
International Journal of Advanced Network, Monitoring and Controls Volume 03, No.03, 2018

DOI: 10.21307/ijanmc-2019-012 100

Research and Improvement of Apriori Algorithm Based on Hadoop

Gao Pengfei
a
, Wang Jianguo

b
 and Liu Pengcheng

c

School of Computer Science and Engineering

Xi'an Technological University

Xi'an, 710021, Shaanxi Province, China
a
gaopf1225@gmail.com,

b
wjg_xit@126.com,

c
294843945@qq.com

Abstract—Association rules can forcefully get a horizontal

relation in the big data, the Apriori algorithm is one of the

most significant association rules. Traditional mining based on

parallel Apriori algorithms needs much more time in data IO

with the increasing size of large transaction database. This

paper improves the Apriori algorithm from compressing

transactions, reducing the number of scans and simplifying

candidate set generation. And then the improved algorithm is

parallelized on the Hadoop framework. The experiments show

that this improved algorithm is suitable for large-scale data

mining and has good scalability and effectiveness.

Keywords-Apriori algorithm; Hadoop; Association rules

I. INTRODUCTION

In the context of the development of big data “spraying

wells”, there is frequently a close relationship between vast

amounts of data[1]. Analysis and decision making through

data mining have become the mainstream of social

development. In order to better find the relevance of

transaction data sets, some researchers have discovered the

concept of association rule mining technology[2]. With the

attention of many researchers at home and abroad caused by

the conception of the concept, they have done a lot of

analysis in this field and put forward many data mining

algorithms.

One of the most famous association rule algorithms is the

Apriori algorithm, which is a classic association rule

algorithm designed by Agrawal[3-4] in 1994. It is a

level-by-level search iteration method that constructs a

k-item set to constitute a k+1-item set. The main ideas of this

algorithm are: Firstly, all frequency sets are counted from the

transaction database, and the support of this frequent set

must not be less than the minimum support degree; Secondly

it enters into the process of strong association rule generation,

and the rules need to satisfy the support and confidence

thresholds at the same time; Thirdly, only all rules that

contain collection items are retained. Once these rules are

retained and generated, that are greater than or equal to the

MinConfidence.

The design of the Hadoop[5] framework originated was

from an open source project developed by the Apache

organization Foundation. Because of its inter-temporal

significance, the Hadoop framework has been widely used in

the information field at home and abroad. There are two

important modules in the Hadoop frame--Distributed File

System HDFS and Distributed Computing Frame

MapReduce[6]. As a distributed file system , HDFS

functions aims to implement data storage. It will work in

conjunction with the computational framework. MapReduce

works to provide the underlying support for data calculations;

And the idea of MapReduce[6-7] is based on a paper by

Google. In short, its core method is "the decomposition of

tasks and the statute of results."

II. BRIEF AND RESEARCH STATUS OF APRIORI ALGORITHM

A. Overview of Apriori algorithm

The Apriori algorithm is a level-by-level search iterative

method that consists of a k-item set to construct a (k+1)-item

set. First, obtain a frequent 1-item set. L1 can generate a

frequent 2-item set L2, and L2 can generate a frequent

3-item set L3. According to this rule, when a frequent k-item

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Exeley Inc.

https://core.ac.uk/display/233061342?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Journal of Advanced Network, Monitoring and Controls Volume 03, No.03, 2018

101

set cannot be found, the algorithm ends[8-9]. The specific

operation is as follows:

1) Iterate through the initial transaction database and

count the frequency of occurrence of the candidate set. The

result is the support of the project. All projects whose all

supports level no lower than the preset threshold generate a

frequent 1-item set L1.

2) The algorithm uses L1 JOIN L1 to form a candidate

C2-item set C2.

3) Using the items in C2, traverse the database again to

obtain the support degree of each candidate set. All projects

with support levels not lower than the support level generate

frequent 2-item set L2.

4) The algorithm uses L2 JOIN L2 to form a set C3 of

candidate 3-item sets.

5) Using the items in C3 to traverse the database again,

the support degree of each candidate set can be obtained.

All items with support levels not lower than the support level

generate frequent 3-item set L3.

The above process is performed iteratively until the

candidate set C k is empty. The Apriori algorithm does

multiple IO operations on the database. Each stage consists

of two parts, namely connection and pruning.

Figure 1. Apriori flow

B. Apriori algorithm instance analysis

Original transaction T10={A,C,D}, T20={B,C,E},

T30={A,B,C,E}, T40={B,E}. Suppose min_sup=2. Then

L1={{A},{B},{C},{E}}, L2={{A,C},{B,C},{B,E},{C, E}}.

1) Self join, C3=L2×L2={{A,C},{B,C},{B,E}, {C,E}} ×

{{A,C},{B,C},{B,E},{C,E}}={{A,B,C},{A,C,E},{B,C,E}}

2) Pruning, Any frequent item set, its subset must also be

frequent. For Candidate Set C3, clearing those subsets with

infrequent options: The two items subset of {A,B,C} are

{A,B},{A,C},{B,C}, where {A,B} is not an element of L2,

so remove this option.; The two items subset of {A,C,E} are

{A,C},{A,E},{C,E}, where {A,E} is not an element of L2,

so remove this option; All the two items subset generated by

{B,C,E} are {B,C},{B,E},{C,E}, the subsets produced by

{B,C,E} all satisfy the requirements of L2. Therefore, this

option is not deleted.

3) In this way, C3={{B,C,E}} obtained after pruning.

Figure 2. Apriori algorithm execution process

C. The shortcomings of Apriori algorithm

1) When the Apriori algorithm generates the candidate

item set, it needs to perform the self-connection operation on

the frequent itemsets obtained in the previous step. Then

scan the transaction data set again and compare the candidate

set formed by the self-connection with min_sup. During the

self-connection operation, a large amount of comparison

work will be performed.

2) Apriori algorithm need to rescan transaction datasets

before pruning, and then compare with min_sup. Therefore,

when the size of the transaction dataset is getting larger and

larger, each scan will consume a lot of time, resulting in

inefficient mining.

International Journal of Advanced Network, Monitoring and Controls Volume 03, No.03, 2018

102

3) In the current situation where the data information has a

high dimension and the type is complex, the classical Apriori

algorithm can't satisfy users.

4) Because the classic Apriori algorithm is only applicable

to a single machine, when the size of transaction data sets

gradually becomes larger and larger, it will lead to inefficient

mining, insufficient storage space, and even system crashes.

III. PARALLEL MEC-APRIORI ALGORITHM BASED ON

MAPREDUCE APRIORI ALGORITHM

A. Reduce frequent item sets self-connection comparison

times and pruning steps

In the processing of candidate sets, a method of

transaction compression characteristics has been introduced.

That is, according to the n-dimensional data item set, if itself

is not a frequent item set, then the n-1 dimensional subset of

the n-dimensional data item set is also not a frequent item set.

Therefore, in the mining of candidate sets in the transaction

database, the number of candidate candidate sets is compared

and deleted because of the method of transaction

compression characteristics, so that the number of candidate

sets is gradually reduced, and the time efficiency of mining

frequent itemsets is improved.

B. Reduce the Number of Scanned Databases

When mining frequent itemsets, the original transaction

database is converted into a vertical data table, and then scan

the vertical data table to mine frequent itemsets, because

only one transaction database was scanned, a problem with

frequent I/O was solved to some extent.

C. Combining Apriori Algorithm and Hadoop Platform

With the ever-increasing size of data, the traditional

Apriori algorithm has been difficult to support its massive

database of transactions. The solution to this problem is to

add the Hadoop distributed platform to the Apriori

algorithm[10], which not only makes the traditional Apriori

algorithm run more efficiently, but also eases the storage

pressure of the transaction database.

1) Generate frequent itemsets

The flow chart in this stage is shown in Figure.2

Figure 3. Generate frequent itemsets flow

a) The way of data blocks formatting

For the function of interface named Input Format

implements Record Reader(Interface) is to convert data

blocks into key-value pairs, eg: <key1,value1>.

b) Perform Map task

The idea of the first step is to generate the frequent item

sets of each block.

c) Perform Reduce tasks

The key-value data output by the Combiner function is

used as the input data of the Reduce phase. After a series of

merging processes, some frequent item sets of the data

module are obtained as a global candidate item set.

d) Scan transaction data set D

Call the Map function to rescan the formed global

candidate frequent item set, and self- join , compare the

minimum support count with the set of transaction items

formed by the self-join, If it is less than the minimum

support, then the last local frequent itemset is the final global

frequent itemset, then pass it to the Reduce function and

summarize it. Instead, it is necessary to iterate the local

frequent itemsets until a frequent itemset is generated.

2) Generation of association rules

After association rules mine frequent item sets, it is

necessary to generate strong rules. The emergence of strong

rules is shown in Figure.3:

International Journal of Advanced Network, Monitoring and Controls Volume 03, No.03, 2018

103

Figure 4. Generate strong rules flow

a) In the transaction dataset that holds the text, the

input data of the Map must exist in the form of a key-value

pair, so each row of data can be treated as a transaction. The

key in a key-value pair is the offset of each row of data, and

the value is represented as this row of data.

b) These key-value pairs are used as the input of the

Map function, and then a set of frequent items conforming to

the actual situation is obtained according to the set support

threshold.

c) The output of Combiner function in Map stage is

used as the input data of Reduce stage, then it is processed

according to the local frequent itemsets generated in Map

stage, and finally the strong association rules of the output

are stored in HDFS.

IV. EXPERIMENTAL ASSESSMENT AND ANALYSIS

A. Setting Up a Hadoop Cluster Environment

The size of a Hadoop cluster is arbitrary. A small cluster

can consist of a NameNode and several DataNodes. And a

large cluster can consist of a NameNode and hundreds of

DataNodes. Local mode, pseudo-distribution mode and

fully-distributed mode are three modes built by Hadoop

clusters. Considering the hardware configuration problem,

This paper choses to use a virtual machine to set up a cluster

environment, and the number of nodes in the cluster is 3, as

shown in Figure.4

Figure 5. Build a cluster environment

B. Data Comparison Experiment

1) UCI experimental data

This experiment selects the retail file in the UCI database

(association rules to study the classic data set) as the

experimental transaction data set. By comparing the

MEC-Apriori algorithm with the traditional Apriori

algorithm, the results show that the time performance of the

MEC-Apriori algorithm has been greatly improved in the

mining of frequent itemsets and candidate itemsets, thus

verifying the efficiency and feasibility of the improved

algorithm.

2) Implementing the MEC-Apriori Algorithm Model

First, the experimental data set in the file retail is selected,

and the data set in the retail is mined using the new

MEC-Apriori algorithm, and then the association rule is

obtained according to the user-defined support degree and

the confidence threshold.

Figure 6. Simulation flow

International Journal of Advanced Network, Monitoring and Controls Volume 03, No.03, 2018

104

3) Experiment content and result analysis

Experiment 1: Performance Comparison between Single

Apriori Algorithm and MEC-Apriori Algorithm

The transaction data set for this experiment is stored as a

file, Performance analysis of mining time before and after

improved with 3 nodes Hadoop cluster test algorithm. First,

on the premise that the number of nodes in the Hadoop

cluster is unchanged, continuously increase the number of

item sets in the experimental data item set, and set the

minimum support to the same, that is, min_sup=0.3. The

experimental results are shown in Table 1.1.

TABLE.I. COMPARING APRIORI WITH MEC-APRIORI MINING TIME

Transaction

itemsets

Apriori Mining

time/s

MEC-Apriori

Mining time /s

2050 18.8 12.6

4150 25.4 14.8

6300 35.6 22.8

8150 59.2 35.7

11040 72.6 40.5

According to the experiment, the result obtained, convert

the result to a line chart to make it more intuitive, Figure 4

shows the time Performance between MEC-Apriori and

Apriori.

Horizontal axis: number of transaction item sets. Vertical

axis: time/s.

Figure 7. Improved and improved time performance charts

From the figure 4, the MEC-Apriori algorithm and the

classical Apriori algorithm are on the premise of the same

number of transaction itemsets, it is often better than Apriori

algorithm in temporal performance, and with the increasing

number of transaction item sets, apriori algorithm running on

a computer can significantly improve the time of mining

analysis. However, with the MEC-Apriori algorithm, as the

number of transaction item sets increases, the time

performance is getting better and better. Because with the

increase in the number of transaction items, the nodes of the

distributed cluster will gradually increase. In summary, the

improved MEC-Apriori algorithm is superior to the classic

Apriori algorithm in temporal performance.

Experiment 2: Performance Comparison between Apriori

Algorithm and MEC-Apriori Algorithm under Different

Supporting Degrees.

First ,this paper test the data set RETAIL, select the

minimum support threshold range [0.02, 0.20]. And within

this range, evenly increase the step: 0.02, so there will be a

threshold of 10. Then, this paper use the data set retail to run

the Apriori algorithm and the MEC-Apriori algorithm

respectively, and record the running time (Note that the

running time is second). Figure 5 shows the experimental

data obtained by executing the above three algorithms.

Horizontal axis: support; vertical axis: time/s.

Experiments show that the MEC-Apriori algorithm runs

much less time than the Apriori algorithm under different

support levels. The higher the support, the Apriori algorithm

will run a little longer than the MEC-Apriori algorithm. In

summary, the temporal performance of the MEC-Apriori

algorithm under different support levels is always superior to

the traditional Apriori algorithm.

Figure 8. Performance comparison under different support levels

International Journal of Advanced Network, Monitoring and Controls Volume 03, No.03, 2018

105

V. CONCLUSION

Aiming at the traditional Apriori algorithm, when mining

frequent itemsets, you need to continuously scan transaction

data sets , So that the system I / O overhead and other

shortcomings. In this paper, we improved Apriori algorithm

in three aspects: compression in the transaction, reducing the

number of scanning areas, and simplifying the candidate set

generation. At the same time, the improved algorithm is

parallelized in the Hadoop framework. The simulation

results show that compared with the traditional Apriori

algorithm, the MEC-Apriori algorithm has good

performance and security in temporal performance, mining

frequent candidate itemsets and different support levels.

However, it needs to be continuously improved in the future

work.

REFERENCES

[1] K.WANG, Y.HE, J.HAN. Mining Frequent Itemsets Using Support
Constraints. Proc2000 Int. Conf. Very Large Data Bases[J]. Cairo,
Egypt, 2000.9: 43-52.

[2] Yan Xiaofei. Research on Association Rule Mining Algorithm[D].
Chongqing: Chongqing University, 2009:15-21.

[3] AGRAWAL R.SRIKANT R.Fast algorithm for mining a ssociation
rules[C]//Proceedings of 20th Int. Conf. Very Large Data
Bases(VLDB). Morgan Kaufman Press,1994:487-499.

[4] REN W J , YU B W. Improved Apriori Algorithm Based on Matrix
Reducation[J]. Computer and Modern,2015,10. 2-3. (in Chinese)

[5] GUNARATHNE T , WU TL, QIU J ,et al .MapReduce in the Clouds
for Science[C]//2010 IEEE Second International Conference on
Cloud Computing Technology and Science (Cloudcom).
IEEE,2010;565-572

[6] DEAN J,GHEMAWAT S. MapReduce: simplified data processing on
large clusters[J]. Communications of the ACM, 2008, 51(1):107-113.

[7] HE B S, TAO M, YUAN X M. Alternating direction me-thod with
Gaussian back substitution for Separable convex programming [J].
SIAM J. Optimization, 2012, 22(2): 313-340.

[8] HE B S,LIAO L Z,YUAN X M. Alternating projection based
prediction-correction methods for structured variational
inequalities[J]. Computational Mathematics, 2006, 24(6):693-710.

[9] CHEN Z M, WAN L, YANG Q Z. An Inexact Direction Methodfor
Structured Variational Inequalities[J]. Journal of Optimization Theory
& Applications, 2014, 163(2): 439-459.

[10] Lu Jiaheng. Hadoop Combat [M]. Beijing: Mechanical Industry Press,
2011: 17-128.

