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Abstract
Halicephalobus is a clade of small, exclusively parthenogenic nem-
atodes that have sometimes colonized remarkable habitats. Given 
their phylogenetic closeness to other parthenogenic panagrolaimid 
species with which they likely share a sexually reproducing ancestor, 
Halicephalobus species provide a point of comparison for parallel-
isms in the evolution of asexuality. Here, we present a draft genome 
of a putatively new species of Halicephalobus isolated from termites 
in Japan.
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Panagrolaimidae are a nematode family represented by 
lifestyles under the most extreme environments known 
to animals, including desiccation (Ricci and Pagani 
1997; Treonis and Wall, 2005), freezing (Wharton and 
Barclay, 1993), and an unusual range of pH conditions 
(Peters, 1928). Phylogenetically close families that 
include important parasites of insects and vertebrates, 
Steinernematidae and Strongyloididae, respectively, 
have enjoyed considerable attention from sequencing 
efforts. However, free-living species of Panagrolaimidae 
have lagged behind, as have free-living species of 
Clade IV (sensu Blaxter et al., 1998) more generally. A 
major contribution to the genomics of Panagrolaimidae 
was the genome sequence of Panagrellus redivivus, 
a species championed for decades as a laboratory 
model for genetics and development, especially as a 
satellite to Caenorhabditis elegans (Srinivasan et al., 
2013). More recently, several species of Panagrolaimus 
have been sequenced to study the evolutionary 
signatures of parthenogenesis and tolerance of extreme 
environments (Schiffer et al. under review). To provide 
resources for another member of this nematode 
family, we present a draft genome for a strain of 
Halicephalobus.

Halicephalobus species are minute nematodes that 
often inhabit soil-like environments and are particularly 
well-known from organic-rich substrates (Andrássy, 
1984; Anderson et al., 1998; Steel et al., 2012). Also, 

like other panagrolaimids, these nematodes have 
been reported from demanding, unusual habitats. For 
example, H. gingivalis, typically a resident of soil and 
humus, is an opportunistic, blood-inhabiting pathogen 
of mammals, especially horses and occasionally 
humans (Anderson and Bemrick, 1965; Hoogstraten 
and Young, 1975; Blunden et al., 1987). Another 
species of this genus, H. mephisto, was discovered 
on microbial biofilms at depths of over three kilometers 
within the earth’s crust (Borgonie et al., 2011). The 
ability of Halicephalobus species to colonize such 
habitats suggests that comparative genomics of 
the genus may yield clues into the mechanisms 
enabling unusual lifestyles. It is possible that the 
mode of reproduction in all known Halicephalobus 
species, obligate parthenogenesis, also aids in the 
colonization of new, sometimes extreme habitats, by 
requiring only a single individual to found a population. 
Because the common ancestor of Panagrolaimus 
and Halicephalobus was most likely gonochoristic 
(dioecious) (Lewis et al., 2009), parthenogenesis may 
have evolved twice independently in these two genera. 
Consequently, the genome for a Halicephalobus 
species may reveal illuminating parallelisms in how 
asexuality influences genomic evolution.

Here, we have sequenced the genome of a 
Halicephalobus strain (NKZ332) isolated from termites 
in Japan. Because of the paucity of reliable diagnostic 
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morphology for the genus (Anderson et al., 1998), 
combined with the inability to test species boundaries 
through crossing experiments, assignment of a valid 
species binomial to this or other species of the genus 
is not infallible. Indeed, taxonomic revision of this 
genus will rely on molecular data (Nadler et al., 2003), 
interpreted in terms of evolutionary or phylogenetic 
species concepts (e.g., Borgonie et al., 2011). Based 
on bionomic evidence, specifically the nematodes’ 
colonization of rotting wood, the sequenced isolate 
herein would be best assigned to H. similigaster, a 
morphospecies known from Europe (Andrássy, 1952; 
Köhler, 2011). However, the present strain shows a 
sharp distinction in rRNA markers, specifically <95% 
similarity, from all other sequenced Halicephalobus 
isolates, particularly those from similar habitats in 
other locations (Foley et al., 2018). This similarity is 
much less than that between biological species in 
other nematode groups (Kanzaki et al., 2013; Félix 
et al., 2014). Given its molecular and geographic 
distinctness from other known Halicephalobus strains 
and morphospecies, the present strain likely has an 
evolutionary fate (sensu Wiley, 1978) separate from 
other nominal species. Therefore, we anticipate that 
molecular comparisons of Halicephalobus strains 
from both Europe and East Asia will support and 
delimit Halicephalobus sp. NKZ332 as a new species.

To sequence the genome of Halicephalobus sp. 
NKZ332, which we collected from xenic bacterial 
culture, we used the Illumina NextSeq platform to 
generate 75 million, 300-bp, paired-end reads of 150-
bp and 500-bp insert sizes. Reads were trimmed 
with Cutadapt (Martin, 2011) and error-corrected with 
Reckoner (Długosz and Deorowicz, 2017). We first 
used Minia (Drezen et al., 2014) to perform a preliminary 
single-end assembly, with which we validated insert 
size and screened for possible non-nematode 
contaminants using Blobtools (Kumar et al., 2013). 
We identified two contaminants, Stenotophomonas 
maltophilia at high coverage and Pseudomonas sp. 
at low coverage, both with a higher GC content than 
the predicted nematode scaffolds’ GC content (38%). 
We then assembled the genome using the SPAdes 
assembler (Bankevich et al., 2012) and removed 
scaffolds that were identified as contamination, at low 
coverage (<10×), or less than 500 bp in length. We 
made a first-pass annotation with the MAKER pipeline 
using evidence drawn from the Swiss-Prot database, 
the hidden Markov model (HMM) profile computed from 
GeneMark (Lukashin and Borodovsky, 1998), and the 
Augustus (Stanke and Waack, 2003) profile generated 
with BUSCO (Waterhouse et al., 2018). We then used 
the predicted genes from the MAKER output to train 
and run Augustus to produce the final annotation.

Our assembly of Halicephalobus sp. NKZ332 
spans 47 Mb in 5,085 contigs with an N50 of 60 kb. 
This assembly size is smaller than the genomes of 
most sequenced nematodes (International Helminth 
Genomes Consortium, 2018). Likewise, the assembly 
is much smaller than those of other Panagrolaimus 
species, whose genomes are ~140 to ~180 Mb in 
gonochoristic species and even larger (~230–270 Mb) 
in parthenogenic strains, which likely originated 
from an allopolyploidy event (Schiffer et al. under 
review). In our annotation, we predicted a total of 
11,023 genes with a mean of 1,511 bp in length. We 
assessed the completeness of the genome assembly 
using BUSCO (Simão et al. 2015), with which our 
annotation shared 83.2% (79.8% complete genes) of 
the nematode ortholog set. Given such representation 
of conserved orthologs in the annotation, the genome 
of Halicephalobus sp. NKZ332 is strikingly minimal. 
Finally, using the MITOS Web Server (Bernt et al. 2013), 
we assembled the mitochondrial genome sequence, 
which has a length of 13,886 bp and GC content 
of 20%.

In summary, we present a compact nematode 
genome representing a genus of small, parthenogenic, 
and ecologically opportunistic nematodes. The nuclear 
and mitochondrial genome sequences have been 
deposited in NCBI GenBank under accession numbers 
VOSG00000000 and MN207311, respectively. Raw 
reads have been deposited in the NCBI Sequence 
Read Archive (SAMN12324525).
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