however, the macropore-O2 content must fall below 0.5% to result 

85 in a large increase in denitrification rate.23 Given high spatio-temporal heterogeneity of 

86 O2 dynamics in the in situ upland agricultural soils in this study, the role of O2 in 

87 regulating N2O production remains challenging to explain.12 

88 In well-structured soils under frequent drying-wetting cycles, coupled with the 

89 spatio-temporal changes of climate and management factors in the in situ upland 

90 cropping systems, we hypothesized that: (1) soil O2 concentration regulates N2O 

91 production directly following certain quantitative correlations; (2) the strength of the 

92 correlations depends on the combination of fertilization, irrigation and precipitation 

93 events. The objectives of this study were therefore: (1) to quantify the effects of soil O2 

94 and other soil environment variables on N2O production in the in situ upland 

95 agricultural soils and (2) to establish robust empirical models between soil O2 and N2O 

96 concentrations under the coupling spatio-temporal changes of the climate and 

97 management factors.

98

99 Materials and Methods

100 Experiment site and design

101 Our study site was located at the China Agricultural University Research Station in 

102 Shangzhuang (39°48’N, 116°28’E) near Beijing, in the North China plain. This site is 

103 representative of upland agricultural soils in this region.24 The altitude of this site is 40 

Page 5 of 41

ACS Paragon Plus Environment

Environmental Science & Technology



104 m. Long-term (1981-2015) mean annual precipitation and air temperature was 540 mm 

105 and 13.0 ℃, respectively. Soil properties in the top 0-20 cm layer are: bulk density 1.31 

106 g cm-3, clay loam texture with 28% clay, 32% silt and 40% sand (USDA standard), 

107 organic C content 7.9-13.7 g kg-1, total N 0.8-1.2 g kg-1, C/N ratio 9.5-11.0, and pH 7.5 

108 (1:2.5, soil/water). Soil total porosity is 51%, and air-filled porosity ranges from 12% 

109 to 42% along with the varying volumetric water content (9-39%) during the observation 

110 year, in which the hydraulic conductivity of the soil would be lower than 20 cm d-1 (See 

111 S2.4 in Supporting Information (SI) for calculations of these physical parameters). The 

112 studied winter wheat-summer maize rotation is the main cropping system in this 

113 region,25 in which wheat is sown at the beginning of October and harvested at the 

114 beginning of June in the following year, and then maize is immediately sown and 

115 harvested at the end of September (See S1.1 in SI for introduction of general soil-

116 climatic conditions in the North China plain).

117 This study was based on a long-term field experiment established in October 2006, 

118 which was designed with four N rates (zero, optimum, conventional N and calculated 

119 N balance with manure) combining with two straw managements (straw removal and 

120 straw return). The four N rates were as follows:

121 (1) Zero N (N0), no fertilizer N input as a control;

122 (2) Optimum N (Nopt), chemical N fertilizer applied at optimum rates calculated by the 

123 mineral N (Nmin) test method based on the synchronization of crop N demand and 

124 soil N supply;

125 (3) Conventional N (Ncon), chemical N fertilizer applied at rates of 260 and 300 kg N 
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126 ha-1 for maize and wheat, respectively, according to local conventional farming 

127 practice;26

128 (4) Calculated N balance with manure (Nbal+M), composted cattle manure applied with 

129 supplementary chemical N fertilizer based on N-balanced calculations, i.e. the rate 

130 of chemical N fertilizer equals to crop N uptake and soil residual mineral N minus 

131 available manure-N and soil initial mineral N.

132 We selected seven treatments from the long-term field experiment including the zero, 

133 optimum and conventional N levels with straw removal (N0, Nopt, Ncon) and straw return 

134 (N0+S, Nopt+S, Ncon+S), and the N balanced treatment with manure and straw return 

135 (Nbal+M+S) (see Table S1). Each treatment was replicated three times in a randomized 

136 block arrangement with an area of 64 m2 (8 m*8 m) per plot. Urea was used as the N 

137 source because it was the main N fertilizer used by farmers in this region. We carried 

138 out this study throughout a whole year from the middle stage of the 2015-2016 wheat 

139 (April 2016) to the middle stage of the 2016-2017 wheat (April 2017). Detailed rates 

140 of each N fertilization and irrigation, soil chemical properties of each treatment, and 

141 management activities are described in SI (S2.1-S2.2, Tables S2-S3 and Figure S1) and 

142 previously published papers.25-29

143

144 Soil gas (O2, N2O, CO2, CH4) sampling and measurements

145 In each plot, we established a subplot for gas sampling covering an area of 9 m2 (3m*3m) 

146 including two 1 m width guard rows as borders alongside the footpath to avoid 

147 disturbance of the crop and soil (Figure S2). In every subplot, two soil-air equilibration 
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148 samplers were installed vertically in the soil to a depth of 5-20 cm. The two gas samplers 

149 were positioned randomly in the subplot in wheat and in the N fertilizer band in maize 

150 (Figure S2), respectively. The soil-air equilibration sampler was modified from Wang 

151 et al30 and consisted of a polyvinylchloride (PVC) tube with a 2.5 cm inner diameter, a 

152 PVC dust cap, a rubber plug and a microbore polytetrafluoroethylene (PTFE) tube 

153 (inner diameter 0.25 cm) fitted with a three-way stopcock to connect with the sampling 

154 syringe at the soil surface (Figure S3). The PVC tube was perforated, which ensured air 

155 diffusion and exchange between the sampler and the surrounding soil. We drilled a 3.0 

156 cm diameter hole by soil auger prior to the installation of the sampler and backfilled the 

157 soil after inserting it in the hole. The soil-air equilibration samplers were dug out prior 

158 to each crop harvest and inserted back after the sowing of the next crop. To avoid 

159 connection of atmospheric air to soil air, three-way stopcocks of the samplers were 

160 closed on non-sampling days ensuring the representatives of soil gases inside the 

161 samplers. 

162 On each sampling day, we collected 20 ml gas samples between 9:00 am and 11:00 

163 am using 50 ml plastic syringes connecting to the samplers through the three-way 

164 stopcocks. Before the gas samples were collected, we sampled 20 ml of soil air inside 

165 the sampler using the syringe and injected it out to flush the syringe, then carefully took 

166 another 20 ml soil air sample and injected back to the sampler and repeated this 

167 procedure three times to evenly mix air inside the sampler. Gas samplings were 

168 undertaken on days 1, 2, 3, 5, 7, 10 after fertilization, days 1, 2, 3, 5, 7 after irrigation, 

169 and days 1, 3, 7 after precipitation (>20 mm). For the remaining periods, gas was 
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170 sampled weekly, except during the winter period (December-February) when the gas 

171 was sampled monthly.

172 The concentration of O2 was measured directly by a portable O2 content analyzer 

173 (G100 Range, Geotechnical Instruments Ltd., UK) linking to the samplers immediately 

174 after gas sampling. N2O, CO2 and CH4 concentrations were analyzed within 24 h after 

175 sampling by a gas chromatograph (GC) (Agilent 6820, USA), see details in SI (S2.3) 

176 and previously published papers.25-26,28,31 Detailed measurements of soil temperature, 

177 water-filled pore space (WFPS), mineral N (NH4
+, NO2

-, NO3
-), dissolved organic C 

178 and N (DOC and DON) and pH, crop aboveground biomass, N uptake, grain yield and 

179 source of climate data are reported in SI (S2.4-S2.6).

180

181 Data analyses

182 Differences in average soil O2, N2O and CO2 concentrations between different 

183 management factors and grain yield between different treatments were analyzed by a 

184 one-way ANOVA procedure for least significant differences (LSD) at P < 0.05 (Figures 

185 2 and S22, Tables S7-S10). Effects of agronomic event, N rate, straw management and 

186 their interactions on soil O2, N2O and CO2 concentrations were analyzed by multi-way 

187 ANOVA for LSD at P < 0.05 (Table S6). Pearson analysis was performed to evaluate 

188 the correlation between soil N2O concentration and soil environmental parameters 

189 (Table S11). Stepwise multiple linear regression was used to determine the variation in 

190 soil N2O concentration that could be explained by soil O2 concentration, moisture and 

191 temperature, with a criteria of P<0.05 to accept variables (Table S12). The above 
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192 statistical analyses were undertaken using IBM SPSS Statistics 21 (SPSS Inc., Chicago, 

193 IL, USA). Regression models of soil N2O and CO2 concentration responding to soil O2 

194 concentration, WFPS and temperature were fitted by SigmaPlot 14.0 (Systat Software 

195 Inc., Erkrath, Germany) (Figure 3, Figures S16-S17). Selection of the best function and 

196 a related boundary line analysis are described in SI (S2.7).

197

198 Results

199 Climatic parameters

200 Annual mean air temperature and precipitation in the experimental year (2016-2017) 

201 were 14.1 ℃ and 679 mm, respectively (Figure S4 a), leading overall to warmer and 

202 wetter conditions compared to the corresponding long-term (1981-2015) averages of 

203 13.0 ℃ and 540 mm at the study site (Figure S23 a). The summer period (June-

204 September) in 2016-2017 had consistently higher air temperature (25.8 ℃) and far 

205 higher precipitation (553 mm) in relation to the average of 24.5 ℃ and 427 mm between 

206 1981and 2015 (Figure S23 a). An extreme rainfall event of 253 mm occurring on 20 

207 July accounted for 37% of the annual precipitation in 2016-2017 (Figure S4 a). 

208 Although the total annual precipitation in 2016-2017 was not exceptional, the extreme 

209 rainfall event was the highest daily precipitation since 1981 and was nearly 2-8 times 

210 higher than other recorded maximum daily precipitation events between 1981 and 2015 

211 (Figure S23 c-d). Total precipitation exceeding 300 mm in July is highly unusual and 

212 has only happened with a frequency of 6% over the past 35 years (Figure S23 b). The 

213 winter period (December-February) was distinctly colder and drier than the summer 
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214 with a mean air temperature of 0.3 ℃ and precipitation of 5.6 mm in 2016-2017, which 

215 were similar to the corresponding long-term (1981-2015) averages of -1.3 ℃ and 9.2 

216 mm, respectively (Figure S23 a). Annual evaporation in 2016-2017 was 1336 mm, 

217 including 533 mm occurring in summer (June-September) nearly equivalent to 

218 precipitation while evaporation during winter (December-February) was 190 mm and 

219 far greater than the precipitation.

220 Soil temperature at 10 cm depth tended to reflect air temperature, except in spring 

221 (April-June) when it was slightly lower than air temperature (Figure S4 a). Soil WFPS 

222 was between 60% and 75% following irrigation in April and November, and the 

223 extreme rainfall in July (Figure S4 b). Irrigation in May and June, and frequent light 

224 rainfall in the summer period resulted in a lower WFPS within the range of 40-60% 

225 owing to high rates of evaporation and transpiration. Drier soil moisture conditions in 

226 which WFPS dropped down to values between 20-30% occurred episodically from late 

227 April to middle September when there was no irrigation or precipitation. The relatively 

228 high temporal heterogeneity of climatic factors in the study year provided advantaged 

229 good platform for testing our hypotheses. Dynamics of soil matrix (mineral N, pH, 

230 organic C and N), crop aboveground biomass, N uptake and grain yield are described 

231 in SI (S3.1-S3.2).

232

233 Concentrations of soil O2 and N2O 

234 Clear patterns of soil O2 depletion and concurrent N2O production occurred in N 

235 treatments following fertilization with subsequent irrigation or precipitation (named as 
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236 Fer.+Irr./Pre. event in this study) in the field (Figure 1 a-b, d-e). In particular, the 

237 extreme rainfall following fertilization on 20 July 2016 resulted in the lowest O2 

238 concentration of 6% and highest N2O concentration up to 140 μL L-1 in Ncon under 

239 waterlogging conditions, even though less N fertilizer was applied at this event 

240 compared to others, which normally led to an O2 concentration of 15% to 18% and a 

241 N2O concentration of between 5 μL L-1 and 35 μL L-1 in N treatments under aerated 

242 soil conditions. The fertilization occurring separately (Fer. event) reduced the O2 

243 concentration to 18.3-18.5% and led to N2O peaks of 5.2-5.9 μL L-1 in Ncon, Ncon+S and 

244 Nbal+M+S when the WFPS ranged between 40-45% on 6 August 2016. Irrigation or 

245 precipitation (Irr./Pre. event) slightly decreased soil O2 concentrations to 19% but did 

246 not stimulate N2O production except when the irrigation on 21 June 2016 was followed 

247 by continuous rainfall which reduced O2 concentrations to 17.2% and brought about a 

248 small N2O pulse of 8.1 μL L-1 in Ncon+S. Only when fertilization was coupled with 

249 irrigation or precipitation, were there intense episodes of soil O2 depletion resulting in 

250 increased N2O production.

251 Based on the results of a multi-way ANOVA analysis, we found that agronomic event 

252 (E), N rate (N) and their interactions (E*N) were the significant management factors 

253 regulating soil O2 and N2O concentrations in the plough layer (P<0.05) (Table S6). On 

254 average across all treatments, Fer.+Irr./Pre. event reduced the soil O2 concentration to 

255 16.8% which was significantly lower than the concentration of 19.5% in both Fer. and 

256 Irr./Pre. events and 20.4% at other time (P<0.05) (Table S7, Figure 2 a). The 

257 corresponding average soil N2O concentration following Fer.+Irr./Pre. event was 10.5 
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258 μL L-1 which was up to 4-15 times higher than that in Fer. (2.4 μL L-1) and Irr./Pre. (0.9 

259 μL L-1) events and other time (0.7 μL L-1) (Figure 2 b). Intriguingly, soil O2 and N2O 

260 levels matched well with N rates under the Fer.+Irr./Pre. event. Mean soil O2 

261 concentration declined from 17.9% to 17.2% and 16.0% as N rates increased from zero 

262 to optimum and conventional, respectively, and the relative soil N2O concentration in 

263 these three N levels were 1.3, 7.5 and 22.8 μL L-1 (Table S10, Figure 2 d-e). However, 

264 when Fer. or Irr./Pre. events occurred, soil O2 concentration ranged from 19.4%-19.7% 

265 showing no significant difference between N rates, and N2O concentration remained 

266 low (4 μL L-1) even with conventional N input (Tables S8-9). This was probably 

267 because there was an ample O2 supply from the atmosphere under the soil dry 

268 conditions of the Fer. event. In the Irr./Pre event without N additions, a weak O2 

269 depletion indicated that the air-filled porosity physically replaced by water could 

270 recover instantly.

271 Therefore, a small depletion in the soil O2 concentration could still be a strong 

272 environmental trigger for disproportionate N2O production, especially when there were 

273 sufficient available substrates and moisture caused by the Fer.+Irr./Pre. event. Our 

274 results indicate that soil O2 depletion is the proximal and direct driver underlying the 

275 effects of climate and management factors on N2O production. See S3.3 in SI for 

276 concentrations of soil CO2 and CH4.

277

278 Correlations between soil O2 and N2O concentrations

279 Soil O2 concentration, temperature, WFPS, and NH4
+ concentration were significant 
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280 environmental factors controlling N2O production in the studied upland soil under field 

281 conditions (P<0.01) (Table S11). However, soil O2 concentration was the strongest 

282 factor correlating with N2O concentrations (r=-0.71) when compared to temperature, 

283 WFPS and NH4
+ content (r=0.30, 0.25 and 0.26, respectively). The strength of the 

284 correlations between soil O2 and N2O concentrations was evidently affected by 

285 agronomic event, N rate, and crop season, but not by straw and manure applications. 

286 Regarding agronomic event, soil O2 and N2O concentrations were the most closely 

287 correlated under Fer.+Irr./Pre. event (r=-0.68) when compared to Irr./Pre., Fer. and 

288 other time (r=-0.55, -0.41 and -0.31, respectively). The correlations under conventional 

289 and optimum N rates were similar (r=-0.89 and -0.86, respectively) but were much 

290 larger than the strength in zero N rate (r=-0.56). The correlation between soil O2 and 

291 N2O concentrations in maize (r=-0.68) was greater than that in wheat (r=-0.45). The 

292 widely different correlation coefficients indicated that soil N2O production would be 

293 exclusively dependent on soil O2 concentration when soil temperature, moisture and 

294 NH4
+ substrate were not limiting in the Fer.+Irr./Pre. event, N treatments and maize 

295 growth season. 

296 Using stepwise multiple regression analysis between soil environmental parameters 

297 and N2O concentrations, regression models derived from all the measurement data 

298 within the study year showed that soil O2 concentration was the most significant 

299 variable (P<0.01) rather than temperature and WFPS (Table S12). Soil O2 concentration 

300 alone could explain 49-84% of the variance in soil N2O concentration, and the 

301 explanation of variance was only marginally improved by adding soil temperature and 
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302 WFPS. The regression model of conventional N treatment which simultaneously 

303 included soil O2 concentration, temperature and WFPS as variables provided a 

304 prediction of soil N2O concentration which was very close to the in situ observed values 

305 (Figure S8).

306 Given the strong correlations between soil O2 and N2O concentrations, we further 

307 explored the response of soil N2O concentration to soil O2 concentration throughout the 

308 experimental period. Generally, soil N2O concentration increased as soil O2 

309 concentration decreased and this response was best fitted by an exponential model 

310 (Table S13, Figure S9). The N2O production rate per unit O2 of depletion (slope of the 

311 curve) was relatively low (less than 6 μL L-1 N2O per unit O2 depleted) at O2 levels 

312 higher than 12%, but below this point the rate increased steeply to 23 μL L-1 N2O per 

313 unit O2 depleted as O2 concentration was reduced to 6% (Figure 3 a). Thus, we infer 

314 that an O2 concentration of 12% in bulk soil air might be a critical transition point 

315 between the dominance of aerobic versus anaerobic processes in structured field soils. 

316 The exponential model for zero, optimum and conventional N rates explained 31%, 74% 

317 and 90% of the variance in soil N2O concentration, respectively (Figure 3 b). As soil 

318 O2 concentration decreased from 21% to 10%, soil N2O concentration increased from 

319 zero to 2, 20 and 60 μL L-1 in zero-, optimum- and conventional-N rate, respectively. 

320 Similarly, the exponential model performed better in Fer.+Irr./Pre. (R2=0.58) than in 

321 Irr./Pre. (R2=0.34), Fer. (R2=0.17) and other time (R2=0.10) (Figure 3 c). Soil N2O 

322 concentration rose by up to 40 μL L-1 when soil O2 concentration was reduced from 

323 21% to 10% in Fer.+Irr./Pre., but there was no significant increase in Fer., Irr./Pre. and 
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324 other time when the soil O2 concentration was above 16%. This indicated that the 

325 exponential increase in soil N2O concentration responding to soil O2 depletion was 

326 more robust under high inputs of N and water, which provided implications for new 

327 approaches to simulation and mitigation of N2O in agricultural soils. 

328

329 Discussion

330 Understanding O2 dynamics in upland agricultural soils

331 Field measurements of soil O2 and N2O concentrations demonstrated a highly dynamic 

332 temporal and spatial pattern which was driven by changes in climate and management. 

333 Precipitation and irrigation alter soil O2 concentration mainly through physical 

334 replacement of soil air by water which significantly slows down O2 diffusion in the 

335 water phases.32-34 In saturated layers, the O2 diffusion rate would be reduced to 1/10000 

336 of that in air, which could not replace the microbial consumption of O2, leading to the 

337 reduced redox potential at the centre of aggregates stimulating denitrification in these 

338 microsites.11 Field observations in upland forest soils have demonstrated this concept,13 

339 and modelling has shown that the anaerobic fraction of soils can account for 10% of 

340 soil volume at 65% WFPS but increase sharply once the WFPS exceeds 80%.35 

341 Fertilization coupled with irrigation or precipitation simultaneously promotes 

342 microbial O2 consumption and physical inhibition of O2 diffusion.14 Soil waterlogging 

343 driven by extreme rainfall can cause severe O2 depletion in soil even without N addition 

344 as shown by the lowest O2 concentration of 7% in the control treatment in our study. In 

345 these circumstances O2 can remain low until gas exchange recovers with soil 
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346 drainage.13,15 Although a completely anoxic bulk soil environment did not develop in 

347 our study and there were few observations with extremely low O2 concentration (Figure 

348 3), the oxic, hypoxic and completely anoxic microsites might nevertheless co-exist in 

349 the soil.19 Once the concentration of O2 fell below the intermediate value of 12% N2O 

350 production increased sharply following fertilization coupled with irrigation or 

351 precipitation (Figure 3 a). Therefore, we speculate that the generated N2O resulted from 

352 a combination of nitrification, denitrification and coupled nitrification denitrification 

353 that occurred simultaneously in the soil matrix.36-37 

354 Studies in repacked soils have shown that anaerobic microsites appear surrounding 

355 added fertilizer N, organic matter, plant residue and rhizosphere, or within soil 

356 aggregates in well-structured soils.37-41 Fragments of plant residue can also be anoxic 

357 by absorbing water from adjacent soil41 (See S4.1 in SI for formation mechanisms of 

358 anaerobic microsites in soils). These anaerobic microsites may facilitate significant 

359 N2O production by inducing denitrification and coupled nitrification denitrification, 

360 which has been taken into account in some modelling approaches.9-11 In spite of the 

361 observations from laboratory studies, soil microsite development and measurements of 

362 O2 concentration have rarely been reported in the field. The conceptual scheme to 

363 visualize O2 diffusion, transformations of C and N substrates in well-structured soils 

364 under different moisture conditions are described in SI. 

365 Ammonia oxidation, the first step of nitrification, actively consumes soil O2, which 

366 has been shown to increase linearly as urea input increases in a robotized incubation 

367 experiment using similar soil, implying it could be another important reason for O2 
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368 depletion in the soil matrix.42 Urea or ammonium-based fertilization actively consumed 

369 O2 in soil especially at high N rates by ammonia oxidation.42 Our results showed that 

370 O2 consumption proceeded on a similar time-scale and trend between N rates, but was 

371 smaller than that reported by Huang et al42, probably because the O2 supply in the field 

372 could be replenished from the atmosphere. This process of replenishment was also 

373 reported by Zhu et al37 from the calculated O2 consumption by nitrification that far 

374 outweighed depletion of O2 in soil. In a pasture field, soil O2 concentration at 10 cm 

375 depth showed diurnal variation and reached a minimum of 13% after urine application 

376 together with irrigation but recovered to the pre-application level only after 24 h.16 

377 Similarly, as a consequence of biochemical reactions and supply by diffusion, soil O2 

378 concentration may vary significantly on a diurnal basis, as shown by our results.14-15  

379

380 Role of O2 in regulating N2O production in situ

381 Oxygen plays a critical and yet poorly understood role in regulating N2O production in 

382 well-structured upland agricultural soils. From the perspective of nitrogen cycling, O2 

383 concentration in the soil pore space is a key controlling factor of the nitrification process 

384 (oxidation of ammonium to nitrate) by nitrifying organisms. Insufficient O2 will lead to 

385 the incomplete oxidation of ammonium to nitric oxide and nitrite instead of nitrate. This 

386 may increase the risk of N2O loss through nitrifier denitrification and coupled 

387 nitrification denitrification in soil.

388 Several previous pure cultures and soil microcosm studies have identified the role of 

389 O2 in regulating N2O production under laboratory conditions,12,20-22,42 see S4.2 in SI for 
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390 detailed mechanisms. In a clay loam soil amended with urea, N2O production increased 

391 by a factor of 19 as O2 concentration decreased from 21% to 3%.12 Previous studies 

392 based on field measurements consistently point to a significant correlation between O2 

393 concentration and N2O production in soils of various textures and environments,15,17,19 

394 although the data is still highly limited and inadequate to establish a robust empirical 

395 response of N2O to O2.

396 Our results established the inverse relationship between O2 concentration and N2O 

397 production in upland agricultural soils. The nonlinearity of the O2-N2O relationship 

398 suggested that N2O was generated from a complex combination of source processes. 

399 Nitrification involving nitrifier nitrification, nitrifier denitrification and coupled 

400 nitrification denitrification, are the main sources of N2O in NH4
+ or urea based fertilizer 

401 amended soil especially under limited O2 conditions.12,20-21,42-43 Nitrifier denitrification 

402 can account for the majority (up to 60-70%) of total N2O production and far exceed that 

403 from nitrification and coupled nitrification denitrification in soils that have received 

404 urea or NH4
+-N fertilizers.12,42 However, the absolute amount of N2O produced by 

405 nitrifier denitrification increased 50 to 80-fold as the O2 concentration was reduced 

406 from 21% to 0.5%.12,20 Khalil et al22 established a regression (R2=0.94, n=25) of O2 

407 consumption rates versus nitrification rates under five O2 concentrations between 0.8% 

408 and 20.4% with a slope of 2.02±0.12 mol O2 consumed per mol N nitrified. This was 

409 almost equivalent to the theoretical value for O2 consumption by nitrification (2 mol O2 

410 per mol N), implying that the amount of O2 consumed as per unit of N that was nitrified 

411 was relatively constant over a wide range of O2 concentration. They also found that the 
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412 production of N2O by nitrification (i.e. the amount of N2O-N evoked per unit N nitrified) 

413 increased rapidly by a factor of 9 when O2 concentration fell from 20.4% to 0.8%. These 

414 findings suggested that the yield of N2O per unit O2 consumed by nitrification increased 

415 many times as the O2 concentration was reduced. This implies that nitrification plays a 

416 dominant role in N2O production and that the ratio of N2O emitted in nitrification 

417 increases with O2 depletion.

418 Although heterotrophic denitrification occurs mainly in totally anoxic environments, 

419 this pathway might also make a contribution to the exponential N2O increase, 

420 considering that pure heterotrophic denitrification under anoxic conditions produces 3-

421 9 times more N2O than other processes under low O2 conditions.12,22 There have been 

422 studies showing that N2O emissions can increase exponentially as anoxic conditions 

423 develop around the applied manure in soils, probably by denitrification.37,44 In field 

424 environments, heterotrophic denitrification might proceed in anaerobic microsites or 

425 soil aggregates as discussed previously, especially when extreme rainfall or irrigation 

426 events result in soil waterlogging.41 In addition, short term expression of denitrifying 

427 enzymes under anoxic conditions induced by transient flooding could lead to so-called 

428 aerobic denitrification with N2O as a main end-product during the recovery of soil O2 

429 concentration.36 Nitrate is a more favorable electron acceptor for denitrifiers than N2O, 

430 so N2O generated from heterotrophic denitrification would not normally be reduced 

431 further to N2 in soils containing ample NO3
-. Nitrate accumulated in our studied soils, 

432 which might have increased emissions of N2O from heterotrophic denitrification.12,45-47 

433 The gradual increase in N2O concentration per unit of O2 reduced also suggests a 
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434 progressively increasing contribution of heterotrophic denitrification to N2O generation 

435 in our study.

436 The exponential response of N2O production to soil O2 depletion was more 

437 significant under high rates of N with irrigation or precipitation. It could be speculated 

438 that ammonia oxidation with abundant NH4
+ rapidly consumed soil O2 and accumulated 

439 NO2
- (the substrate for nitrifier denitrification), and irrigation or precipitation 

440 contributed directly to O2 depletion, leading to anoxic conditions and promoting 

441 nitrifier denitrification, coupled nitrification denitrification or heterotrophic 

442 denitrification. 

443 The characteristics of the climate, soil and cropping system in this study are widely 

444 distributing across the world’s farmlands, such as the well-known corn belt in the US 

445 Midwest.48-49 Such cropping systems are subject to intensive management involving 

446 high inputs of N fertilizers, and the results of this study therefore help understand the 

447 underlying mechanism linking such management to N2O production.50 Maize is a 

448 particularly important crop in this context and our results therefore have a direct 

449 relevance to N2O production in such cropping systems at the global scale .51 Thus, the 

450 established relationships between O2 and N2O concentrations should represent and 

451 could be used in modelling global agricultural soils, particularly alkaline soils, with a 

452 clay loam texture and a low organic carbon content.

453 Understanding the role of O2 in regulating N2O production is central to improving 

454 efficiency of C, N and water management.52 We propose that avoiding severe O2 

455 depletion is the key to reducing N2O formation in agricultural soils. Adopting optimum 
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456 rates of fertilization and irrigation which meet the crop demand, and applying improved 

457 water management using drip or sprinkle irrigation rather than flooding could be 

458 options maintaining soil aeration.53-54 Extreme rainfall caused the largest O2 depletion 

459 and N2O production even with low N rates, which highlight the linkage between climate 

460 and management factors on N2O production.50 This enhancement of intense episodes 

461 of O2 depletion facilitating increased N2O production will feed back to extreme weather 

462 events under future global change.

463

464 Comparison between WFPS and O2 as a predictor for N2O production

465 Soil moisture has been widely adopted as a proxy of O2 availability, and our results also 

466 showed that soil O2 concentration decreased quadratically with increases in WFPS 

467 (Figure S16 a). However, the changes in WFPS explained only 19% of variance in soil 

468 O2 concentration, which indicated that WFPS could not be an effective predictor for 

469 soil O2 concentration in the field. This is because soil O2 changes not only depend on 

470 soil moisture but also on soil structure and biological respiration. The calculation of 

471 WFPS does not take into account the distribution of macropores and micropores, the 

472 effects of pore connectivity and tortuosity on gas diffusion, and thus could not reliably 

473 predict microsite O2 concentration.12,55 Soil WFPS also poorly predicted the soil N2O 

474 and CO2 concentrations by weak Gaussian functions (R2=0.05-0.11) in our study 

475 (Figure S16 b, S17 b). Measurements in a wetland soil suggested that O2 was the 

476 dominant predictor for N2O production.8 Hall et al56 suggested a need to decouple soil 

477 moisture from O2 availability for predicting production of trace gases, and to re-
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478 evaluate the representations of moisture in N2O models, because water addition 

479 generated high spatial and temporal variation in soil moisture without significant effect 

480 on soil O2 concentration, and the redox-sensitive GHGs (CO2, CH4, N2O) displayed a 

481 weak, non-deterministic relationship with moisture in the forest soil. The predictions of 

482 other soil environmental parameters for N2O production are discussed in SI (S4.4).

483 The optimal soil water content (calculated from the regression or boundary line 

484 equations) for production of N2O and CO2, and consumption of O2 in our study was 

485 consistently around 60% WFPS. This intermediate water content was surprisingly same 

486 as that deemed to be optimal for aerobic processes, e.g. nitrification, O2 uptake and CO2 

487 production by microbial respiration, and also the threshold inducing anaerobic 

488 denitrification in the previously established classic conceptual model of the relation 

489 between soil water content and microbial activity.56 In that model, the optimal value of 

490 60% WFPS represented the intersection of increasing availability of C and N and 

491 decreasing availability of O2. Conceptually, a soil moisture of around 60% WFPS offers 

492 favorable conditions for aerobic processes (e.g. nitrification) when the diffusion of both 

493 substrates and gases (O2) are not restricted.55,57 The optimum conditions for N2O 

494 emissions via denitrification are considered to exist within 70-90% WFPS.12,57-58 The 

495 consistency between our observations and the conceptual optimal soil WFPS model 

496 explains the tight link between soil N2O (or CO2) and O2 concentration induced by the 

497 complex combination of source processes in soil. See S4.3 in SI for correlations 

498 between soil O2 and CO2 concentrations.

499 WFPS is calculated using total porosity and defined as the proportion of the total 
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500 pore space filled with water, and hence the actual fraction of the entire soil volume 

501 filled with water or air may differ across soils with different total porosities whilst 

502 having the same WFPS.59 Therefore, WFPS cannot be considered as a single measure 

503 to describe the effects of soil water on all processes and should not be applied across 

504 soils with varying bulk density, texture and structure.56 WFPS must be combined with 

505 other structural parameters to adequately predict diffusion in soils. These include 

506 descriptions of soil structure, tortuosity and connectivity, especially when up-scaling 

507 models to regional or continental scales.59 By contrast, O2 is a more universally 

508 predictive measure given that it is the direct factor regulating the various processes 

509 generating N2O no matter where the site or what the climate is. Our results provide 

510 future opportunities for the utilization of soil O2 concentration to predict N2O emission 

511 more efficiently when dealing with the complicated and interacting factors of climate, 

512 soil, agricultural managements, growth of plant and microorganisms under real field 

513 conditions. See S4.5 in SI for implications of considering O2 effects into modeling for 

514 better N2O prediction.
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728 Figure Captions

729 Figure 1. Dynamics of soil oxygen (O2) (a, d), nitrous oxide (N2O) (b, e) and carbon 

730 dioxide (CO2) (c, f) concentrations at 7-20 cm depth during the period from April 2016 

731 to April 2017. N0, Nopt, Ncon and N0+S, Nopt+S, Ncon+S represent the zero, optimum and 

732 conventional N treatments with and without straw removal, respectively. Nbal+M+S 

733 represents the N balanced treatment with manure and straw return. Solid and dashed 

734 arrows represent fertilization and irrigation events, respectively. Vertical bars in (a)-(f) 

735 indicate standard errors (n=6).

736

737 Figure 2. Average reduction in soil oxygen (O2) concentration compared with the 

738 calibrated background O2 concentration in soil air (20.9%), average soil nitrous oxide 

739 (N2O) and carbon dioxide (CO2) concentrations at 7-20 cm depth under different 

740 agronomic events (a-c) or in different N rates under the Fer.+Irr./Pre. event during the 

741 period from April 2016 to April 2017. Fer., Irr./Pre., Fer.+Irr./Pre. and Others represent 

742 the data covering all treatments measured under fertilization, irrigation or precipitation, 

743 fertilization with irrigation or precipitation and other time, respectively. Fer. or 

744 Fer.+Irr./Pre. include measurement data in 10 days following the fertilization. Irr./Pre. 

745 includes data in 7 days following the irrigation or precipitation. Zero, Optimum and 

746 Conventional refer to the zero (N0, N0+S), optimum (Nopt, Nopt+S) and conventional 

747 (Ncon, Ncon+S) N treatments, respectively. Vertical bars in (a)-(f) indicate standard 

748 errors (n=42 in a-c, n=12 in d-f). Different letters above each bar indicate significant 

749 difference between events or N rates at P<0.05. Values of the columns and standard 
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750 errors are shown in Table S7 and S10.

751

752 Figure 3. Response of soil nitrous oxide (N2O) concentration to soil oxygen (O2) 

753 concentration at 7-20 cm depth based on all the measurement data (a), data of different 

754 N rates (b) or agronomic events (c) during the period from April 2016 to April 2017. 

755 Zero, Optimum and Conventional in (b) are same as that in Figure 2. Fer., Irr./Pre., 

756 Fer.+Irr./Pre. and Others in (c) represent the same as that in Figure 2. Detailed response 

757 equations and the 95% confidence interval (CI) for (b) and (c) are shown in Figure S12 

758 and S13, respectively. Significance level: **P<0.01.
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