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Abstract—Association rules can forcefully get a horizontal 

relation in the big data, the Apriori algorithm is one of the 

most significant association rules. Traditional mining based on 

parallel Apriori algorithms needs much more time in data IO 

with the increasing size of large transaction database. This 

paper improves the Apriori algorithm from compressing 

transactions, reducing the number of scans and simplifying 

candidate set generation. And then the improved algorithm is 

parallelized on the Hadoop framework. The experiments show 

that this improved algorithm is suitable for large-scale data 

mining and has good scalability and effectiveness. 
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I. INTRODUCTION 

In the context of the development of big data “spraying 

wells”, there is frequently a close relationship between vast 

amounts of data[1]. Analysis and decision making through 

data mining have become the mainstream of social 

development. In order to better find the relevance of 

transaction data sets, some researchers have discovered the 

concept of association rule mining technology[2]. With the 

attention of many researchers at home and abroad caused by 

the conception of the concept, they have done a lot of 

analysis in this field and put forward many data mining 

algorithms.  

One of the most famous association rule algorithms is the 

Apriori algorithm, which is a classic association rule 

algorithm designed by Agrawal[3-4] in 1994. It is a 

level-by-level search iteration method that constructs a 

k-item set to constitute a k+1-item set. The main ideas of this 

algorithm are: Firstly, all frequency sets are counted from the 

transaction database, and the support of this frequent set 

must not be less than the minimum support degree; Secondly 

it enters into the process of strong association rule generation, 

and the rules need to satisfy the support and confidence 

thresholds at the same time; Thirdly, only all rules that 

contain collection items are retained. Once these rules are 

retained and generated, that are greater than or equal to the 

MinConfidence. 

The design of the Hadoop[5] framework originated was 

from an open source project developed by the Apache 

organization Foundation. Because of its inter-temporal 

significance, the Hadoop framework has been widely used in 

the information field at home and abroad. There are two 

important modules in the Hadoop frame--Distributed File 

System HDFS and Distributed Computing Frame 

MapReduce[6]. As a distributed file system , HDFS 

functions aims to implement data storage. It will work in 

conjunction with the computational framework. MapReduce 

works to provide the underlying support for data calculations; 

And the idea of MapReduce[6-7] is based on a paper by 

Google. In short, its core method is "the decomposition of 

tasks and the statute of results." 

II. BRIEF AND RESEARCH STATUS OF APRIORI ALGORITHM  

A. Overview of Apriori algorithm 

The Apriori algorithm is a level-by-level search iterative 

method that consists of a k-item set to construct a (k+1)-item 

set. First, obtain a frequent 1-item set. L1 can generate a 

frequent 2-item set L2, and L2 can generate a frequent 

3-item set L3. According to this rule, when a frequent k-item 
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set cannot be found, the algorithm ends[8-9]. The specific 

operation is as follows: 

1) Iterate through the initial transaction database and 

count the frequency of occurrence of the candidate set. The 

result is the support of the project. All projects whose all 

supports level no lower than the preset threshold generate a 

frequent 1-item set L1. 

2) The algorithm uses L1 JOIN L1 to form a candidate 

C2-item set C2. 

3) Using the items in C2, traverse the database again to 

obtain the support degree of each candidate set. All projects 

with support levels not lower than the support level generate 

frequent 2-item set L2. 

4) The algorithm uses L2 JOIN L2 to form a set C3 of 

candidate 3-item sets. 

5) Using the items in C3 to traverse the database again, 

the support degree of each candidate set can be obtained. 

All items with support levels not lower than the support level 

generate frequent 3-item set L3. 

The above process is performed iteratively until the 

candidate set C k is empty. The Apriori algorithm does 

multiple IO operations on the database. Each stage consists 

of two parts, namely connection and pruning. 

 

 

Figure 1. Apriori flow 

B. Apriori algorithm instance analysis 

Original transaction T10={A,C,D}, T20={B,C,E}, 

T30={A,B,C,E}, T40={B,E}. Suppose min_sup=2. Then 

L1={{A},{B},{C},{E}}, L2={{A,C},{B,C},{B,E},{C, E}}. 

1) Self join, C3=L2×L2={{A,C},{B,C},{B,E}, {C,E}} × 

{{A,C},{B,C},{B,E},{C,E}}={{A,B,C},{A,C,E},{B,C,E}} 

2) Pruning, Any frequent item set, its subset must also be 

frequent. For Candidate Set C3, clearing those subsets with 

infrequent options: The two items subset of {A,B,C} are 

{A,B},{A,C},{B,C}, where {A,B} is not an element of L2, 

so remove this option.; The two items subset of {A,C,E} are 

{A,C},{A,E},{C,E}, where {A,E} is not an element of L2, 

so remove this option; All the two items subset generated by 

{B,C,E} are {B,C},{B,E},{C,E}, the subsets produced by 

{B,C,E} all satisfy the requirements of L2. Therefore, this 

option is not deleted. 

3) In this way, C3={{B,C,E}} obtained after pruning. 

 

Figure 2. Apriori algorithm execution process 

C. The shortcomings of Apriori algorithm 

1) When the Apriori algorithm generates the candidate 

item set, it needs to perform the self-connection operation on 

the frequent itemsets obtained in the previous step. Then 

scan the transaction data set again and compare the candidate 

set formed by the self-connection with min_sup. During the 

self-connection operation, a large amount of comparison 

work will be performed. 

2) Apriori algorithm need to rescan transaction datasets 

before pruning, and then compare with min_sup. Therefore, 

when the size of the transaction dataset is getting larger and 

larger, each scan will consume a lot of time, resulting in 

inefficient mining. 
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3) In the current situation where the data information has a 

high dimension and the type is complex, the classical Apriori 

algorithm can't satisfy users. 

4) Because the classic Apriori algorithm is only applicable 

to a single machine, when the size of transaction data sets 

gradually becomes larger and larger, it will lead to inefficient 

mining, insufficient storage space, and even system crashes. 

III. PARALLEL MEC-APRIORI ALGORITHM BASED ON 

MAPREDUCE APRIORI ALGORITHM 

A. Reduce frequent item sets self-connection comparison 

times and pruning steps 

In the processing of candidate sets, a method of 

transaction compression characteristics has been introduced. 

That is, according to the n-dimensional data item set, if itself 

is not a frequent item set, then the n-1 dimensional subset of 

the n-dimensional data item set is also not a frequent item set. 

Therefore, in the mining of candidate sets in the transaction 

database, the number of candidate candidate sets is compared 

and deleted because of the method of transaction 

compression characteristics, so that the number of candidate 

sets is gradually reduced, and the time efficiency of mining 

frequent itemsets is improved. 

B. Reduce the Number of Scanned Databases 

When mining frequent itemsets, the original transaction 

database is converted into a vertical data table, and then scan 

the vertical data table to mine frequent itemsets, because 

only one transaction database was scanned, a problem with 

frequent I/O was solved to some extent. 

C. Combining Apriori Algorithm and Hadoop Platform 

With the ever-increasing size of data, the traditional 

Apriori algorithm has been difficult to support its massive 

database of transactions. The solution to this problem is to 

add the Hadoop distributed platform to the Apriori 

algorithm[10], which not only makes the traditional Apriori 

algorithm run more efficiently, but also eases the storage 

pressure of the transaction database. 

1) Generate frequent itemsets 

The flow chart in this stage is shown in Figure.2 

 

Figure 3. Generate frequent itemsets flow 

a) The way of data blocks formatting 

For the function of interface named Input Format 

implements Record Reader(Interface) is to convert data 

blocks into key-value pairs, eg: <key1,value1>. 

b) Perform Map task 

The idea of the first step is to generate the frequent item 

sets of each block. 

c) Perform Reduce tasks 

The key-value data output by the Combiner function is 

used as the input data of the Reduce phase. After a series of 

merging processes, some frequent item sets of the data 

module are obtained as a global candidate item set. 

d) Scan transaction data set D 

Call the Map function to rescan the formed global 

candidate frequent item set, and self- join , compare the 

minimum support count with the set of transaction items 

formed by the self-join, If it is less than the minimum 

support, then the last local frequent itemset is the final global 

frequent itemset, then pass it to the Reduce function and 

summarize it. Instead, it is necessary to iterate the local 

frequent itemsets until a frequent itemset is generated. 

2) Generation of association rules 

After association rules mine frequent item sets, it is 

necessary to generate strong rules. The emergence of strong 

rules is shown in Figure.3: 
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Figure 4. Generate strong rules flow 

a) In the transaction dataset that holds the text, the 

input data of the Map must exist in the form of a key-value 

pair, so each row of data can be treated as a transaction. The 

key in a key-value pair is the offset of each row of data, and 

the value is represented as this row of data. 

b) These key-value pairs are used as the input of the 

Map function, and then a set of frequent items conforming to 

the actual situation is obtained according to the set support 

threshold. 

c) The output of Combiner function in Map stage is 

used as the input data of Reduce stage, then it is processed 

according to the local frequent itemsets generated in Map 

stage, and finally the strong association rules of the output 

are stored in HDFS. 

IV. EXPERIMENTAL ASSESSMENT AND ANALYSIS 

A. Setting Up a Hadoop Cluster Environment 

The size of a Hadoop cluster is arbitrary. A small cluster 

can consist of a NameNode and several DataNodes. And a 

large cluster can consist of a NameNode and hundreds of 

DataNodes. Local mode, pseudo-distribution mode and 

fully-distributed mode are three modes built by Hadoop 

clusters. Considering the hardware configuration problem, 

This paper choses to use a virtual machine to set up a cluster 

environment, and the number of nodes in the cluster is 3, as 

shown in Figure.4 

 

Figure 5. Build a cluster environment 

B. Data Comparison Experiment 

1) UCI experimental data 

This experiment selects the retail file in the UCI database 

(association rules to study the classic data set) as the 

experimental transaction data set. By comparing the 

MEC-Apriori algorithm with the traditional Apriori 

algorithm, the results show that the time performance of the 

MEC-Apriori algorithm has been greatly improved in the 

mining of frequent itemsets and candidate itemsets, thus 

verifying the efficiency and feasibility of the improved 

algorithm.  

2) Implementing the MEC-Apriori Algorithm Model 

First, the experimental data set in the file retail is selected, 

and the data set in the retail is mined using the new 

MEC-Apriori algorithm, and then the association rule is 

obtained according to the user-defined support degree and 

the confidence threshold. 

 

Figure 6. Simulation flow 
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3) Experiment content and result analysis 

Experiment 1: Performance Comparison between Single 

Apriori Algorithm and MEC-Apriori Algorithm 

The transaction data set for this experiment is stored as a 

file, Performance analysis of mining time before and after 

improved with 3 nodes Hadoop cluster test algorithm. First, 

on the premise that the number of nodes in the Hadoop 

cluster is unchanged, continuously increase the number of 

item sets in the experimental data item set, and set the 

minimum support to the same, that is, min_sup=0.3. The 

experimental results are shown in Table 1.1. 

TABLE.I. COMPARING APRIORI WITH MEC-APRIORI MINING TIME 

Transaction 

itemsets 

Apriori Mining 

time/s 

MEC-Apriori 

Mining time /s 

2050 18.8 12.6 

4150 25.4 14.8 

6300 35.6 22.8 

8150 59.2 35.7 

11040 72.6 40.5 

According to the experiment, the result obtained, convert 

the result to a line chart to make it more intuitive, Figure 4 

shows the time Performance between MEC-Apriori and 

Apriori.  

Horizontal axis: number of transaction item sets. Vertical 

axis: time/s. 

 

Figure 7. Improved and improved time performance charts 

From the figure 4, the MEC-Apriori algorithm and the 

classical Apriori algorithm are on the premise of the same 

number of transaction itemsets, it is often better than Apriori 

algorithm in temporal performance, and with the increasing 

number of transaction item sets, apriori algorithm running on 

a computer can significantly improve the time of mining 

analysis. However, with the MEC-Apriori algorithm, as the 

number of transaction item sets increases, the time 

performance is getting better and better. Because with the 

increase in the number of transaction items, the nodes of the 

distributed cluster will gradually increase. In summary, the 

improved MEC-Apriori algorithm is superior to the classic 

Apriori algorithm in temporal performance.  

Experiment 2: Performance Comparison between Apriori 

Algorithm and MEC-Apriori Algorithm under Different 

Supporting Degrees. 

First ,this paper test the data set RETAIL, select the 

minimum support threshold range [0.02, 0.20]. And within 

this range, evenly increase the step: 0.02, so there will be a 

threshold of 10. Then, this paper use the data set retail to run 

the Apriori algorithm and the MEC-Apriori algorithm 

respectively, and record the running time (Note that the 

running time is second). Figure 5 shows the experimental 

data obtained by executing the above three algorithms. 

Horizontal axis: support; vertical axis: time/s. 

Experiments show that the MEC-Apriori algorithm runs 

much less time than the Apriori algorithm under different 

support levels. The higher the support, the Apriori algorithm 

will run a little longer than the MEC-Apriori algorithm. In 

summary, the temporal performance of the MEC-Apriori 

algorithm under different support levels is always superior to 

the traditional Apriori algorithm. 

 

Figure 8. Performance comparison under different support levels 
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V. CONCLUSION 

Aiming at the traditional Apriori algorithm, when mining 

frequent itemsets, you need to continuously scan transaction 

data sets , So that the system I / O overhead and other 

shortcomings. In this paper, we improved Apriori algorithm 

in three aspects: compression in the transaction, reducing the 

number of scanning areas, and simplifying the candidate set 

generation. At the same time, the improved algorithm is 

parallelized in the Hadoop framework. The simulation 

results show that compared with the traditional Apriori 

algorithm, the MEC-Apriori algorithm has good 

performance and security in temporal performance, mining 

frequent candidate itemsets and different support levels. 

However, it needs to be continuously improved in the future 

work. 
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