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Abstract. Starting from the Standard Model (SM) of elementary particle physics, we 

assume that new physics effects can be encoded in higher-dimensional operators added 

in the SM Lagrangian. The resulting theory, the SM Effective Field Theory (SMEFT), is 

then used for high-accuracy phenomenological studies. Through this paper, the di-

photon decay of the Higgs boson is used as a sample of a concrete calculation in the 

SMEFT framework. 
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1. INTRODUCTION 

The Standard Model (SM) is a quantum field theory, with the Lagrangian to consist of 

all possible renormalisable operators (those with dimension  ).
1
 Here we are interested 

in the SM as an Effective Field Theory (Weinberg, 1979), or SMEFT for short.
2
 If we 

assume that new physics lies not too far from the electroweak scale, to be capable of 

affecting the lower-energy physics, we could write an effective Lagrangian of the SM as  

            ∑ ∑
    

   
 
     

     
   (1) 

where     is the usual renormalisable SM Lagrangian,   is the energy scale of the high-

energy theory,     ’s are the Wilson coefficients of the non-renormalisable operators and the 

sum over   runs over all possible operators of dimension    ,   
   

. In the following 

sections, for simplicity, we will absorb the energy scale in the Wilson coefficients. A list of 
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all independent non-renormalisable operators of dimension up to 6 was given in Ref. 

(Grzadkowski et al., 2010). The SMEFT with up to dimension-6 operators in that basis was 

quantised in Ref. (Dedes et al., 2017) in linear   -gauges, and the full set of Feynman rules 

was presented there for general  ’s.  
It is convenient to use this explicit set of Feynman rules in order to calculate various 

amplitudes that are related to physical observables. Then, using recent experimental data 

we can set bounds on the Wilson coefficients, and finally gain insight into what the 

characteristics of a beyond the SM physical theory should be. An example of such an 

analysis has been accomplished in Ref. (Dedes et al., 2018), where the Higgs di-photon 

decay,     , was analysed in depth. A simple renormalisation scheme was presented, 

and the resulting amplitude was proved to be finite, independent of the renormalisation 

scale, gauge-choice invariant, and to respect the Ward identities of the theory. Furthermore, 

numerical results and bounds on the Wilson coefficients were provided, giving some first 

hints about possible high-energy models. Here we focus our attention on a subset of the 

operators appearing on the Higgs di-photon decay in SMEFT and present the calculational 

details in a pedagogical manner. 

2. THE DECAY      IN SM 

Let us briefly review the SM calculation for the      decay in linear   -gauges for 

arbitrary  . We will present the results and gain some insight for parts of the SMEFT 

calculation. The result for the      amplitude in SM was first given in Ref. (Ellis et 

al., 1976) in the limit of small Higgs mass, and later for arbitrary Higgs mass in Refs. 

(Shifman et al., 1979; Bergstrom and Hulth, 1985). In all of the above references, the 

calculation was accomplished in linear (and non-linear for the later references) Feynman 

gauge. A calculation in linear   -gauges for arbitrary   was given in Ref. (Marciano et 

al., 2012). Thus far, Dimensional Regularisation (DR) has been used in all of the above 

works to handle divergent loop integrals. A detailed calculation of the amplitude in 

strictly four-dimensions was given in Ref. (Dedes and Suxho, 2013), proving the validity 

of the DR approach. 

2.1. SM results 

We assign to the momenta of the outgoing photons    and    and Lorentz indices   

and  , respectively. As a consequence of gauge invariance, the amplitude should respect 

the Ward identity and, therefore, the Lorentz structure of the amplitude is expected to be 

       
     

   
 

. It is convenient to introduce the following abbreviations: 

            
     

   
 
          

       
       (2) 

where    is the polarisation vector of an outgoing photon. Our results presented here are 

in agreement with the results found in the literature.  
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Fig. 1 Diagrams contributing to      in the gauge sector in linear   -gauges in SM. 

Note that for diagrams (c) to (m) we have to multiply the result by 2 to account for 

the crossed diagrams. Also, an extra factor of 2 is needed in diagram (e) to account 

for the charge conjugated diagram. 

The Feynman diagrams for the SM calculation are depicted in Fig. 1, where curly 

lines represent   -bosons, dashed lines represent   -bosons and dotted lines stand for 

ghosts (here we are mostly interested in the gauge-invariance of the result, so we are 

going to ignore the fermionic contributions altogether). The SM result can be found by 

adding the diagrams in unitary gauge, that is, diagrams (a) and (f) of Fig. 1 with the   -

boson propagator evaluated in unitary gauge. The result is  

      
        

                
 [                ]  (3) 
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where   and    are the SM SU(2) and U(1) couplings,   is the vacuum expectation value 

of the theory,      
    

  and      is given by 

      {
       (

 

√ 
)                              

 
 

 
*   (

  √   

  √   
)    +

 

     
  (4) 

Let us also give here the scalar QED result (diagrams (b) and (g)),   

      
          

               
 [         ]  (5) 

where   is the gauge-fixing parameter, λ is the Higgs quartic coupling,      
    

  

and the function   is given by eq. (4). Both results are seen to respect the Ward identities 

and be finite, as expected. In what follows we will call the rest of the result (i.e. full result 

minus the unitary gauge) the  -dependent result, for obvious reasons. 

2.2. The  -dependence 

After going through a straightforward calculation, one can easily see that the divergent 

parts of both the unitary gauge and the  -dependent diagrams integrate analytically to zero. 

To see that the finite  -dependent part integrates to zero is a by far more difficult task, since 

the results are long and the integrals complicated. After a laborious calculation, and by 

using the SM relations between coupling constants and particle masses, 

    √        
 

 
    (6) 

one can prove that the  -dependent part analytically cancels. 

It is worth noting that we did not make use of the SM relations (6) to derive results (3) 

and (5). So, these infinite terms cancel also in SMEFT. In fact, the parameter   appears 

only through the triple       interaction vertex, therefore being present only in scalar 

QED (diagrams (b) and (g)) and in the diagram (h). Now notice that scalar QED is 

automatically finite, and that (h) is finite by naive power counting. That is important 

since we immediately see that contributions from the operators   ,     and     that 

appear explicitly only in Higgs vertices are automatically finite, since   is just rescaled 

with respect to the SM case. 

3. THE DECAY      IN   -GAUGES IN SMEFT 

3.1. Introduction 

Let us now move on to discuss the process      in linear   -gauges for arbitrary   in 

the SMEFT. The calculation for the      decay in the SMEFT was first accomplished in 

Refs. (Hartmann and Trott, 2015a; Hartmann and Trott, 2015b), using the background field 

method. Here we present only a small subset of the      calculation; for the complete 

analysis see Ref. (Dedes et al., 2018) (see also Ref. (Dawson and Giardino, 2018) that 

recently appeared in the literature). We prove that, for each Wilson coefficient, all  -
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dependent terms cancel among themselves, therefore proving that SMEFT respects gauge 

invariance, and we give the analytic results of our calculation. 

3.2. Calculational details for each operator 

Each operator has its own special features when it comes to the calculational details. 

Therefore, we are going to briefly review everything needed for one to reproduce the 

result. We are not going to write down the intermediate results since these are quite 

lengthy and not that enlightening for one to understand the calculational steps. In what 

follows, we sometimes refer to the “SM result”. By that, we mean the result one finds by 

calculating the amplitude having fixed all the explicit Wilson coefficients to zero but 

leaving everything else intact.  

3.2.1.    

The first operator we are about to discuss
3
 is also the simplest one. The operator    

appears explicitly only in the triple       vertex, therefore contributing only in diagrams 

(b) and (g) (the scalar QED diagrams) and diagram (h) of Fig. 1. That means that there are 

no diagrams in the unitary gauge, and, since we expect the result to be gauge invariant, the 

amplitude should vanish in every gauge. That is what we are about to verify. 

One can perform this calculation easily starting from the SM result, as described in 

Section 2. The interacting vertex       goes from its SM value,     , to        , so 

we have to modify scalar QED and diagram (h) by replacing         . After that 

change, we substitute the masses in the amplitude with their SM values making an error 

only in the second order in the Wilson coefficients, since everything is multiplied by   . 

Now, that makes the explicit contribution, which is non-vanishing (but of course finite, as 

we explained in Subsection 2.2). 

There are also implicit contributions, coming from the Higgs mass (Dedes et al., 2017) 

   
      (          

 

 
    )     (7) 

To get implicit contributions, we have to Taylor expand the full  -dependent SM result 

around     , keeping terms linear in   . It is easy to see that this result is equal to 

minus the explicit one. Therefore, the result proportional to    is gauge invariant (and in 

that case, identically zero).   

3.2.2.     and     

These operators appear always together in the linear combination 

     
 

 
      (8) 

coming from the Higgs redefinition (Dedes et al., 2017) 

                                                           
3 There is a one-to-one correspondence between the non-renormalisable operators and the Wilson coefficients that 

multiply them. From now on we are simply going to call the operators by their Wilson coefficients, e.g. the phrase 

“the operator Ci” should be understood as “the operator that is accompanied by the Wilson coefficient Ci”. 
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        (9) 

where h is the physical Higgs field, and 

       
 (    

 

 
   )  (10) 

Therefore, it suffices to discuss only one of them, say    . It appears explicitly in all 

vertices involving the Higgs boson in Fig. 1. The       vertex goes from its SM value, 

    , to          , while all other vertices go from their SM value to       times their 

SM value. So, what we have to do is to rescale      in the SM result, and then multiply 

the new result by      . Finally, we substitute masses with their SM values, which results 

in an error in the second order in the Wilson coefficients since everything is multiplied by 

   . What we are left with constitutes the explicit contribution. Let us keep aside the 

unitary gauge result for the time being and focus our attention in the  -dependent part. We 

call this the explicit  -dependent result. 

Next, we consider the implicit contribution which has to cancel the explicit  -dependent 

result. That is coming from the Higgs mass, defined in eq. (7). We also use the exact 

formula    

    
 

 
    (11) 

A bar over the couplings   and    denotes that the couplings are SMEFT couplings 

(Dedes et al., 2017). Finally, we Taylor expand around      , keeping the terms linear 

in    . Once again, one can verify that the implicit result is equal to minus the explicit 

one, therefore the result proportional to     is independent of the   parameter, so this 

contribution is gauge invariant.  

Now that we proved the gauge invariance for the result proportional to these two 

Wilson coefficients, we are ready to give the actual result. This is simply the unitary 

gauge SM result (where now the VEV and the couplings are defined in SMEFT), 

multiplied by        
 

 
    , i.e. 

    
  
 
 
  
   

        
 
  
  
   
 ( 

   
 

 
   ) [                ]  (12) 

where      
    

  and      is given by eq. (4). 

3.2.3.    

Thus far we have considered only finite contributions. Let us now move on to an 

operator whose contribution is actually infinite. Of course, having infinite results in an 

amplitude representing a physical process means that we ought to use a renormalisation 

scheme, but that is beyond the scope of this paper. For a careful treatment of the 

renormalisation of      in SMEFT see ref. (Dedes et al., 2018). Here we simply note 

that the decay      in SMEFT  
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Fig. 2 Feynman diagrams contributing to    for the      decay in SMEFT. 

 

has a tree-level contribution, coming from a linear combination of three Wilson coefficients, 

namely 
        

          
              

     (13) 

where    is the SM weak mixing angle. Infinities, therefore, would be absorbed by the 

running of these coefficients. The beta functions of the Wilson coefficients at one-loop 

order in SMEFT are calculated in Refs. (Jenkins et al., 2013; Jenkins et al., 2014; Alonso 

et al., 2014). 

The operator    has no implicit contribution. The Feynman rules are lengthy and 

complicated but, thankfully, many simplifications occur due to the on-shell conditions. In 

Fig. 2 we present the Feynman diagrams that contribute to the decay      for the Wilson 

coefficient   . The particles in the loop are   -bosons (curly lines) and   -bosons 

(dashed lines). A square indicates that we consider only the part of the vertex proportional 

to   , whilst a dot denotes a SM vertex (zeroth order in the Wilson coefficients). We 

multiply by 4 the last two diagrams to account for the contribution of the charge-conjugated 

diagrams and of the crossed diagrams. 

After performing the actual calculation, one can prove that    is gauge invariant, and 

the result is given by 

    
   
 
 
  
    

     
 
  
  
 
*                (

  
 

  
)   √         (

 

√   
)+  (14) 

where   is the renormalisation scale,       with   being the dimensionality of space-

time in dimensional regularisation,                ,      
    

  and      is 

given in Eq. (4). As we claimed at the beginning of this section, the result is infinite, with 

the infinite part given by 

              
   
 
 
  
    

     
 
  
  
 

 

 
  (15) 

We verified that our result for the infinite part of the    contribution is in agreement 

with the beta functions from Ref. (Alonso et al., 2014). 

4. CONCLUSIONS AND DISCUSSION 

Due to its high-energy-model agnostic nature, the SMEFT is  a very useful framework 

for the phenomenological study of beyond the SM physics. It is remarkable how the data 

provided by low-energy physics experiments can carry the remnants of physics at a 

(much) higher-energy scale ─ even if we have no direct findings of new physics, e.g. the 

discovery of new particles or forces ─ and SMEFT takes advantage of that feature. 
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Here we presented a sample of how detailed calculations can be performed in the 

SMEFT framework, by considering the      decay. The full treatment of the 

aforementioned process can be found in Ref. (Dedes et al., 2018). There, we calculated 

the      decay in general   -gauges using a convenient renormalisation scheme. 

Numerically important deviations from the SM were found in a subset of the effective 

operators, and the corresponding Wilson coefficients were meaningfully constrained 

using the current precision of the LHC measurements for the Higgs di-photon decay. 

Therefore, the SMEFT framework seems promising and suitable for the study of the 

effects of new physics, given the current status in the elementary particle physics field. 
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DVOFOTONSKI RASPAD HIGSOVE ČESTICE  

U EFEKTIVNOJ TEORIJI POLJA STANDARDNOG MODELA 

Polazeći od Standardnog modela (SM) fizike elementarnih čestica, možemo pretpostaviti da 

efekti nove fizike mogu biti kodirani u operatorima viših dimenzija koji su dodati u lagranžijan 

Standardnog modela. Dobijena teorija, efektivna teorija polja Standardnog modela (SMEFT), je 

iskorišćena za fenomenološka razmatranja velike preciznosti. U ovom radu uzet je dvofotonski 

raspad Higsovog bozona kao primer konkretnog računa u okviru SMEFT. 

Ključne reči: Iza Standardnog modela, efektivne teorije polja 


