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Abstract: Human action recognition (HAR) is an important yet challenging task. This paper presents
a novel method. First, fuzzy weight functions are used in computations of depth motion maps
(DMMs). Multiple length motion information is also used. These features are referred to as fuzzy
weighted multi-resolution DMMs (FWMDMMs). This formulation allows for various aspects of
individual actions to be emphasized. It also helps to characterise the importance of the temporal
dimension. This is important to help overcome, e.g., variations in time over which a single type
of action might be performed. A deep convolutional neural network (CNN) motion model is created
and trained to extract discriminative and compact features. Transfer learning is also used to extract
spatial information from RGB and depth data using the AlexNet network. Different late fusion
techniques are then investigated to fuse the deep motion model with the spatial network. The result
is a spatial temporal HAR model. The developed approach is capable of recognising both human
action and human–object interaction. Three public domain datasets are used to evaluate the proposed
solution. The experimental results demonstrate the robustness of this approach compared with
state-of-the art algorithms.

Keywords: action recognition; transfer learning; multi-resolution; feature fusion

1. Introduction

Human action recognition (HAR) is a challenging field. This is due to a number of reasons.
One important reason is the large variations in how actions are performed. It can also include variations
in appearances of people, objects in their environment and the environment (scene). Deficiency
in the availability of data resources, vague definitions of an action and drift in dynamic environments
can all be sources of difficulty (see, e.g., [1]). This topic has been utilised in numerous applications
such as surveillance based event detection, human–computer interaction and video retrieval [2].

Different conditions can also make HAR a difficult and challenging issue. There are issues
such as occlusions, multiple viewpoints, action speed variations or even differences in illumination.
Fortunately, depth cameras have enabled and provided a great push for HAR. They can provide both
colour data as well as depth data. Depth is less sensitive to light intensity variances [3]. Depth is also
more distinct than other derived appearance based features from, e.g., segmentation and detection [4].
Another aspect that can help make action recognition achieve better predictability is if data are taken
as groups [1]. This is because groups of depth data for a single type of action can be more easily
generalised to other instances.
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In general, HAR can be classified into two categories: Hand crafted versus automatic learning
methods. Hand-crafted feature based methods often consist of three stages. These are: Feature
extraction, feature description and classification. Different kinds of hand-crafted features can be
extracted from source sequences. Then, different descriptor techniques can be derived from extracted
features. Finally, a classification process is usually employed to classify actions into different
classes. Hand crafted features are useful because they enable some important aspects of the data
to be emphasised. However, it is often difficult to make handcrafted features generally applicable.
They can be sensitive to changes in a scene or even need to be re-designed for each application or
scene [1]. These models are often not able to overcome challenging environments. On the other hand,
automatically learned feature models can help overcome some of these shortcomings. Thus, one of
the most important aims of this paper is to utilise both automatically and manually learned feature
models for HAR.

In 2006, Hinton et al. proposed a solution for the training problem using a layer-wise training
method based on deep learning [5]. Deep learning has been based on different techniques such as
convolution [6], deep belief networks [5], auto-encoders [7] and recurrent neural networks [8]. These
have all been used for learning of features, see, e.g., [9,10]. These kinds of approaches, in many
cases, have been found to outperform hand-crafted features. Since then, much research has relied
on deep learning techniques. It has been applied to various topics such as image classification [11],
speech recognition [12] and object recognition [13]. In addition, many studies on HAR have used
deep learning, either with colour image sequences or depth sequences [14–16]. However, most of
these deep networks are based on either pre-extracted hand-crafted features or raw colour/depth
sequences as inputs. This paper proposes a novel improvement on hand-crafted features based
on fuzzy weighted multi-resolution depth motion maps (FWMDMMs). These help to characterise
different important aspects of the depth motion data across multiple time resolutions. Then, deep
learning is applied to automatically learn distinctive and compact features from the improved depth
motion features. Important spatial information is learnt using the RGB and depth data using transfer
learning. Finally, various fusion techniques are considered to suitably classify actions into appropriate
classes. The proposed framework is illustrated in Figure 1.

Figure 1. Framework of the proposed method.
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Main Contributions

In this paper, we propose a novel framework for learning of action models by combining together
a deep and handcrafted hybrid feature model to get discriminative information. The key contribution
of this paper is as follows:

• In order to learn information in the temporal dimension with diverse applicability, we develop
a novel spatial temporal deep learning model. It includes a new method that improves traditional
depth motion maps (DMMs) [17,18] called fuzzy weighted multi-resolution depth motion maps
(FWMDMMs). The FWMDMM includes a number of different temporal model instances.
These are used to help overcome the inherent variability in time associated for each individual
action. Furthermore it can help overcome difficulties with self-occlusions and actions that might
have similar types of movements.

The work differs from work in (e.g., [19,20]). For instance, for the DMM computation, overlapped
segments were used in the calculation of a Multi-resolution DMM (MDMM). This means redundant
information is included. For the work presented here, non-overlapped segments are used. This saves
processing time for the MDMM calculation. Moreover, the weight functions of paper [19] are just
incremental weights. For the work here, different weight functions are used. These enhance a number
of different important aspects of an action sequence including incremental, decremented and middle
weight functions.

In addition, the work presented here enhances the recognition system performance by including
deep learning. This is used to process the DMM features and to provide more discriminative
information for each action. Moreover, different streams of depth and appearance information are
merged with the DMM information. This is performed with the use of different fusion techniques
to produce the final spatio-temporal information.

The remainder of this paper is organised as follows: Section 2 reviews the related work. Section 3
presents the overall structure of the proposed framework and the detail of FWMDMM, fusion and
deeper models. The experimental results and discussions are described in Section 4. Finally, Section 5
concludes the paper.

2. Related Work

HAR has been a popular area of research in the computer vision field. The performance of a HAR
system depends on the quality of the features of a scene and of the actors themselves. Hence, many
researchers have focused on designing superior scene descriptors. This has included using traditional
approaches based on hand-crafted features to summarise and encapsulate local appearance and
motion information effectively and efficiently. However, it has also included extension to include 3D
information as well as the traditional appearance based RGB data.

Fortunately, cost effective depth sensors have been developed and have received increasing
attention. Sensors such as Kinect [21] and Xtion [22] can provide depth information as an input.
According to [23,24] an important advantage of depth based HAR, is in terms of the availability of
3D information. The 3D information of an object structure is useful in itself. However, it also helps to
provide invariance to lighting and to help overcome other potential problems with, e.g., scale.

An effective HAR method, presented in [17], projected depth onto the three planes: Front,
side and top views. Then, DMMs were generated encapsulating the motion information for entire
video sequences for each DMM. In addition, Histograms of Oriented Gradients were computed
from the resulting DMMs for use as descriptors. In [18], DMMs were used for HAR together with
an l2-regularised collaborative representation classifier with a distance-weighted Tikhonov matrix was
also used. Chen et al. [25] calculated motion cues and local binary patterns (LBPs) from the DMMs. Two
fusion levels were also considered including feature-fusion level and decision-fusion level. The DMM
based results showed reasonable HAR performance.
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Different levels of the same data sequence have been used with DMM computations to create
a hierarchical DMM in [20]. A LBP based descriptor was used to characterise local rotation invariant
texture information. Then a Fisher kernel was employed to create patch descriptors. These were
then fed into a kernel-based extreme learning machine classifier. A similar approach was followed
by [26]. A histogram of oriented gradients (HOGs) descriptor was used along with kernel entropy
component analysis for dimensionality reduction. Finally a linear support vector machine was
used in the classification. For both hierarchical DMM based approaches, the results demonstrated
a significant performance improvement. DMMs can express the variation of a subject’s motions during
the performance of an action. However, difficulties can potentially arise between actions that have
the same type of movements but over different temporal periods. To tackle this issue, fuzzy weighted
multi-resolution depth motion maps are proposed here in this work, explained in the next section.

Some other researchers have used skeleton joint information for depth based HAR such
as [27]. The skeleton joint information aided in finding the relationship between different body
parts. A combination of various interest point detectors were used in [28]. These formed different
space time interest points (STIPs) features. The experiments demonstrated that the recognition rate
could be improved by combining skeleton joint information and spatio-temporal features. However,
it is dependent on deriving an accurate skeleton representation. Other methods have been proposed
to represent depth sequence information without the need to derive the skeleton information. This has
included learning an actionlet ensemble [29], spatio-temporal depth cuboid features [30] and super
normal vectors [31].

Deep learning has successfully been used for HAR [32–34]. Deep learning models have the ability
to learn features in a hierarchical way starting from low level features reaching to high level ones.
convolution neural networks (CNNs), were proposed in [6]. CNNs use trainable filters and local
neighbourhood pooling processes to obtain a hierarchy of complex features. CNNs can be made
invariant to variations in pose, lighting and surrounding clutter [35]. In addition, CNNs can achieve
great performance on visual field tasks when trained with proper regularisation [36,37]. convolutional
neural network models have been used to build deep learning based HAR systems such as [38].
Video based spatial and temporal information was learned. A deep two-stream model was constructed
based on transfer learning using a modified RestNets-101. A stream is a series of layers trained on a set
of features. RGB and a volume of stacked optical flow data were taken as inputs for the spatial and
temporal network streams, respectively. The proposed strategy was able to achieve competitive results
for HAR.

For a fixed orientation, a spatio-temporal convolutional network based HAR was proposed in [39].
This used spatio-temporal features. Moreover, in [40], a HAR system was proposed based on a two
stream deep CNN model. The two streams consisted of a spatial stream which learned appearance
features and a temporal stream which learned motion information. The motion information was based
on stacked optical flow frames. An extension of this two stream network approach was proposed in [41]
using dense trajectories. This resulted in more effective learning of motion information. A fusion of two
stream networks was proposed in [42] by applying several combinations between them. This helped
to take further advantage of the spatio-temporal features.

A general residual network architecture for HAR was presented in [43]. Here cross-stream residual
connections in the form of multiplicative interaction between appearance and motion streams were
used. The motion information was exploited using stacked inputs of horizontal and vertical optical
flow. A fusion study was presented in [44] for HAR. Two streams of the pre-trained visual geometry
group (VGG) network model were used to compute spatio-temporal information combining RGB and
stacked optical flow data. Various fusion mechanisms at different positions of the two streams were
evaluated to determine the best possible recognition performance.

All of the above approaches suffer from a shortage of long term temporal information.
For example, the number of frames used in the optical flow stacking ranged between 7 and 15 frames.
For example, 7, 10 and 15 frames were used by [35,42,45], respectively. Often people will perform
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the same action over different periods of time depending on many factors and particularly for different
people. Consequently, multi-resolution hand-crafted features computed over different durations
of time are used here in this work. This helps to avoid this problem. Furthermore, different weight
phases are applied using a fuzzy algorithm in the computation process of the DMMs. Thus, enabling
adaptation to different aspects of an action.

We take advantage of a deep learning method to learn discriminative features from both RGB
and depth sequences. At the same time, we exploit some important aspects a priori by developing
hand-crafted features in a deep motion model. These hand-crafted are referred to here as FWMDMMs.
The FWMDMMs are extracted from depth sequence data and learned as part of the motion information.
Two streams are considered here, including the deep motion model and a pre-trained AlexNet model
to extract the motion and spatial features, respectively. Moreover, different fusion techniques are
evaluated. These are used to merge the spatial and motion information to find the best way approach
for HAR models proposed here.

3. Construction of Fuzzy Weighted Multi-Resolutions Depth Motion Map

3.1. Depth Motion Maps (DMMs)

Both RGB and depth for each frame are exploited in the framework proposed here. In addition,
multi-resolution shape and motion information are also used here in the form of a modified DMM
formulation. The basic DMM, (as used in, e.g., [17,18,46]), includes projecting each depth frame onto
three orthogonal Cartesian planes. The foreground is specified by a bounding box as a region of interest
and then normalised to a particular size.

As a result, each depth frame will generate three 2D planes or maps xy, xz,yz indicating front, side
and top views. The motion energy of each single map can be obtained by computing and thresholding
the difference between two consecutive maps. This provides a superior clue for HAR by specifying
motion regions and showing where the motion occurs in each temporal template.

The motion energy can then be stacked through a specific interval or through the entire sequence.
This generates a DMM, Γv for each projection view,

Γv =
N−1

∑
t=1
|mt+1

v −mt
v| (1)

where v ∈
{

xy, yz, xz
}

indicates the projection view; mt
v is the projected map of frame t under

projection view v; N is the number of frames that indicates the length of the interval.
In general, DMMs are represented on each orthogonal Cartesian plane by combining projected

maps of an entire depth sequence. Hence, important information of body shape and motion
are emphasised.

3.2. Multi-Resolution Depth Motion Maps (MDMMs)

Traditional DMMs are formulated on 2D planes as described above by combining projected motion
maps of an entire depth sequence. This formulation does not consider the higher order temporal
links between frames of depth sequences. An enhancement is therefore applied here to improve
on the traditional DMMs.

Mostly, a fixed number of frames have been used by other researchers or even the entire number
of frames of an action sequence video. However, a length of an action is not known in advance.
In addition, an action can be performed at different speeds by different people. Hence, MDMMs are
used here to cover different temporal intervals and rates of an action.

In our work, the depth sequence is split into three different groups where each has a different
time interval. This means, various values of the threshold, τ, formulated to generate MDMMs
for the same action (depth sequence). As τ ∈ N+ in traditional DMMs, this can be improved by
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τ ∈
{

g1, g2, g3
}

where gi ∈ N+. This extension enables different temporal windows to properly cover
an action’s motion regardless of whether it carries important information over a short or long duration.
Each of these three durations produce a different DMM. The values of τ are selected to cover short,
intermediate and long durations. For long, this would typically correspond to an entire depth sequence
for the various video sequences considered here. Figure 2 illustrates the computational procedure
for MDMMs.

Figure 2. Computation procedure of the multi-resolution depth motion maps (MDMMs).

These MDMMs for each depth sequence can be calculated with:

Γv,τ,t =
t+τ−1

∑
t′=t

|mt
′
+1

v −mt′
v | ∀ τ (2)

where v ∈
{

xy, yz, xz
}

, τ ∈ λ and, e.g., λ =
{

5, 10, All
}

are the various lengths of depth sequence
used to obtain a MDMM for each single frame.

Then, a single MDMM is created again via concatenation, but now across all time resolution
windows τ ∈ λ after processing, i.e., Γ = ||τ∈λ Γτ , where || represents concatenation.

3.3. Fuzzy Weighted Multi-Resolution DMMs (FWMDMMs)

In order to identify significant motion, we take into consideration the motion history image based
method. A linear weighting as a function of time is used to find historical motion information with
high weight due to recent motion. Hence, after weight allocation for each frame, the recent moving
pixels which have most recently shown some motion result in greater intensities. By proceeding with
this approach, a fuzzy algorithm is used here to give each DMM various weights to assign dynamically
ranging importance to the motion information.

Let wt be the linear weight that is given to frame t with values in the range between wt ∈ [0, 1].
This can be improved for DMMs by replacing the wt with three fuzzy weight functions. Each has
the same range based weighting approach. This helps to emphasise salient aspects in time of
an action sequence. The three weight functions provide three different weight formulations for
frames in the same DMM template. The result is three different DMM representations. These fuzzy
functions can assign importance to the motion information in frame t using three linearly varying
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functions. The functions are: linear function, reversed linear function and central-oriented function.
Figures 3 and 4 illustrate the fuzzy weight functions and the resulting effects on the DMMs (DMMxy

is considered in the figure).

Figure 3. Fuzzy weight functions based weighted depth motion maps (DMMs).

Figure 4. DMMxy based on different aspects of fuzzy weight functions: (a) Original DMM uniform
weight, (b) linear weight function, (c) Reversed linear weight and (d) centre-oriented weight function.

• Linear varying function

A linear fuzzy membership function that increases the importance of motion information linearly
with time for frame t in the DMM template computation. This can be formulated as:

F1(t) =
t
τ

where t ∈
[
1, τ
]
. (3)

where τ ∈ λ.
• Reversed linear function

Reversed linear based membership function performs the reverse of the linear membership
function. It decreases the importance assigned to motion information with time in frame
t in the DMM template computation. This can be formulated as:

F2(t) = 1−
(

t− 1
τ

)
where t ∈

[
1, τ
]
. (4)

• Central oriented function

For the case of the centre based membership function, high importance is assigned to motion
information in the middle frame of the DMM templates and decreases to the two sides.
This membership can be formulated as:

F3(t) =

{
2t
τ f or 1 < t ≤ τ

2 ;

2(1− t−1
τ ) f or τ

2 < t ≤ τ.
(5)
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The weighting function is combined with the MDMM like so:

Γv,τ,t,j =
t+τ−1

∑
t′=t

|mt
′
+1

v −mt
′

v |Fj(t
′
). (6)

The final version of improved DMMs are generated using three temporal templates based
on the intervals

{
short, medium, long

}
. These are weighted with fuzzy functions to produce fuzzy

weighted DMM templates. Concatenation is used after processing to produce a FWMDMM, based
on a particular weighting function.

4. Deep Convolutional Neural Networks

convolutional neural networks (CNNs) are a type of multi-layer Perceptrons that can be considered
to follow the same principles as the visual mechanisms in organism. At the most basic level there are
cells combined together in the form of various complexities assigned to sub-regions of a visual scene.
A similar although considerably simplified kind of processing can be achieved by using convolutional
filters or CNNs over a given data.

CNNs can automatically achieve feature extraction directly from input data. This can help solve
the exhaustive search of hand-crafted methods. Furthermore, CNN operations include the local
receptive field, shared weights and pooling. These processes are adopted to attain shift, scale and
distortion invariance that can improve recognition accuracy.

4.1. Transfer Learning of Spatial Information

A pre-trained AlexNet model proposed in [47] containing eight pre-trained layers is used here
for initialisation. Two parallel AlexNet networks are used here to compute features of the RGB
and depth information. In addition, extra CNNs are used for the motion model to fuse and learn
the information of the two parallel networks and DMM hand-crafted features. Figure 5 shows all
stages of the recognition system proposed here. While there are many better options of pre-trained
networks, AlexNet was used in transfer learning due to its moderate trainable parameters that can
meet our processing limitations. AlexNet has been widely used for HAR in many research studies
due to its reasonable trainable parameters in comparison to other pre-trained network models see,
e.g., [48].

Figure 5. Recognition system stages using FWMDMM hand-crafted features and spatial information
via deep motion model and pre-trained AlexNet network.
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Network architecture is very important because it plays a significant role in the performance
of the deep learning model. Common deep network architectures usually have alternating
convolutional layers and auxiliary layers, e.g., pooling, rectified or dropout layers and terminated
by a few fully connected (FC) layers.

Originally in [47], the output of the third fully connected layer was delivered by using
a 1000 softmax functions which assigns the distribution over 1000 class labels. In our case, the last
fully connected layer is delivered in a different way using softmax functions based on the number
of existing class labels of the validation datasets.

The input image of the first convolution layer is filtered with 96 kernels of size 11 × 11 × 3 and
a stride of 4 pixels. Next, the output of the first convolution layer is taken as input to the second
convolution layer and filtered with 256 kernels of size 5 × 5 × 48. The following layers are connected
one to another with 384 kernels of size 3 × 3 × 256, 384 kernels of size 3 × 3 × 192 and 256 kernels of
size 3 × 3 × 192 in terms of the third, fourth and fifth convolutional layers, respectively.

4.2. Fusing the Spatial Networks

For more reliable recognition, it is preferable to utilise diverse information sources combined
using fusion to achieve better performance. This can be done using either concatenation of features or
via an average of several decision scores [42]. Fusion can be utilised to combine any given set of deep
networks. An easier way to combine multiple networks is to add an extra fully connected layer to
combine outputs of the networks. The advantage of using different features at the same time is to help
improve the recognition model and hence recognition performance.

In our work, we propose multiple different fusion techniques at different positions of the spatial
two-stream networks. Information fusion is implemented partially between the RGB and depth
stream networks combining multiple layers of two trained parallel networks including several CNN
architectures such as early, middle and late fusion. This helps to find the best position and technique
for RGB and depth fusion that can optimise the recognition rate. In addition, hand-crafted features
are exploited in the deep motion model using improved DMMs as an auxiliary source of features
that represent motion information of an action. Fusion position via motion model is specified based
on the best recognition result of the fused spatial two-stream networks. Then, fused spatial information
is utilised with the motion information in the deep motion model using the same fusion position.
By adding hand-crafted features, our approach can incorporate two explicitly different types of features
such as spatial and temporal information into the classification process.

In this section we consider different architectures for fusing the spatial two-stream networks for
RGB and depth. Spatial fusion can be achieved between the two networks when the networks have
the same spatial resolution at the fused layers by adding, multiplying or concatenating layers from
one network to another. Later, the subsequent layers can suitably learn the correspondence between
these channels to recognise the action.

A number of fusion techniques that are used between the two spatial networks are described
here. Moreover, the consequences of each technique are highlighted in the experiments section.
Let f : RH×W×D × RH×W×D → RH×W×D be a fusion function which fuses two feature maps xa

t ∈
RH×W×D and xb

t ∈ RH×W×D that belong to two different networks to produce an output yt ∈
RH×W×D, where H, W and D are the height, width and number of channels of the feature maps,
respectively. The number of feature maps are based on the specific architecture of the network (in our
case, there are 16× 16 = 256 for convolutional layer 5). Function f can be employed at various stages
in the networks to achieve early, mid or late fusion.
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• Sum fusion is employed to compute the sum of the elements of two feature maps where each
has the same spatial location and feature channels. Let d be the number of feature channels, then:

ysum
i,j,d = xa

i,j,d + xb
i,j,d, (7)

where 1 < i ≤ H, 1 < j ≤W, 1 < d ≤ D.
• Multiplicative fusion computes the multiplication of the two feature maps at each pixel location:

ymultip.
i,j,d = xa

i,j,d · xb
i,j,d. (8)

• Concatenation fusion concatenates the two feature maps at the same spatial location and cross
feature channels:

ycat
i,j,d = xa

i,j,d||x
b
i,j,d. (9)

The proposed method is implemented with the various fusion techniques to fuse the RGB and
depth spatial networks. These are applied at different positions between the spatial networks such
as at the convolutional, max-pooling or fully connected layers. The output of the spatial fusion can be
used to train a supervised classifier (KNN) to find the best position of fusion. Then, spatial (fused RGB
and depth) and motion information are fused. Finally this is used to train a classification layer trained
with standard back-propagation and stochastic gradient descent based algorithms.

4.3. Deep Motion Model

After spatial fusion stages, we propose to go deeper to represent the temporal information
in a proper way to help utilise the highly discriminative motion features. Our deeper motion model
consists of a CNN based architecture that employs multiple distinct convolution operations to help
identify discriminative features. It contains eleven learned layers including nine convolutional layers
and two fully connected layers. We have designed various CNN architectures based on the deep
temporal information but the results show that this architecture achieves the best performance. A brief
description of the network architecture is shown in Figure 6.

Figure 6. Architecture of the deep motion network.

The convolutional layers constitute three groups in the network. Each has three convolutional
layers, separated by normalisation, ReLu and max-pooling layers. The specifications of the later three
layers are the same after each single group in the network. The specification of the convolutional
layers are varied according to group stage. The hand-crafted (FWMDMMs) information proposed
in Section 3.1 forms the input to the motion model. This starts at the first group of convolutional
layers and filtered with 64 kernels of size 3 × 3 each. Next, the output of the third convolutional layer
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in the first group is fed into the normalisation and max-pooling layers. These have pool size [2, 2] and
stride [2, 2].

The output is then fed to the second group of three convolutional layers. These filter with
96 kernels of size 3 × 3 each. The output is then normalised and down-sampled again by
the normalisation and max-pooling layers with the same specifications.

The final convolutional group consists of three convolutional layers. These filter the output
of the previous layer with 128 kernels of size 3 × 3 each. The normalisation and down-sampling
implemented layers then feed the information to the fully connected layers. These are separated
by a dropout layer to give a significant boost to the performance of our model.

5. Implementation

The parameters of the fuzzy weight functions in Equations (3)–(5) are wholly dependent on the
lengths of the weighted sequence τ as utilised by Equation (6). The length of the weighted sequence is
varied as part of the multi-resolution approach, i.e., τ ∈ {5, 10, All}. This removes dependence on a
single window length and consequently the underlying parameter settings too.

The system was implemented using Matlab. An NVidia 2GB Quadro Pro GPU was used to speed
up the implementation process and to facilitate the deep learning techniques.

The AlexNet model was fine-tuned using stochastic gradient descent with batch size equal
to 100, momentum 0.9 and weight decay 0.0005. The update rule for weight w is wi+1 := wi + vi+1 for
iteration i with momentum variable:

vi+1 := 0.9 · vi − 0.0005 · ε · wi − ε.
〈 ∂L

∂w
|wi

〉
Di

(10)

where ε is the learning rate and
〈

∂L
∂w |wi

〉
Di

is the average over batch i of Di of the derivative

of the objective with respect to w, evaluated at wi.
The biases in AlexNet are initialised with constant 1 in the second, fourth and fifth convolution

layers in addition to the fully connected layers. The biases are set to constant 0 for the remaining
layers. The same learning rate was used for the early layers and increased for the latter layers in order
to accelerate the training. The learning rate was initialised at 0.001 [47].

The time complexity of the DMM stream is two frames per second in the training section.
While the testing time is 11 frames per second. It is difficult to make a like for like comparison with
other state-of-the-art methods due to differences in hardware and software. However, the proposed
system is able to run in real-time or close to real-time with relatively modest compute hardware.

6. Experimental Results and Discussion

The proposed approach was evaluated on the Northwestern-UCLA multi-view action 3D
dataset [49], MSR 3D daily action dataset [50] and MSR 3D actions dataset [51]. These datasets
contain RGB-D videos captured using Microsoft Kinect based depth sensors. In this work, we compute
the FWMDMM temporal information for each observation in these datasets from the depth sequences.
To obtain additional discriminative information of an action we do exploit RGB and depth sequences
captured by Kinect sensors. In each, features are extracted from both RGB and depth information
using the pre-trained AlexNet network after fine-tuning the network. Various fusion techniques are
used to fuse both sources of information at different positions of the networks to show their effects
on the recognition rate. Furthermore, the CNN motion model is used to process the motion information
(FWMDMMs). This is then fused with spatial information (RGB and depth). The result is highly
discriminative features combining both spatial (RGB and depth) and motion (FWMDMM) information.
Further experimental details and results for these datasets are given in the following sub-sections.
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6.1. Northwestern-UCLA Multi-View Action 3D Dataset

Northwestern-UCLA (NUCLA) multi-view 3D event dataset has three Kinect cameras used
to capture RGB, depth and human skeleton data simultaneously. This dataset includes 10 different
action categories including: pick up with one hand, pick up with two hands, drop trash, walk around,
sit down, stand up, donning, doffing, throw, carry. Each action is performed by 10 actors. Figure 7
shows some example frames of this dataset. In addition, this dataset consists of a variety of viewpoints.

Figure 7. Samples of the NUCLA dataset.

We evaluate our proposed method with two different training and testing protocols for
this dataset:

• Cross-subject training scenario: In this setting we use the data of nine subjects as training data
and leave the data of the remaining subject as test data. This is useful to show the performance
of the recognition system across subjects. Furthermore, this is a standard criteria for comparison
with the state-of-the-art.

• Cross-view training scenario: As this dataset contains three view cameras, we use the data
of two cameras as training data and leave the remaining camera as test data. This kind of setting
is used to demonstrate the ability of the recognition system against different views and to get
another standard criterion to compare with the state-of-the-art.

These settings give the opportunity to evaluate the robustness of the proposed method
to variations in different subjects and different views. The proposed method achieves an interesting
set of results with the complete system demonstrating state-of-the-art performance. However, first
let us examine the performance of the individual subsystems. In the beginning the classification
performance using the pre-trained AlexNet network is investigated for the aforementioned scenarios.
Table 1 includes the results of the spatial based AlexNet implementation in terms of depth and
RGB information.

Table 1. Recognition accuracy in terms RGB and depth data of the Northwestern-UCLA (NUCLA)
dataset using pre-trained AlexNet network.

Validation Scheme Data Accuracy %

Cross-Subject RGB 91
Depth 88

Cross-view RGB 20.3
Depth 21.12

Then, we fuse both RGB and depth parallel streams to constitute the spatial information. In this
step we employ different fusion techniques at different positions between the two networks. We choose
four positions to implement the fusion: Conv5, Max-pooling3, FC7 and FC8 layers to find the most
suitable position for fusion. The fusion output is fed to a supervised classifier. In our case the KNN
classifier is chosen for recognising an action. Table 2 includes the recognition results using spatial
information for the different fusion positions.
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Table 2. Recognition accuracy of a KNN classifier in terms of the NUCLA dataset after two AlexNet
networks (spatial) fusion.

Settings Fusion Position Accuracy %

Concatenation Multiplicative Addition

Cross-Subject

Conv5 90.49 87.94 91.07
Max-pooling3 91.20 90.78 89.11

FC7 94.44 93.88 94.12
FC8 94.34 93.42 94.18

Cross-view

Conv5 17.67 14.43 15.89
Max-pooling3 16.87 15.07 15.65

FC7 24.67 23.54 24.20
FC8 23.14 22.35 23.07

As can be seen from Table 2, the results improve gradually whenever the fusion occurs at deeper
levels. This is possibly due to the improvement in the overall set of features being extracted at each
layer. Taking this result, an additional fusion is used to fuse spatial (RGB and depth) and motion
(FWMDMMs) streams at a fully connected (FC) layer. This was done to find out how the spatial
information (RGB and/or depth) can affect the recognition system. This is important because the
hand-crafted FWMDMMs features are merged with spatial information in the motion model. Table 3
includes the performance results of the recognition of the deep motion model. Included are the with
and without fusion results for the spatial model. It also includes a comparison between traditional
DMMs and improved MDMMs. As can be seen from the results in Table 3, the inclusion of spatial
information significantly improve the results; whilst the MDMM combined with the spatial information
is the best overall. Table 4 includes the performance results with the FWMDMMs as proposed here.
It includes different fuzzy weights in the DMM computation. These are then fused at the fully
connected (FC) layer with the spatial information using the different fusion techniques.

Table 3. A comparison between DMMs and MDMMs concatenated with spatial information
(depth and RGB) in terms of the NUCLA dataset.

Settings DMMs S+DMMs MDMMs S+MDMMs

Cross-subject 93.78 95.83 96.94 98.22

Cross-view 26.13 40.11 53.68 62.94

Table 4. Performance of the proposed method in terms of NUCLA dataset using FWMDMMs fused
with spatial information (depth and RGB).

Settings Fusion S+MDMMs S+FWMDMMs

Linear Reversed Linear Centre

Cross-subject
Concatenation 98.22 98.89 98.45 97.63
Multiplicative 96.94 96.83 97.12 95.48

Addition 97.19 97.10 97.56 96.74

Cross-view
Concatenation 62.94 60.72 66.30 69.13
Multiplicative 49.91 51.42 53.79 49.23

Addition 52.58 52.17 49.84 52.91

It is clear from Table 3 that the use of MDMMs is significantly better in comparison to DMMs
for HAR because of their ability to cover different periods of an action. This is most likely due
to an improved ability to cope with inherent variability for a performed action. In addition,
it is obvious that using spatial information with the motion information can improve the recognition
rate of the system.
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Many experiments have been undertaken here to find the most suitable information for
HAR. These demonstrate that the spatial information (depth and RGB) have a significant effect
on the recognition system. This appears to be particularly true when the spatial information is
combined with the motion information. It can be understood because FWMDMMs can cover
a wide range of an action simultaneously emphasising the temporally important parts of each action.
The highest performance is achieved using FWMDMMs, as proposed here in this work. This is for
different temporal weighting concatenated with the spatial information. It can be seen in Table 4 that
the FWMDMM based approach achieves some enhancement in the performance, reaching 98.89%.
This method is compared with some state-of-the-art approaches as seen in Table 5.

Table 5. A comparison between the proposed method and state-of-the-art approaches in terms of
the NUCLA dataset.

Paper Cross-Subject Cross-View

Virtual view [52] 50.7 47.8
Hankelet [53] 54.2 45.2

MST-AOG [49] 81.6 73.3
Action Bank [54] 24.6 17.6

Poselet [55] 54.9 24.5
tLDS [56] 93.0 74.6

kine-CNN [57] - 75.6
R-NKTM [58] - 78.1

Denoised-LSTM [59] - 79.6
VE-LSTM [60] - 87.2

E-TS-LSTM [61] - 89.2

Ours 98.9 69.1

The results show that virtual view [52] and Hanklet [53] methods are limited in their performance.
This reflects the challenges of the NUCLA dataset (e.g., noise, cluttered backgrounds and various
viewpoints). To help mitigate against these challenges, MST-AOG was proposed in [49] and achieved
81.60%. Our method achieves a significant improvement of 18% over MST-AOG and some comparable
performance for the cross-view setting. This is due to the big challenge in a cross-view setting.
In a cross-view setting, a scene in one view is different from the same scene in another view.
The distribution of the extracted features varies from one view to another. This is because of
the difference between the motion and appearance cues of an action across multiple views. The system
was trained here on a single view and testing was performed with the remaining views. A confusion
matrix of the proposed method is shown in Table 6.

Table 6. Confusion matrix of central-oriented FWMDMMs based method, using cross-view validation
scheme in terms of NUCLA dataset.
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6.2. MSR Action 3D Dataset

The Microsoft Research (MSR) action 3D dataset [51] is an action dataset consisting of depth
sequences with 20 actions: High arm wave, horizontal arm wave, hammer, hand catch, forward
punch, high throw, draw cross, draw tick, draw circle, hand clap, two hand wave, side-boxing, bend,
forward kick, side kick, jogging, tennis serve, golf swing, pickup and throw. Each action is performed
three times each by ten subjects. A single point of view is used where the subjects were facing
the camera while performing the actions. Samples of actions of MSR action 3D dataset are shown
in Figure 8. The dataset has been split into three groups based on complexity in most of literature
studies such as [17,18,51,62].

Figure 8. Samples of the Microsoft Research (MSR) 3D action dataset [51].

As the dataset is split into three subsets: AS1, AS2 and AS3 each has its own actions
based on the complexity as included in Table 7, all validation schemes are used with the three
subsets respectively.

Table 7. Subsets of MSR action 3D dataset [51].

AS1 AS2 AS3

Horizontal arm wave High arm wave High throw
Hammer Hand catch Forward kick

Forward punch Draw tick Side kick
High throw Draw cross Jogging
Hand clap Draw circle Tennis swing

Bend Two-hand wave Tennis serve
Tennis serve Side-boxing Golf swing

Pick-up and throw Forward kick Pick-up and throw

Three evaluation schemes are considered in the literature (see, e.g., [63]) in terms of MSR action
3D dataset: 1/3, 2/3 and cross-subject.

• The 1/3 evaluation scheme: 1/3 of the instances are used as training samples and the reminder
as testing samples. The 1/3 scheme splits the dataset using the first repetition of each action
performed by each subject as training and the rest for testing.

• The 2/3 evaluation scheme: 2/3 of the instances are used as training samples and use the
remainder as testing samples. The 2/3 scheme splits the dataset into training samples using two
repetitions of each action performed by each subject and testing using the rest of the data.

• The cross-subjects evaluation scheme: Half of the subjects are used as training samples, the other
half used as testing samples. Any half of the subjects can be used for testing, e.g., 2, 4, 6, 8 and 10;
and the rest for training, i.e., 1, 3, 5, 7 and 9 (as used here).

Each subset has eight actions that can used to evaluate the proposed method. This is in terms
of proportions 1/3 and 2/3. Moreover, cross-subject validation schemes are used to assess the
performance of the proposed method against different training settings. This can include shortage of
training samples, many training samples and variations between subjects.
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The same procedures for the above experiments were used for the MSR 3D actions dataset.
The pre-trained AlexNet network classification was trained based on the depth sequence data only
for all evaluation schemes. Table 8 includes the results of the AlexNet implementation in terms
of depth sequences.

Table 8. Recognition accuracy in terms depth sequences of MSR 3D action dataset using pre-trained
AlexNet network.

Settings Accuracy %

AS1 AS2 AS3

1/3 evaluation scheme 63.99 57.64 65.09
2/3 evaluation scheme 73.48 59.67 68.71

Cross-subject evaluation scheme 45.41 48.61 49.77

As this dataset has no RGB data, only depth sequences are used. The depth data is the only
spatial information employed in the fusion with the deep motion model. Table 9 includes the results
of the deep motion model using traditional and improved DMM features. These are combined at the FC
layer with spatial information (depth sequences).

Table 9. Performance of the deep motion model based on MDMMs and DMMs concatenated with
spatial information (depth) in terms of MSR 3D action dataset.

Subsets Settings DMMs S+DMMs MDMMs S+MDMMs

AS1
1/3 scheme 74.84 76.71 94.90 96.81
2/3 scheme 82.77 84.13 97.53 98.72

Cross-subjects scheme 50.91 54.35 84.14 89.78

AS2
1/3 scheme 76.53 78.07 94.43 97.44
2/3 scheme 77.22 79.30 96.56 98.11

Cross-subjects scheme 62.77 65.15 79.83 87.61

AS3
1/3 scheme 76.12 77.15 95.28 98.57
2/3 scheme 81.07 84.79 97.82 98.97

Cross-subjects scheme 58.65 63.85 89.62 92.15

The results in Table 9 enable a comparison with traditional DMMs and MDMMs. The results
appear to show that MDMMs merged with spatial information offer some improvements. Based on that
observation, different temporal fuzzy weights were then considered. These included linear, reversed
linear and central-oriented based weighted MDMMs. These are used in our deep motion model.
These were fused at the fully connected (FC1) layer with the spatial information. Table 10 includes the
performance of the proposed method. It illustrates the improvements for different fusion computation
approaches. Concatenation, multiplication and addition fusion calculations are compared.

Table 10. Performance of the proposed method for different weighting functions for the FWMDMMs.
Results of different fusion approaches with the spatial information (depth) are also shown. Results are
for the MSR 3D action dataset.

Subset Fusions
Accuracy %

Linear Reverse-Linear Centre

1/3 2/3 CS 1/3 2/3 CS 1/3 2/3 CS

AS1
Concatenate 98.09 98.98 98.47 98.05 99.19 93.65 98.54 100 94.70

Multiplication 86.95 89.00 82.15 87.34 90.17 79.80 87.66 90.97 81.55
Addition 90.12 92.87 84.80 87.46 88.20 80.91 89.00 91.17 83.43

AS2
Concatenate 96.58 100 94.21 97.81 99.34 91.32 98.89 98.49 96.52

Multiplication 85.32 89.04 81.55 88.41 90.29 82.13 91.89 92.80 80.91
Addition 85.76 93.16 84.70 89.10 91.54 81.43 90.58 89.81 82.30

AS3
Concatenate 99.26 98.57 90.98 100 100 90.59 99.38 99.84 94.32

Multiplication 83.21 87.90 80.14 84.32 86.56 78.12 82.78 86.22 82.90
Addition 86.73 89.10 80.59 87.92 90.24 79.61 81.15 88.43 82.63
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The concatenation fusion approach appears to provide the best performance for all cases.
The centre based approach appears to perform reasonably and consistently well for the majority
of the cases, particularly for the concatenate fusion approach. Figure 9 shows the confusion matrices
of the recognition system. This is for the FWMDMMs under the above regulations in terms of the MSR
action 3D dataset.
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Figure 9. Confusion matrix of spatial information and central-oriented fuzzy weighted multi-resolution
DMMs (FWMDMMs) based method, using CS validation scheme in terms of AS1 (left), AS2 (middle)
and AS3 (right) subsets of MSR 3D action dataset.

A comparison between the proposed method and the state-of-the-art approaches for HAR is
presented in Table 11. These results are for the MSR action 3D dataset. Our proposed method appears
to outperform the state-of-the-art approaches for the majority of cases. In others, it appears to achieve
at least comparable performance. Some of these other methods are DMM based, such as [25] and [17].
In these cases, our method achieves greater recognition rates in the range of 1–6%. This could possibly
suggest that FWMDMM and spatial information based features can help to provide more powerful
discrimination. Our approach also utilises multiple hierarchical features that cover various periods
of an action. In addition, our deep recognition model uses a diverse range of layers. These things
combined appear to help to improve the chances to obtain the most accurate information. Many
of the better performing methods (in terms of cross-view) typically rely on the use of skeleton data.
This can be considered a potential disadvantage. This is due to the a priori information that skeleton
extraction algorithms typically rely. This can be seen with the final set of results presented in Section 6.3.
The methods that put too much reliance on skeleton data are not able to perform as well when errors
occur with the inferred skeleton information.

Table 11. Performance of the proposed method compared to the state-of-the-art approaches in terms
of the MSR action 3D dataset [51].

Method
Accuracy %

1/3 Scheme 2/3 Scheme Cross Subject Scheme

AS1 AS2 AS3 Av. AS1 AS2 AS3 Av. AS1 AS2 AS3 Av.

Li et al. [51] 89.5 89.0 96.3 91.6 93.4 92.9 96.3 94.2 71.9 72.9 79.2 74.7
DMM-HOG [17] 97.3 92.2 98.0 95.8 98.7 94.7 98.7 97.4 96.2 84.1 94.6 91.6
Chen et al. [18] 97.3 96.1 98.7 97.4 98.6 98.7 100 99.1 96.2 83.2 92.0 90.5

HOJ3D [62] 98.5 96.7 93.5 96.2 98.6 97.2 94.9 97.2 88.0 85.5 63.6 79.0
Evol.Joints [64] - - - - - - - - 91.6 90.8 97.3 93.2

DMM-HOG [26] - - - - - - - - 90.6 90.7 99.1 93.5
Skel.Lie [27] - - - - - - - - 95.3 83.9 98.2 92.5
STOP [65] 98.2 94.8 97.4 96.8 99.1 97.0 98.7 98.3 91.7 72.2 98.6 87.5

DMM-LBP-FF [25] 96.7 100 99.3 98.7 100 100 100 100 98.1 92.0 94.6 94.9
DMM-LBP-DF [25] 98.0 97.4 99.3 98.2 100 100 100 100 99.1 92.9 92.0 94.7

WHDMM [66] - - - - - - - - - - - 100.0
RNN, LSTM [67] - - - - - - - - - - - 94.5

MTL [68] - - - - - - - - - - - 95.6
tLDS [56] - - - - - - - - 96.8 89.1 98.8 94.9

CNN, SAE [69] - - - - - - - - - - - 74.6
3D CNN, DHI [70] - - - - - - - - - - - 92.8

VB-DMM [71] 98.0 97.4 99.3 98.2 98.6 100 100 99.5 99.1 92.3 98.2 96.5
DRN [72] - - - - - - - - 99.9 99.8 100 99.9

DMLAE [73] - - - - - - - - - - - 84.0

Ours 98.5 98.8 100 99.1 100 100 100 100 98.4 96.5 94.3 96.4
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6.3. MSR Daily Activity 3D Dataset

The MSR Daily activity 3D dataset is quite a challenging dataset. This is because of a high level of
intra-class variation. Furthermore, some of the actions are based on object-interaction. This is where
the subject is interacting with an object when performing an action. The dataset has been captured by
a Kinect sensor at Microsoft Research Redmond. It consists of depth and RGB sequences. It includes 16
actions: Drink, eat, read book, call cellphone,write on a paper, use laptop, use vacuum cleaner, cheer
up, sit still, toss paper, play game, lay down on sofa, walk, play guitar, stand up, sit down. Performed
by 10 subjects each subject performs an action twice in two different poses (standing and sitting).
Samples of this data set can be seen in Figure 10.

Figure 10. Samples of the MSR daily action dataset.

Different evaluation schemes have been considered in the literature in terms of MSR daily activity
3D dataset. Here, similar to [30] and [19], the sequences in which the subjects were almost still are not
considered. As a result, ten types of action are taken into account in our experiments including: Drink,
eat, call cellphone, use vacuum cleaner, cheer up, toss paper, lay down on sofa, walking, stand up and
sit down. A cross-subject validation was performed with subjects 1, 3, 5, 7, 9 for training and subjects
2, 4, 6, 8, 10 for testing.

The same procedures for the previous experiments are implemented regarding MSR daily activity
3D dataset. The pre-trained AlexNet network classification is implemented based on the depth
and RGB sequences under the evaluation scheme. In addition, a fusion between RGB and depth
is considered and fed to a supervised classifier. In our case the KNN classifier is used to recognise
an action to find the most suitable position of fusion. Table 12 includes the results of the AlexNet
implementation before a fusion and KNN classification post fusion.

Table 12. Performance of AlexNet network and a KNN classifier based on spatial information
(RGB and depth) in terms of MSR daily activity 3D dataset before and after fusion.

Depth RGB Fusion Position Concatenation Multiplicative Addition

36 42

Conv5 39.77 34.89 38.17
Max-pooling3 41.09 40.13 38.74

FC7 51.86 45.11 49.24
FC8 51.07 44.21 48.98

The RGB and depth sequences which form the spatial information are then fused with the deep
motion model. Table 13 includes the results of the deep motion model using traditional and improved
DMM features concatenated with spatial information.

Table 13. Performance of the deep motion model based on DMMs and MDMMs concatenated with
spatial information in terms of MSR daily activity 3D dataset.

Method Accuracy %

DMMs 67.58
S+DMMs 72.23
MDMMs 85.90

S+MDMMs 89.14
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It is worth noting in Table 13 that the recognition rate improved after fusion between the spatial
and motion information, outperforming the traditional DMMs and MDMMs based methods. Taking
this into consideration, different fuzzy weights (linear, reverse linear and central-oriented) based
FWMDMMs in the deep motion model were compared. They were then fused at the fully connected
(FC1) layer with spatial information by various fusion techniques. Table 14 includes the performance
of the proposed method based on these different fuzzy weight functions for the MSR daily activity
3D dataset.

Table 14. Performance of the proposed method for different weight aspects for the FWMDMMs fused
with spatial information (RGB and depth). Results are for the MSR daily activity 3D dataset.

Fusions Linear Reversed Linear Centre-Oriented

Concatenation 89.41 90.26 92.88
Multiplication 77.67 79.23 79.52

Addition 79.10 81.29 78.22

The results in Table 14 appear to show that the centre-oriented fuzzy weight function and
the concatenation based fusion approach provide the best overall result. To assess the efficiency
of the proposed method, a comparison between the state-of-the-art approaches and the work proposed
here is presented in Table 15. This is in terms of the MSR daily activity 3D dataset.

Table 15. Comparison of our overall proposed method in comparison with state-of-the-art approaches.
Results are for the MSR daily activity 3D dataset [50].

Method Accuracy %

LOP Feature [29] 42.5
STIPs(Harris3D+HOG3D) [74] 60.6

Random Occupancy Pattern [75] 64.0
Joint Position Feature [29] 68.0

STIPs (Cuboids+HOG/HOF) [76] 70.6
Local HON4D [77] 80.0

SNV [51] 86.3
DMMM [62] 81.9

DSTIP+DCSF [30] 83.6
WHDMM [66] 85.0

Actionlet Ensemble [29] 86.0
MDMMs [19] 89.0

CNN, SAE [69] 91.3
MM2DCNN [78] 71.7

MMDT [78] 82.5
Deep Poselets [79] 84.4

DMLAE [73] 67.1

Ours 92.9

In Table 15, it can be seen that limited accuracy was previously achieved by LOP [29] and ROP [75]
based approaches. DSTIP+DCSF [30] was designed to overcome some of the limitations posed by
the work of [75], achieving a recognition rate of 83.60%. Actionlet Ensemble in [29] achieved an 86%
recognition rate using a combination of depth and skeleton data. A recent method in [19] indicated
the difficulty of skeleton data capturing process. It suggested the use of depth sequences based
on temporal DMMs and Fisher kernel representation. It achieved a relatively competitive result of
89%. Our method achieves an improvement of 3.88% using FWMDMM with spatial information.
The confusion matrix in terms of MSR daily activity 3D dataset is shown in Table 16.
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Table 16. Confusion matrix of the proposed method based on the concatenation of Centre-oriented
FWMDMMs and spatial information in terms of daily activity 3D dataset.
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The MDMMs consist of three lengths of DMMs. These are combined using the linear, reversed
linear or centre-oriented weighting fuzzy functions to make up the FWMDMMs. In addition to
the above experiments, additional comparisons have been performed. These are based on mixed
weighting functions per used length (short, medium and long). These help to show the effects
of different weighting functions. This differs from the experiments and implementations that took
the same weighting function for the whole three lengths. Figure 11a shows the recognition rates
based on various weighting function per length. The abbreviations, O, L, R and C refer to the fused
spatial information with original MDMMs, linear, reversed linear and centre-oriented FWMDMMs,
respectively. The rest of the symbols consist of three letters such as LRC indicate the three weighting
functions that used with short, medium and long, respectively. For example, LRC corresponds to
DMM computations with: A linear weight function (L) for the short length resolution; teversed linear
weight function (R) with medium length resolution; and centre-oriented weight function (C) for
the long length resolution. These combine to produce the final FWMDMMs (LRC) and so on for
the other combinations.

(a) (b)

Figure 11. (a) Recognition rates based on various weight functions of FWMDMMs concatenated
with spatial information. Results are in terms of NUCLA, MSR 3D action subsets and MSR daily
activity datasets. The abbreviations, O, L, R and C are the original MDMM, linear, reversed linear and
central-oriented fuzzy weight functions, respectively. (b) Effects of various lengths of frames based
DMMs computation with MDMMs and FWMDMMs on the recognition accuracy.
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It can be seen in Figure 11a that using FWMDMM based on different weight functions can
significantly improve the recognition rate. It appears that most of the weight functions have helped
to achieve better recognition rates in comparison with the original MDMM. For instance, it can be
seen that the centre-oriented weight function achieves improved results. This is in terms of MSR daily
activity, AS1-MSR action 3D and AS2-MSR action 3D datasets compared to other weight functions
and the original MDMM. A reversed linear weight function appears to achieve the best performance
in terms of NUCLA and AS3-MSR action 3D datasets. This is in comparison with other weight
functions and the original MDMM.

The effect of different lengths (short, medium and long) for the DMM computations can be seen
in Figure 11b. This is via the MDMMs and FWMDMMs in terms of the recognition rates for
the aforementioned datasets. The HAR rate appears to vary considerably depending on the length
of frames that are included in the DMM calculation. Greater lengths appear to result in improved
recognition rates. Furthermore, it is noticeable that the different window lengths applied using
the fuzzy weight functions also improve the performance. This appears to show that the Fuzzy
Multi-resolution formulation encapsulated by FWMDMM might be preferred. This is in comparison
to individual windows consisting of short, medium or long and MDMM state models.

7. Conclusions

This paper presents the novel FWMDMM for HAR. It appears to utilise the temporal motion
information available in depth sequences more effectively compared to traditional DMMs. The feature
representation is designed to help provide invariance to variations in action speed. This is important
because the same type of action could be performed as different speeds by different people or even
the same person. Fuzzy weight functions are employed to help emphasise multiple aspects of an action
at different time points. This can help to exploit the most important moments in each action. As a result
it can contribute to helping to provide improved differentiation between similar actions. Compact
and discriminative features are extracted from FWMDMMs by utilising a CNN based deep motion
model. In addition, the spatial and appearance based information in the RGB data and single frame
depth data are also utilised. Transfer deep learning from the spatially trained AlexNet CNN is used
to effectively represent the spatial information. Different fusion techniques have also been investigated
between the spatial and motion information to find the most suitable approach.

The proposed method is able to classify human actions even with small differences in actions.
This is in addition to providing excellent performance on actions that partly depend on human–object
interactions. The results also appear to show invariance to noisy environments, errors in the depth
maps and temporal misalignments.

The proposed approach has been validated on three publicly available benchmark datasets: MSR
3D actions, NUCLA multi-view actions and MSR daily activities. The experiments show that the results
from the proposed method are equal if not competitive in comparison to state-of-the-art approaches.
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