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ABSTRACT The rapid advancements ofMicro/NanoBOTs (MNBOTs) introduce a new research opportunity
in routing multiple MNBOTs to perform practical biomedical applications. In this paper, leveraging on
existing group communication and motion control schemes for MNBOTs, we propose an Activation Based
Molecular Routing (ABMR) scheme in MNBOT networks to coordinate the movement of MNBOTs to
activate all the nodes on the routing path to the sink node in bio-sensing applications. An optimization-
based algorithm, Lagrangian Algorithm (LGA), is proposed to identify cost efficient ABMR solutions.
In the computation experiments, we adopt the MNBOT’s parameters from a newly developed biocompatible
microcapsule to consider the interplay between the MNBOT guiding force from magnetic field and the
MNBOTmovement deviation fromBrownianmotion. It shows that as compared to the conventional diffusion
based MNBOT routing scheme, MNBOT routing with magnetic guidance scheme can help to reach the
destinations with small receiving volume in shorter propagation time, which is important in high precision
bio-medical applications. In addition, LGA outperforms the other heuristics in terms of MNBOT travelled
distance under different traffic demands and activation thresholds. LGA also identifies the MNBOT routing
decisions with acceptable sink node activation time by minimizing the MNBOT propagation delay as the
objective function. This enables ABMR scheme to be applicable to time sensitive biosensing applications.

INDEX TERMS Micro/nanobots, molecular communication, molecular routing, node activation property,
biological communication process.

I. INTRODUCTION
With the advance of nanotechnologies, the size of microm-
eters to nanometers Micro/NanoBOTs (MNBOTs) are now
available [1]. Even though the MNBOT research is still in
its early stage, the benefits from down to the cellular level
diagnosis and treatment shed light on new biomedical pro-
cedure to conventionally inaccessible parts of the animals or
plants. Numerous research efforts have been done to enable
MNBOTs on more practical biomedical applications, such as
therapeutic payloads delivery to target disease sites [2], high
precision surgery at cellular level [3], bio-sensing capability
in recognition of specific Alzheimer biomarker protein [4],
and bio-detoxification in biological fluids [5].

The associate editor coordinating the review of this manuscript and

approving it for publication was A. Taufiq Asyhari .

MNBOT guiding mechanism is important to enable
MNBOT in biomedical applications. Individual navigation
and speed control schemes of MNBOTs have been explored
in existing research results. However, the group communi-
cation and synchronized coordination between a swarm of
MNBOTs (or MNBOT networks) to perform more practical
tasks in biomedical application is still a challenging issue [1].

In this paper, we address the MNBOT routing scheme that
captures the node activation property in existing biological
communication processes. In existing biological processes,
cells receiving enough signaling molecules will be activated
and released, signaling molecules to activate the other cells
to propagate the signal. By carrying the signaling molecules
in MNBOT, MNBOT transportation with guided orienta-
tion can react to the event faster than molecular diffusion
scheme in existing biological processes. In Figure 1, we illus-
trate a biosensing example to show the differences between
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FIGURE 1. Molecular diffusion and MNBOT transportation in biosensing applications.

molecular diffusion andMNBOT transportation in activation-
based signal propagation.

In Figure 1, the biosensors that sense the event (i.e., node A
and B) release the signaling molecules to activate the relay
nodes on the routing path and eventually activate the sink
node. In Figure 1(a), the signaling molecules release by node
A and node B will follow the Brownian motion incurred
molecular diffusion process that flow randomly in the biolog-
ical fluids. In Figure 1(b), MNBOTs carrying the signaling
molecules as the payload will move on the routing path to
activate the relay node C and eventually activate the sink
node S. Apparently, MNBOT transportation scheme require
much lesser signaling molecules and lesser time to activate
the sink node than the molecular diffusion scheme. However,
the trajectory path of MNBOT still suffers the interference
from Brownian motion in the high viscous biological fluids.
Devising a MNBOT routing scheme with considering the
activation constraint and Brownian motion interference will
be an interesting problem. In this paper, we devise an efficient
activation-based routing scheme in MNBOT networks that
addresses the molecular collision interference.

In Section II, we will show the existing researches that
enable MNBOTs networks to be a viable solution in biomed-
ical applications. In Section III, we will devise a EMAR
model to capture the node activation property and Brow-
nian motion interference in MNBOT routing. In Section
IV, the optimization-based approach, the complete algorithm
Lagrangian Algorithm (LGA), is proposed to solve this
MNBOT routing problem. In Section V, the computational
experiments will be performed to evaluate the solution quality
of the LGA algorithm. In Section VI, we will conclude this
paper.

II. RELATED WORKS
A. RESEARCH ON BIOCOMPATIBLE MNBOTS
Bio-compatibility is one of the major concerns when implant-
ing MNBOTs into the animal’s body. A lot of research efforts

in chemistry and material science have been made in building
bio-compatible MNBOTs. The basic idea of these works is
not only to make theMNBOTs non-toxic, but also biodegrad-
able after their mission is accomplished [6]. In addition to
thematerial composition of theMNBOTs, the bio-compatible
fuels and the byproducts after chemical reactions to propel
the MNBOTs are also studied in numerous research efforts.
MNBOT can either carry the fuel [12] or draw in fuels from
the surrounding biological fluids [7] to propel the MNBOT.
The second approach raises more attention in recent years
where theMNBOT is fabricated with catalytic materials (e.g.,
Zn, Mg) in its hollow propulsion chamber. MNBOT draws
in fuels (e.g., acid, water) from its surrounding environment
to react with the catalyst in the hollow chamber to produce
hydrogen bubbles to propel the MNBOT [7].

Besides the MNBOT hardware, the communication
scheme between these MNBOTs should also be bio-
compatible. One of the bio-compatible communication
schemes is molecular communication [8], which is lever-
aged on existing biological cellular communication pro-
cesses. Besides bio-compatibility, molecular communication
requires very little energy to generate and propagate [9].
Basically, there are two molecular communication schemes
in MNBOTs. In the first scheme, MNBOT releases the sig-
naling molecules and the molecules move either by diffusion
or fluid flow. Molecular diffusion is observed in existing
biological processes and some existing works have devel-
oped in-depth theoretical results for the end-to-end molecular
diffusion model [10] and the modulation scheme in consid-
ering the oscillating and propagating patterns in biological
cells [11]. However, molecular diffusion incurred by the
Brownian motion suffers from low propagation speed and
turbulent flow in the biological fluid. In the second scheme,
self-propelled MNBOT is introduced to transport and release
the payloads (i.e., signalingmolecules or drug particles) to the
target place. The velocity of the self-propelled MNBOT can
be extremely fast, up to hundreds of MNBOT’s body length
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per second [7]. This makes self-propelled MNBOT a more
promising scheme in molecular communication processes,
which is adopted in this paper. We will show in the latter,
computational experiments that molecular diffusion-based
scheme is not applicable to the high precision bio-medical
applications.

B. RESEARCH ON MOTION CONTROL
To be applicable in biomedical applications, motion control
(speed control and navigation) mechanisms are proposed for
self-propelled MNBOTs to overcome the Brownian motion
and high viscous force in the body fluid. Studies show that
by using the external stimuli from Ultraviolet (UV) light [14]
and ultrasound fields [15], the speed to generate the bubbles
can be controlled to trigger the activation and deactivation of
the MNBOT’s motion. One of the most commonly used tech-
nique in MNBOT navigation is to integrate the ferromagnetic
layer (e.g, Fe, Zn) into the tubular structure of MNBOT and
using external magnetic field to navigate the MNBOT [13].
The magnetic field can be generated by magnets [13] or
magnetic coils [31].

Group MNBOTs navigation scheme is first proposed
in [31] to guide the ferromagnetic MNBOTs via the mag-
netic field generated by the magnetic coils deployed in the
networks. By controlling the input currents to the micro-coils
on the nodes in the bio-sensing networks, the nodes generate
the attractive magnetic potentials (negative input current) and
repulsive magnetic potentials (positive input current) to the
positive charged ferromagnetic MNBOTs. Then, magnetic
potential field navigation is possible to guide and control
the trajectory path of the ferromagnetic MNBOTs along the
desired path.

C. RESEARCH ON MNBOT HARDWARE CAPABILITIES
To realize group communication and coordination between
the MNBOTs, three major hardware capabilities (i.e.,
computing, storage and communication) of MNBOTs are
required. In [16], the first molecular computer chip with
160 Kbits was built based on a molecular machine, rotaxane.
The inventors of the rotaxane, Stoddart et al., are awarded
2016 Nobel prize in Chemistry [17]. Rotaxane is an electron-
poor ring-shaped molecule that is attached to an axle with
electron-rich structures in two places [18]. By heating rotax-
ane, the ring jumps forward and backward between the
electron-rich areas of the axle, which acts like a shuttle with
on-off capability [19]. Rotaxane molecular machine realizes
the computing and storage capabilities in MNBOTs.

In [33], Jensenet al. developed new Carbon Nano Tubes
(CNT) that can transmit/receive wireless signals. In [34],
Jornet et al. propose a CNT based modulation and chan-
nel access scheme, called Time Spread On-Off Keying
(TS-OOK), in the Terahertz band. The basic idea of the TS-
OOK is to generate short pulses (one hundred femtoseconds
long) in the Terahertz band and the achievable data rate can
achieve Gbps to Tbps. By equipping a CNT radio, high data
rate wireless communications are achievable in MNBOTs.

With the capabilities of computing, storage and communi-
cation in micro/nano-scale machines, it is now possible to
coordinate and route multiple MNBOTs to perform more
sophisticated bio-medical tasks.

D. RESEARCH ON NODE ACTIVATION PROPERTY
In this paper, we address the MNBOT routing scheme that
captures the node activation property in existing biolog-
ical communication processes. In existing biological pro-
cesses, cells receiving enough molecules will be activated
and released signaling molecules to activate the other cells
to propagate the signal. In [20], they show that pain prop-
agation comes from the activated nociceptors releasing the
molecules to propagate the pain messages. After intense
stimulation or persistent injury, activated nociceptors resid-
ing within injured area will release a variety of neuron-
transmitters and molecules to facilitate the transmission of
pain messages to the brain. In [21], they conduct the in-
vivo experiment to identify the pain activation threshold to
activate the C fiber in human and rat. Besides pain propaga-
tion, molecular activation property is also observed in long
range neural signal propagation. In [22], it is shown that
protein kinase cascade can convey long distance phosphory-
lation waves. The ppMAPK (bisphos- phorylated mitogen-
activated protein kinase) wave is supported by the feedback
activation of MAP2K (MAPK, MAPK kinase). A two-site
MAPK (de)phosphorylation bi-stable cycle generates a con-
stant amplitude and high velocity phosphoprotein wave,
which can propagate the signal at the velocity of 25µm/sec
with the distance over 1cm.

This node activation property also plays an important role
in the immune system in the vertebrates. There are two major
immunity strategies (adaptive and innate) employed by the
immune system in the vertebrates. In the adaptive immune
system, the number of triggered T Cell Receptors (TCRs)
determines when the T-cell will be activated. TCRs are trig-
gered by ligands on the surface of antigen-presenting cells.
When the number of the triggered TCRs reaches the thresh-
old, the T-cell will be activated [23] [24] and then releases
the signaling molecules, cytokines, to incur more immune
responses. In the innate immune system, the node activation
property is also observed in the Natural Killer (NK) cell. The
receptors in NK cell can recognize the Major Histocompat-
ibility Complex (MHC) I molecules on the surface of the
normal cell. In the absence of the MHC I molecules in the
infected cells, the NK cells will be activated to kill the cells
with low MHC I molecules [25].

These three examples on existing neuron signal propaga-
tion and immune systems show that node activation plays
an important role in the biological communication processes.
To the best of our knowledge, our previous work in [26] is
the first to address the node activation property in MNBOT
networks. It shows that aggregation routing can help to satisfy
node activation constraint. However, without capturing the
Brownian motion interference in the high viscous biological
fluids (e.g., urea or blood), the routing decisions might not
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be applicable to bio-medical applications in low Reynolds
number environment.

E. RESEARCH ON ROUTING
Routing has been an important issue in sensor networks that
the data source nodes identify the energy efficient routing
path to send the sensed data back to the sink node [35].
In wireless sensor networks (WSN) with stationary sink
or mobile sink [36], aggregation routing strategy has been
suggested to reduce the redundant information and wireless
transmission power. Data aggregation strategy is especially
useful in large networks with very large number of sensor
nodes like IoT. A recent IoT study exploits the queuing delay
for service aggregation to reduce the transmission volume
and reduce the request response delay by using cache at
the routers [37]. Considering the battery constraint in sensor
node, battery-friendliness routing and relay node selection
scheme has been proposed in [38] to prolong the lifetime for
WSN.

Even though there are numerous existing researches on
routing algorithms and protocols in WSN, these aggregation
routing and relay node selection schemes are not applica-
ble to the MNBOT routing in biological networks due to
three reasons. First, the energy consumption in WSN comes
from transmitting and receiving the wireless signal at the
sensor nodes. In MNBOT networks, the energy consumption
come from guiding the MNBOTs along the desired path.
Second, the node activation property in biological processes
is not addressed in the routing algorithms and protocols in
WSN. Third, the existing researches in WSN do not address
the Brownian motion interference in high viscous biological
fluids.

The first in-vitro biological routing work appeared in [31]
to guide and control the trajectory path of multiple MNBOTs
via magnetic force. First node activation property aware
MNBOT routing work appeared in [26], and it showed that
aggregating MNBOTs on the routing path could help to acti-
vate the nodes on the routing path more efficiently. How-
ever, the interference from Brownian motion is not addressed
in [26] to capture the MNBOT movement behavior in high
viscous biological fluids.

In this paper, by leveraging on the aforementioned group
MNBOT navigation scheme and MNBOT hardware tech-
nologies, we address the MNBOT routing scheme that
captures the node activation property in existing biologi-
cal communication processes. In addition, we propose a
new optimization-based algorithm (LGA) that addresses the
penalty cost from violating the node activation constraint.
By considering the interplay between guiding force and
Brownian motion, LGA algorithm identifies more efficient
routing decisions than the three proposed heuristics in [26].
To summarize, we propose a node-activation-based and
Brownian motion aware MNBOT routing scheme to prop-
agate the biological signal in high viscous biological fluids
more efficiently.

III. NODE ACTIVATION AND EMAR MODEL
The node activation property states that for any node on the
routing path, it must be activated first before it can transmit
MNBOTs with payloads to other nodes. The node activation
property is formulated in Equation (1).

1i ≤
∑
l∈L

Ml σli (1)

In Equation (1),1i indicates the received MNBOT threshold
to activate node i; Ml indicates the number of MNBOTs on
link l; σli is the indication function which is equal to 1 if
node i is the terminating node on link l and σli = 0 if
node i is not the terminating node on link l. Then the term(∑
l∈L

Ml σli

)
calculates the number of received MNBOTs at

node i. Equation (1) specifies the necessary condition of the
node activation property that the received MNBOTs at a node
must be no less than the activation threshold to activate a
node.

Besides node activation constraint, node activation prop-
erty also incurs a newmolecular aware transmission problem.
Unlike transmitting IP packets via electromagnetism in IP
networks, molecular transportation via MNBOT in biological
system has to convert the energy from the bio-chemical reac-
tion between fuels and catalyst in the chamber of MNBOT
into gas bubbles to generate the mechanical power to propel
the MNBOT. Basically, transporting more MNBOTs will
incur more transportation energy. Hence,

Al = al ×Ml . (2)

In Equation (2), al indicates the link cost to transport
one MNBOT on link l. Then, Al calculates the total cost
to transport Ml number of MNBOTs on link l. Note that in
the biological fluids (e.g., urea or blood) with low Reynolds
number, the random movement of MNBOTs from Brownian
motion should be carefully addressed [7]. The guiding force
for MNBOTs are introduced to overcome the random move-
ment from Brownian motion so that the MNBOT can reach
the destination. In other words, the link cost of transporting an
MNBOT (i.e., al) should take Brownian motion interference
and guiding force into account.

al = φ (2l,3l, dl) . (3)

In Equation (3), we define al as a function of guiding
force (i.e.,2l), Brownian motion (i.e.,3l) and the Euclidean
distance (i.e., dl) on link l. In the computational experiments,
we study this link cost with considering the Brownian motion
in different levels of magnetic force guidance.

Based on node activation constraint and molecular aware
cost as defined in Equations (1) and (2), node activation prop-
erty introduces a new Activation Based Molecular Routing
(ABMR) scheme in biological system which is different from
existing Shortest path Based Routing (SBR) scheme in IP
networks.

In Figure 2, we illustrate a bio-sensing application in which
data source nodes sense and send the signaling molecules
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FIGURE 2. MNBOT routing in SBR and ABMR.

carried byMNBOTs back to the sink node. To realize the bio-
sensing application in Figure 1, we assume that each node
is attached with microscale MEMS-fabricated coils that can
generate the localmagnetic field as shown in [31]. In addition,
each node is equipped with the computing module, storage
and CNT communication module as indicated in Section I.
By embedding CNT radio, each node communicates with
other nodes to exchange the topology information and the
information of node activation status. Based on the informa-
tion, the sink node will compute and distribute the routing
decisions to each node via wireless signal. Then, each node
generates the magnetic field to attract or repel the MNBOTs
based on the received routing decisions.

In Figure 2, the node action constraint has to be satisfied
all the way from the data source nodes back to the sink node.
In Figure 2(a), every data source node identifies the shortest
path to the sink node via the SBR algorithm. By considering
the node activation constraint to activate every node along
the path, based on Equation (2), the total cost will be 14
(=2×2+3×1+2×2+3×1). However, a more cost-efficient
routing is shown in Figure 2(b) where the MNBOTs are first
aggregated at node C before transmitting to the sink node S.
In this case, the total cost is 12 (=3×1+3×1+3×2).
To tackle the ABMR problem in bio-sensing applications,

a mathematical model, called Efficient Molecular Activa-
tion and Routing (EMAR), is proposed. Efficiency is a very
important design criterion in resource (i.e., MNBOTs) lim-
ited MNBOT networks. Note that ‘‘Efficient’’ in the EMAR
model is to facilitate efficient molecular transporting and
routing viaMNBOTs in considering two properties (i.e., node
activation constraint and molecular aware link cost) defined
in Equations (1) and (2).

Before presenting the EMAR model, the notations used in
the formulation are listed as follows.

Problem (P): ZIP = Min
∑
l∈L

φ (2l,3l, dl)Ml

Subject to:

vi = 1 ∀i ∈ D ∪ S (4)

vi1i ≤
∑
l∈L

Mlσli ∀i ∈ N − S − D (5)

Input values:
N : the set of nodes;
L: the set of links;
D: the set of data source nodes;
S: the set of sink node;
ρli : indication function, =1 if node i is the starting node of
link l; =0, otherwise;
σli : indication function, =1 if node i is the terminating node
of link l; =0, otherwise;
1i : the received MNBOT threshold to activate node i;
dl : the Euclidean distance of link l;
φ (2l,3l, dl) : also denoted as al , is the unit cost of trans-
mitting one MNBOT on link l, which is a function of guiding
force (i.e.,2l), Brownian motion (i.e.,3l) and the Euclidean
distance (i.e., dl) on link l;
�i : the MNBOT capacity at node i;
� : the MNBOT capacity upper bound, i.e., � ≥ �i ∀i ∈ N ;
8i: be the set of incoming links into node i, i.e., σli =1 ∀l ∈
8i;
Decision variables:
Ml : the number of MNBOTs transported on link l;
vi: =1 if node i is activated; = 0, otherwise;

1i ≤
∑
l∈L

Mlσli ∀i ∈ S (6)

0 <
∑
l∈L

ρliMl ∀i ∈ D (7)∑
l∈L

ρliMl ≤ vi�i ∀i ∈ N (8)

Ml ∈
{
0, 1, 2, . . . , �̄

}
∀l ∈ L (9)

vi = 0 or 1 ∀i ∈ N − D− S. (10)

The objective function of Problem (P) is to minimize the
total energy cost to propel MNBOTs to deliver the payloads
to the sink node. Constraints (4) and (7) require that the data
source nodes to be activated to transmit the sensed data via
MNBOT back to the sink node. Constraint (5) requires that,
besides the data source nodes and the sink node, if any node
i is activated, then the received MNBOTs at nodei must be
no less than threshold 1i. Constraint (6) enforces that the
received MNBOTs at the sink node should be no less than the
activation threshold, so that the sink node will be activated.
Constraint (7) enforces that the data source node should
choose at least one of its outgoing links to transmit MNBOTs.
Hence, Constraints (5), (6) and (7) enforce the node activa-
tion constraint. Constraint (8) specifies the MNBOT capacity
constraint where the total released MNBOTs from node i
should not exceed the MNBOT capacity �i at node i. Hence,
Constraint (8) specifies the number of available MNBOTs at
node i. Constraints (9) and (10) define the feasible regions of
the decision variables Mlandvi.

Note that Constraint (7) is to enforce the sending of signal-
ing molecules at each data source node. Without including
Constraint (7) in Problem (P), some of the data source nodes
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may not send the signaling molecules back to the sink node so
that events (e.g., infected cells response in innate immune sys-
tem) cannot be detected and responded. Hence, in biosensing
applications, it is essential to enforce Constraint (7) to make
sure every data source node senses the event and sends the
signaling molecules back to the sink node.

Besides the two properties (node activation constraint and
molecular aware link cost) in ABMR, Problem (P) also
captures the MNBOT capacity constraint (i.e., the resource
constraint of available MNBOTs) at Constraint (8). Hence,
Problem (P) captures the three properties (i.e., molecular
aware link cost, node activation property andMNBOT capac-
ity constraint) of ABMR in resource limited MNBOT net-
works.

EMAR is a generic model to capture the node activation
property in the biological processes. Let us consider applying
EMARmodel to a specific application on the immune system
dealing with virus infected cells without MHC I molecules.
In this example, we assume that a node has the capability of
detecting the virus infected cells without MHC I molecules.
When detecting the virus infected cells, the data source nodes
will release the MNBOTs that carry signaling molecules (i.e.,
cytokines) to activate the immune cells (i.e., NK cells) or
other nodes for triggeringmore immune responses. Enforcing
three characteristics of ABMR in the constraints, the EMAR
model identifies efficient and effective molecular routing
scheme to activate and proliferate the immune response
against the virus infected cells (i.e., to activate more NK cells
for attacking the virus infected cells).

Before we present the algorithm to tackle Problem (P),
we show that Problem (P) is an NP-hard problem. In Prob-
lem (P), 1i determines the MNBOT threshold to activate
nodei. If we set 1i =1 ∀i ∈ N (i.e., no node activation
constraint), then Problem (P) identifies the paths for every
data source node back to the sink node with the minimum
cost of the selected links. In the undirected network where the
link cost on both directions is the same, Problem (P) identifies
the minimum cost multicast tree from the sink node to all the
data source nodes. For example, in Figure 2, when activation
threshold 1 = 1, the total cost is 9 (the routing assignment
of Problem (P) is shown in Figure 2(b)), which is the same as
the minimum multicast tree from the sink node S to the data
source nodesA and B. In other words, Problem (P) will be
reduced to the minimum cost multicast tree when there is no
node activation constraint. Since the minimum cost multicast
tree is a Steiner tree problem, which is proven to be an
NP-hard problem [27], then Problem (P) is also an NP-hard
problem.

In the sequel, we devise the algorithm based on the
Lagrangian relaxation method to tackle the problem (P).

IV. SOLUTION APPROACHES– LAGRANGIAN
RELAXATION
A. LAGRANGIAN DUAL PROBLEM
The algorithm development is based upon Lagrangian relax-
ation. In (P), by introducing Lagrangian multiplier vector µi,

we dualize Constraints (5), (6), (8) to obtain the following
Lagrangian relaxation problem (LR).

Problem (LR):

ZLR(µi) = Min
∑
l∈L

φ (2l,3l, dl)Ml

+

∑
i∈N−S−D

µ1
i

(
vi1i −

∑
l∈L

Mlσli

)

+

∑
i∈S

µ2
i

(
1i −

∑
l∈L

Mlσli

)

+

∑
i∈N

µ3
i

(∑
l∈L

ρliMl − vi�i

)
Subject to:

vi = 1 ∀i ∈ D ∪ S (11)

0 <
∑
l∈L

ρliMl ∀i ∈ D (12)

Ml ∈
{
0, 1, 2, . . . , �̄

}
∀l ∈ L (13)

vi = 0 or 1 ∀i ∈ N − D− S. (14)

Problem (LR) can be decomposed into two independent
subproblems which are associated withMl and vi.

Subproblem 1: forMl

min
∑
l∈L

φ (2l,3l, dl)Ml +
∑
l∈L

((∑
i∈N

µ3
i ρli

)

−

( ∑
i∈N−S−D

µ1
i σli

)
−

(∑
i∈S

µ2
i σli

))
Ml (SUB1)

subject to (12) and (13).
Subproblem 2: for vi

Min
∑

i∈N−S−D

(
µ1
i1i − µ

3
i�i

)
vi −

∑
i∈S∪D

(
µ3
i�i

)
vi

+

∑
i∈S

µ2
i1i (SUB2)

subject to (11) and (14).
In the Constraint (12) of (SUB1), they enforce that at least

one outgoing link should be selected for each data source
node. Then (SUB1) can be decomposed into |N | independent
subproblems where each subproblem deals with the set of
outgoing links from each node. Let 0j be the set of outgoing
links from node j. To successfully tackle (SUB1), we consider
the node j in three cases, which are j ∈ D, j ∈ S and
j ∈ N − S − D.
Case 1: node j is the data source node (i.e., j ∈ D).
In case 1, consider each subproblem of (SUB1) with respect
to node j ∈ D,

Min
∑
l∈0j

(
φ (2l,3l, dl)−

∑
i∈N−S−D

µ1
i σli−

∑
i∈S

µ2
i σli+µ

3
j

)
Ml

(SUB1-1)
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subject to

0 <
∑
l∈0j

Ml (15)

Ml ∈
{
0, 1, 2, . . . , �̄

}
∀l ∈ 0j. (16)

Case 2: node j is the sink node (i.e., j ∈ S).
In case 2, consider each subproblem of (SUB1) with respect
to node j ∈ S,

Min
∑
l∈0j

(
φ (2l,3l, dl)−

∑
i∈N−S−D

µ1
i σli −

∑
i∈S

µ2
i σli + µ

3
j

)
Ml (SUB1-2)

subject to

Ml ∈
{
0, 1, 2, . . . , �̄

}
∀l ∈ 0j. (17)

Case 3: node j is the none-data source node and none-sink
node (i.e., j ∈ N − S − D).
In case 3, consider each subproblem of (SUB1) with respect
to node j ∈ N − S − D,

Min
∑
l∈0j

(
φ (2l,3l, dl)−

∑
i∈N−S−D

µ1
i σli−

∑
i∈S

µ2
i σli + µ

3
j

)
Ml (SUB1− 3)

subject to

Ml ∈
{
0, 1, 2, . . . , �̄

}
∀l ∈ 0j. (18)

In (SUB1), for each outgoing linkl from node j, the arc
weight associated with Ml is calculated in Equation (19).

Arc weight of Ml =

(
φ (2l,3l, dl)−

∑
i∈N−S−D

µ1
i σli

−

∑
i∈S

µ2
i σli + µ

3
j

)
∀l ∈ 0j, j ∈ N

(19)

In (SUB1-1), since at least one MNBOT should be trans-
mitted from data source node j, then we first calculate the arc
weight in Equation (19) for each outgoing link from node j.
If at least one outgoing link has negative arc weight, assign
Ml = �̄ for those outgoing links with negative arc weight,
otherwise assign Ml = 1 for the outgoing link with smallest
arc weight. With these optimal decision variable settings on
Ml , the smallest objective function in (SUB1-1) could be
obtained.

In (SUB1-2), one might think that the sink node is the
destination node so that no MNBOTs will be transported out
from the sink node. Hence, Ml= 0,∀l∈0i, i ∈ S. However,
in the general case, when there are multiple sink nodes in
set S, it is possible to transport the MNBOTs on the outgoing
links from a sink node to the other sink nodes. In this case,
Ml> 0,∀l ∈ 0i, i ∈ S. Then the optimal solution procedure
to solve (SUB1-2) is as follows. Let Ml = �̄ when the
associated arc weight in Equation (19) is negative and let
Ml = 0 when the associated arc weight in Equation (19) is
not negative for each outgoing link l from node j.

In (SUB1-3), we deal with the outgoing links from node
j that is a none-data source node and none-sink node. The
optimal solution procedure to solve (SUB1-3) is as follows.
LetMl = �̄ when the associated arc weight in Equation (19)
is negative and let Ml = 0 when the associated arc weight in
Equation (19) is not negative for each outgoing link l from
node j.
The algorithm to optimally solve (SUB1) is shown below.

The computational complexity for the following algorithm is
O(|N | · |L|).
In (SUB2), there are two settings of the arc weight associ-

ated with vi as follows.

Arc weight of vi =
(
µ1
i1i − µ

3
i�i

)
i ∈ N − S − D (20)

Arc weight of vi =
(
−µ3

i�i

)
i ∈ S ∪ D. (21)

In the case of i ∈ N − S − D, calculate the arc weight(
µ1
i1i − µ

3
i�i

)
as shown in (20). If the coefficient is neg-

ative, let vi = 1, otherwise let vi = 0. On the other hand,
in the case of i ∈ S ∪ D, because of Constraint (11), let
vi = 1 i ∈ S ∪ D. The computational complexity of (SUB2)
is O(|N |).
Based on the above algorithms to solve (SUB1) and

(SUB2), we can solve the Lagrangian dual problem (LR)
optimally. Based on the Lagrangian duality theorem, the solu-
tions to the (LR) problem is a legitimate lower bound to
the primal problem (P). By the weak duality theorem [27],
given any nonnegative multiplier, ZLR is a lower bound to ZIP.
We can use subgradient method to calculate the tightest lower
bound [27], ZD, as shown below.

Problem (D): ZD = Max ZLR
(
µ1
i ,µ

2
i , µ

3
i

)
Subject to: µ1

i ,µ
2
i , µ

3
i ≥ 0

Let the vector S be a subgradient of ZLR
(
µ1
i ,µ

2
i , µ

3
i

)
at (µ1

i ,µ
2
i , µ

3
i ). In iteration x of the subgradient optimiza-

tion procedure, the multiplier vector mx =(µi1x ,µi2x , µi3x ) is
updated by mx+1 = mx + αxSx , where Sx

(
µ1
i ,µ

2
i , µ

3
i

)
=(

vi1i −
∑
l∈L

Mlσli,1i −
∑
l∈L

Mlσli,
∑
l∈L
ρliMl − vi�i

)
.

The step size αx is determined by
(
δ
ZhIP−ZLR(m

x )

‖Sx‖2

)
, where

ZhIP is a primal objective function value (an upper bound on
optimal primal objective function value), and δ is a step size
coefficient (0 ≤ δ ≤ 2).

B. GETTING PRIMAL SOLUTIONS – LRP
In the following, we will use the information from the solu-
tions and the multipliers at the (LR) to derive the primal
heuristic algorithm to get the feasible solution for the original
problem (P).

We propose getting primal heuristic algorithm – LRP algo-
rithm, to solve problem (P). LRP adopts the idea of Dijkstra’s
shortest path algorithm where the molecular aware cost to
activate the link’s termination node is set as the link arc
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Algorithm to optimally solve (SUB1)
Begin

For (j = 1; j <= |N |; j++)
Begin
Let Ml = 0, ∀l ∈ 0j; //initialization
If (j ∈ D) //Data source nodes
Begin
Calculate the link arc weight(

φ (2l,3l, dl)−
∑

i∈N−S−D
µ1
i σli −

∑
i∈S
µ2
i σli + µ

3
j

)
of

Ml∀l∈ 0j;
Let 9i be the number of links with negative arc

weight;
If (9i = 0)

Identify an outgoing link l with the smallest arc
weight and assign Ml = 1;

Else
Identify the outgoing links with the negative arc

weight and assign Ml = �̄ for those outgoing links;
End// If (j ∈ D)
If (j ∈ S) //sink node
Begin
For

(
∀l ∈ 0j

)
Begin

If

(
φ (2l,3l, dl)−

∑
i∈N−S−D

µ1
i σli−

∑
i∈S
µ2
i σli+µ

3
j <0

)
Ml = �̄;

Else
Ml =0;

End//for
End//j ∈ S
If (j ∈ N − S − D) //other nodes
Begin
For

(
∀l ∈ 0j

)
Begin

If

(
φ (2l,3l, dl)−

∑
i∈N−S−D

µ1
i σli−

∑
i∈S
µ2
i σli+µ

3
j <0

)
Ml = �̄;

Else
Ml =0;

End//for
End//j ∈ N − S − D

End //For j
End

weight. We first calculate the number of MNBOTs needed to
be transported on linkl for node activation in Equation (22).

f nl = Min

{(∑
i∈N

�iρli

)
,
∑
i∈N

(1i − λi) σli

}
∀l ∈ L (22)

Note that the adopted Lagrangian relaxation process is an
iteration-based approach to get better solutions in problem
(P). The complete iteration-based algorithm to solve primal
problem (P) and dual problem (LR) is shown at the end of

the Section IV. Using the information from earlier iteration,
in Equation (22), f nl calculates the number of newly trans-
ported MNBOTs on link l. λiindicates the received MNBOTs
on this node i at the earlier iteration in the Lagrangian
relaxation process.

∑
i∈N

�iρli calculates the MNBOT capac-

ity constraint at link l’s starting node;
(∑
i∈N

(1i − λi) σli

)
calculates the number of MNBOTs needed on link l so as
to activate link l’s terminating node i. The minimum value

of
{∑
i∈N

�iρli,
∑
i∈N

(1i − λi) σli

}
is to make sure that the

MNBOTs assignment on link lwill satisfy the node activa-
tion constraint at the link’s termination node and MNBOT
capacity constraint at the link’s starting node simultaneously.

ηi = Arg
l∈8i∧Ml>1

Max (φ (2l,3l, dl)) ∀i ∈ N (23)

βl =
(
f nl − f

o
l
)
×

(
φ (2l,3l, dl)+ µ1

i − vi

×φ
(
2ηi ,3ηi , dηi

))
∀l ∈ 8i, i ∈ N − D− S

(24)

Or

βl =
(
f nl − f

o
l
)
×

(
φ (2l,3l, dl)+ µ2

i − vi

×φ
(
2ηi ,3ηi , dηi

))
∀l ∈ 8i, i ∈ S (25)

Or

βl =
(
f nl − f

o
l
)
× φ (2l,3l, dl) ∀l ∈ 8i, i ∈ D. (26)

In Equation (23),8iis the set of the incoming links to node
i andMl > 1 indicates that at least 2MNBOTs are transported
on link l. Then, ηiidentifies the link with the largest unit
MNBOT transmission cost that have already transported at
least 2 MNBOTs among the incoming links to node i. The
reason that we need to enforce Ml > 1 in Equation (23) is
because one MNBOT is going to be removed from link l at
Equations (24)∼(26).
We next calculate the activation aware link cost metric βl

of link l in Equations (24)∼(26). In Equations (24)∼(26),
f ol indicates the original number of MNBOTs on link l.
In Equations (24)∼(26), the term

(
f nl − f

o
l

)
calculates the

new admitted number of MNBOTs on link l. The second
term in Equations (24)∼(26) calculates the modified unit
MNBOT transmission cost. This modified MNBOT trans-
mission cost captures the original unit MNBOT transmission
cost, the penalty cost for violating the node activation con-
straint and the gain from removing one MNBOT from other
links with the largest unit MNBOT transmission cost that has
the same termination node as link l.

Note that in the Lagrangian relaxation scheme, the
Lagrangian multipliers imply the penalty cost for violating
the relaxed constraint. When the node activation property
constraint is violated, the value of the associated multiplier
µ1
i and µ2

i will be increased at the next iteration. By incor-
porating these multipliers into the arc weight, the data
source node will avoid choosing the link with high activation
cost to activate the link’s termination node in the previous
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FIGURE 3. Illustrative example of LRP algorithm.

Lagrangian iteration. As we will show in the computational
experiments, introducing the Lagrangian multipliers into the
link cost metric can help to identify more energy efficient
paths.

In LRP algorithm, the activation aware link cost metric βl
is used in the Dijskstra’s algorithm to determine the routing
path for each data source node. Because of the node activation
constraint, the sequence order of identifying the routing path
for the data source nodes plays an important role in deter-
mining the final MNBOT transmission cost. For example,
in Figure 3, the sequence order of identifying routing path
for data source nodes is from node B then node C and finally
node A. In this case, the total MNBOT routing assignment
cost is 18. If the sequence order becomes C , B and A, then the
routing paths will be aggregated at node E and total MNBOT
routing assignment cost is 19.

Based on this observation, the basic idea is to start with the
data source node with lower MNBOT transmission cost and
then encourage other data source nodes to transmit MNBOTs
on existing path to reduce the total MNBOT transmission
cost. As shown at step 3 and step 4 in the LRP algorithm,
set 5 contains the elements of data source nodes where the
sequence order of the elements is determined by MNBOT
transmission cost to the sink node in ascending order. Hence,
in Figure 3, 5 ={B, C, A}. By selecting one data source
node from set 5 at a time to identify the routing path to the
sink node, remaining unvisited data source nodes with higher
transmission cost in set 5 will be encouraged to identify the
routing path on existing established routing path to save the
total MNBOT transmission cost.

In assigning the molecules on the routing path for each
data source node, when f nl = 0, it indicates that the termi-
nation node of link l is already activated so that there is no
need to assign MNBOTs on link l. However, Constraint (7)
requires that each data source node should at least transmit
one MNBOT along its routing path to the sink node. There-
fore, we transmit oneMNBOT from the link l’s starting node.
When transmitting one moreMNBOT on link l, oneMNBOT
can be reduced at one of the other incoming links that has
the same termination node as link l. As shown in step 11 in
LRP algorithm, by choosing the incoming link ηi as shown at
Equation (23), the objective function in problem (P) can fur-
ther be reduced by deducting the value of φ

(
2ηi ,3ηi , dηi

)
.

The computational complexity for the LRP algorithm is
determined by the nested ‘‘For’’ loop to identify the routing
and molecular assignment for each data source node (i.e.,
step 3). Inside the nested ‘‘For’’ loop, in Step 8, the time
complexity is O(|L|). The number of data source node is |D|,
and the number of selected links by a data source node is at
most (|L|). So, the iterations of the nested ‘‘Loop’’ loop is
O(|D| · |L|) times. Then, the time complexity for the nested
‘‘For’’ loop is O(|D| · |L|2). The time complexity of LRP
algorithm is also O(|D| · |L|2).
Basically, LRP is a link state routing protocol, in which

each node will periodically broadcast the information of its
incident links (i.e., al) and node information (i.e.,1i and�i)
on the network. In addition, LRP is a centralized algorithm
that after collecting the link and node information from all
the nodes, the sink node will compute and disseminate the
routing information to other nodes in the networks.
An illustrative example of LRP algorithms is shown in Fig-

ure 3. We have the set 5 ={B, C, A} based on this path cost
by using the Dijkstra’s shortest path algorithm in Figure 3(a).
In Figure 3(b), it shows the results after assigning the number
of transmitted MNBOTs on the routing path B and before
assigning the number of transmitted MNBOTs on the routing
path forC.Based on Equation (22), theMNBOTs assignment
are all 3 on link BD and link DS so that nodes D and S are
all activated. In Figure 3(b), to calculate the link arc weight
on link AD as shown in Equation (25), βl = (1 – 0) ×
(3 + 0 – 2) =1. Likewise, the link arc weight on link CD,
βl = (1 – 0) × (4 + 0 – 2) = 2.
In Figure 3(c), when the MNBOTs assignment for data

source nodeC is performed, we first get fCD = 0. In this case,
we still need to assign one MNBOT on link CD to satisfy
the routing path constraint for data source node C . Based
on step 10 in LRP algorithm, we assign one MNBOT on
link CD. According to step 11, to satisfy the node activation
constraint nodeD, we can reduce one MNBOT on link BD so
that it only needs to transmit two MNBOTs. Note that after
assigning oneMNBOT on linkCD, the βl is still 1 on linkAD.
This is because even though aCD > aBD, MCD > 1 require-
ment in Equation (23) is not satisfied (i.e., MCD = 1).
Hence, after the MNBOT assignment on the routing path for
node A, the final MNBOT and routing assignment is shown at
Figure 3(d).
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LRP algorithm
Begin

For ∀l ∈ L
Begin
Compute f nl and ηi in Equations (22), (23);//step 1
Compute βl in Equations (24)∼(26);//step 2

End
Perform Dijkstra’s shortest path algorithm for each data

source node based on the link arc weight βl ; //step 3
Sorting path cost for all data source nodes in ascending

order and put these data source nodes in set 5; //step 4
For data source node j ∈ 5 //step 5
Begin
For ∀l ∈ L
Begin

Compute f nl and ηi in Equations (22), (23);//step 6
Compute βl in Equations (24)∼(26);//step 7

End
Perform the Dijkstra algorithm to determine the rout-

ing path for data source nodej; //step 8
For each linkl selected by nodej// step 9
Begin
i= link l’s termination node;
If ( f nl == 0)//link l’s termination node already

activated
Begin
f nl = 1; //step 10, assign one MNBOT on link l
f nηi = f nηi − 1; //step 11, deduct one MNBOT on

link ηi
End//If f nl
Else// f nl > 0, check if link l’s termination node is

activated
Begin
λi = λi + f nl ;//step 12
If ( λi == 1i)//activation constraint satisfied at

node i
vi = 1; //step 13

End//Else
Ml = f nl ;
f ol = f nl ;

End//For l, end of step 9
End//For j, end of step 5
If the activation capacity constraint is violated
Report infeasible solutions;

Else
Report total molecular transmission cost;

End//If
End

Note that the link cost (i.e., φ (2l,3l, dl)) indicates the
cost of moving one MNBOT on the link l. When applying
the external force, like magnetic force, the link cost is set
to deploy the magnetic field to guide transmitted MNBOTs
on the link l. Then the objective function is to minimize
the total magnetic force deployment cost on the MNBOT

LGA algorithm
Begin

Read input values of given parameters in Problem (P);
Initialize the Lagrangian multiplier vector (µ1

i ,µ
2
i , µ

3
i ) to

be all zero vector;

UB:=
(∑
l∈L
φ (2l,3l, dl) · �̄

)
; LB:= 0;

quiescence_age:= 0; step_size_coefficient:= 2;
For x:= 1 to Max_Iteration_Number do
Begin
RUN algorithm to solve (SUB1);
RUN algorithm to solve (SUB2);
Calculate ZLR;//the dual objective value in problem

(LR)
if ZLR > LB then
LB:= ZLR; quiescence_age:= 0;

Else quiescence_age:= quiescence_age + 1;
If quiescence_age == Quiescence_Threshold then
quiescence_age:= 0; and δ:=

(
δ
/
2
)
;

f ol = 0,∀l ∈ L; λi = 0,∀i ∈ N ; //initialized
Run LRP algorithm to get the primal feasible solution ZhIP;

//the objective value in problem (P)
If ZhIP < UB then UB:= ZhIP; // found

a tighter upper bound Sx
(
µ1
i ,µ

2
i , µ

3
i

)
:=(

vi1i −
∑
l∈L

Mlσli,1i −
∑
l∈L

Mlσli,
∑
l∈L
ρliMl − vi�i

)
;//

calculate subgradients of the multipliers αx =(
δ
ZhIP−ZLR(m

x )

‖Sx‖2

)
; //update step size, mx+1 = mx +

αxSx; //update Lagrangian multipliers
End;//For

End;//LGA

travelled distance. With this link cost setting, the LRP
algorithm identifies the guiding force efficient MNBOT
transportation plan.

To summarize, in the LRP algorithm, the basic idea is to
encourage MNBOT aggregation at the relay nodes that can
save the total MNBOT transmission cost with considering the
node activation constraint. In addition, the routing algorithm
based on link arc weight metric βl captures the interplay
between unit MNBOT transmission cost, node activation
constraint andMNBOT capacity constraint simultaneously to
minimize the total MNBOT transmission cost.

In the following, we show the complete algorithm,
Lagrangian Algorithm (LGA), to solve the primal Prob-
lem (P) and Lagrangian dual Problem (LR).

The computational complexity for LGA is O(|D| · |L|2) for
each iteration.

V. COMPUTATIONAL EXPERIMENTS
A. MAGNETIC GUIDANCE COST WITHOUT
BROWNIAN MOTION
In the computational experiments, we simulate the
bio-activation-based communication scheme in a bio-sensor
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network where 100 nodes are randomly deployed in a
25×25 mm2 area where the top left corner is (0, 0) and the
bottom right corner is (25, 25). The sink node is located at the
top left corner (0, 0). Data source nodes are randomly selected
from 100 nodes. The data source nodes will sense, collect
and transmit the MNBOTs with signaling molecules as the
payload to propagate the bio-signal all the way to activate
the sink node in the bio-sensor network. Note that for all
the nodes on the routing path from the data source nodes to
the sink node, node activation property is enforced. Hence,
every node must be activated first before it can transmit
MNBOTs with signaling molecules to activate the next node
on the routing path. We perform the following computational
experiments on the NS3 platform.

For LGA algorithm, Max_Iteration_Number and Quies-
cence_Threshold are set to 1000 and 30 respectively. The step
size coefficient (δ) is initialized as 2 and is halved when the
objective function value of the dual problem is not improved
by iterations up toQuiescence_Threshold. The computational
time is within seconds for LPR algorithm and within minutes
for LGA algorithm.

The MNBOT movement parameters are adopted from a
recently biocompatible microcapsule implementation in [28].
In [28], an MNBOT is built based on Janus hollow meso-
porous silica microparticles and the hollow capsule can carry
small molecules up to hundreds of nanometers. The MNBOT
propulsion force comes from the biocatalytic reaction on the
coating of the MNBOT with the biological fluids – urea into
CO2 and NH3. In [28], the velocity of an MNBOT can reach
5 body length (∼10 µm/sec) and the lifetime of an MNBOT
can last 10 minutes. Then, the longest travelled distance
for an MNBOT is 6 milli-meter. Considering the MNBOT
lifetime constraint, in the simulated biosensor networks with
100 nodes, a link between two nodes is established if the dis-
tance is not greater than 6 mm in a 25×25 mm2 deployment
area.

The MNBOT orientation is guided by the external mag-
netic field with a strength 100 milli-Tesla in [28]. The cost of
setting up the magnetic field on the linkl is proportional to the
magnetic field strength and the distance on the link l. Based
on this argument, the link cost metric to transmit an MNBOT
on the link l (i.e., al) is set as the magnetic flux density in
Tesla times the link Euclidean distance in meters. Hence,
al = 0.1dl (Tesla×meter), where dl is the Euclidean distance
on link l. With this link arc weight setting, the objective
function in Problem (P) at Section II aims to minimize the
total magnetic guiding cost to guide all the MNBOTs on the
routing path to the sink node in the bio-sensor networks.

In Figure 4, we show the solution quality in terms of the
magnetic guiding cost between the proposed LGA algorithm
and the other three heuristics, CACAMA, MCST and SPT
that are proposed in our previous work [26]. Note that the pro-
posed CACAMA algorithm in our previous work encourages
molecular aggregation to save cost but it does not address the
penalty from violating the node activation constraint. MCST
is a minimum cost spanning tree approach to identify the

FIGURE 4. Total magnetic guiding cost (Tesla x meters) w.r.t. |D|.

minimum cost spanning tree for the data source nodes via the
Prim’s algorithm. SPT is a shortest path approach to identify
the routing path from every data source node via theDijkstra’s
shortest path algorithm. Note that in MCST and SPT, the link
arc weight is also set as al = 0.1dl . For these three approaches
in [26], after the routing assignment is determined, we assign
the MNBOTs on the selected links so that all the constraints
in Problem (P) can be satisfied.

In Figure 4, the node activation threshold is set as the
number of data source nodes (i.e.,1 = |D|).With this setting,
by increasing the value of the data source nodes, the node acti-
vation threshold will also be increased. Intuitively, increas-
ing the data source nodes means more MNBOTs should be
transmitted to activate the nodes on the routing path, and this
will increase the total magnetic guiding cost. As observed
in Figure 4, by increasing the value of data source nodes,
the total magnetic guiding cost increases more significantly
for SPT, MCST and CACAMA algorithms than LGA algo-
rithm. When |D| = 20, the total magnetic guiding cost saving
for LGA over SPT, MCST and CACAMA are 374%, 317%
and 188%, respectively. It shows that LGA algorithm facil-
itates better molecular aggregate strategy in considering the
node activation constraint, especially at high traffic demands
(i.e., large number of data source nodes).

In Figure 4, the link cost metric, al , only considers the link
Euclidean distance on link l. As indicated in Section II, Brow-
nian motion is non-negligible in biological fluids environ-
ment with low Reynolds number. Then the MNBOT travelled
distance is longer than the Euclidean distance. In the next
computational experiments, we study the MNBOT moving
behavior in considering the impact from Brownian motion.

B. INTERPLAY OF BROWNIAN MOTION AND
MAGNETIC GUIDANCE
Note that Brownian motion can be modeled by a continuous-
time Wiener process. Let Wu be a random variable in the
Wiener process that indicates the position of the MNBOT at
time u. Then the difference between current position at time u
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FIGURE 5. Interplay between Brownian motion and magnetic guidance.

and next position at time v follows a Normal distribution [29].
Hence,

Wv −Wu ∼ N (0, v− u) 0 ≤ u ≤ v (27)

In Equation (27), it states that without any external force,
an MNBOT moves randomly in fluids that follows a Normal
distribution with zero mean. When guided by the magnetic
force, an MNBOT moves fluctuated along the trajectory of
the magnetic force as shown in Figure 5. The destination
receives the MNBOT when the MNBOT move into the des-
tination receiving volume. Because of the movement fluctu-
ation, an MNBOT may not be able to reach the destination
when the receiving volume is small.

In the following computational experiments, we set the
radius of the receiving volume to be 10 micrometers, which is
the about the size of lymphocytes (i.e., T cell, B cell and NK
cell) in the human’s immune system [30]. Based on this radius
setting, we can examine if the design scheme could be applied
to the immune system. To be more specific, we want to know
if the MNBOT network can help the molecular activation
process in lymphocytes to incur more immune responses
against abnormal cells, bacteria and virus.

Basically, an MNBOT that moves in biological fluids
might sometimes not be guided by the magnetic field because
the magnetic force is not strong enough at some particular
places. In this case, an MNBOT will move in a Brownian
motion until the magnetic force is strong enough to guide
the MNBOT again. In the next experiment, we study the
MNBOT propagation delay under different percentages of
the magnetic guidance with the consideration of the inter-
play between magnetic field and Brownian motion as shown
in Figure 6.

In Figure 6, the MNBOT propagation delay results are
shown from 20% to 100% magnetic guidance. Note that,
0% magnetic guidance (i.e., 100% Brownian motion) is not
included in Figure 6 because the MNBOT cannot reach the
destination receiving volume within 1 hour (3600 seconds)
of simulation time even at the distance of 0.5 milli-meters.
This movement fluctuation from Brownian motion interferes
MNBOTs for reaching the destination with small receiving
volume. This indicates that diffusion based MNBOT routing
is not suitable for high precision bio-medical applications.

In Figure 6, we can observe that the MNBOT propaga-
tion delay increases as the percentage of Brownian motion
increases. In addition, the MNBOT propagation delay with
lower degree of magnetic force guidance increases more

FIGURE 6. Propagation delay vs. degrees of magnetic guidance.

rapidly than MNBOT with higher degree of magnetic force
guidance. This is because the MNBOT travelled distance is
longer than the Euclidean distance between the two nodes
considering the Brownian motion effect. That is, let dl be the
Euclidean distance on link l andtl be the MNBOT travelled
distance on link l, then tl > dl when there is a Brown-
ian motion effect. Then, with considering the 10 minutes
MNBOT lifetime, the largest Euclidean distance between the
two nodes that an MNBOT can travel is smaller than 6 mm.
In Figure 6, it shows that with considering the Brownian
motion effect and MNBOT lifetime, the largest Euclidean
distance between two nodes for an MNBOT to travel is
4.5 mm, 3.5 mm, 2.5 mm, 1.5 mm, 1 mm under 100%, 80%,
60%, 40% and 20% magnetic guidance, respectively.

Based on the observations and results in Figure 6, we com-
pare the solution quality of four routing schemes under
100 percent magnetic force guidance to enable MNBOT in
high precision bio-medical applications. That is, in the simu-
lated biosensor networks with 100 nodes, a link between two
nodes is established if the Euclidean distance is not greater
than 4.5 mm in a 25×25 mm2 deployment area based on the
results in Figure 6 that considers the MNBOT 10 minutes
lifetime.

C. PERFORMACE COMPARISON IN CONSIDERING
BROWNIAN MOTION AND MAGNETIC GUIDANCE
In Figure 7, we compare the total travelled distance with
respect to the number of data source nodes among these four
schemes. We set link arc weight al = tl (i.e., the MNBOT
travelled distance on link l). Note that Figure 6 gives the
results of the MNBOT propagation delay on link l (say τl),
since the MNBOT speed is 10−5 m/s, then tl = 10−5× τl (in
meters). With this link arc weight setting, the objective func-
tion of Problem (P) becomes to minimize the total MNBOT
travelled distance. Figure 7 shows that LGA algorithm out-
performs the other three heuristics, especially at large data
source nodes. This is because, by setting the activation thresh-
old 1 = |D|, it sets higher activation threshold at large
number of data source nodes. LGA algorithm that addresses
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FIGURE 7. Total MNBOT travelled distance w.r.t. |D|.

FIGURE 8. Total MNBOT travelled distance w.r.t. threshold (1).

the node activation constraint can reduce the total MNBOT
travelled distance by the MNBOT aggregation strategy. And
this saving is more significant at large number of data source
nodes.

In the next experiment, we compare the solution quality of
these four algorithms with respect to the activation threshold
1. The number of data source nodes is fixed as 20 to examine
the solution quality in various activation thresholds. Note
that when setting the activation threshold to be 1, Prob-
lem (P) becomes traditional minimum cost routing problem.
In this case, there is almost no difference between these
four heuristics, which indicates that LGA algorithm is also a
good solution approach in traditional minimum cost routing
problem. Figure 8 also shows that LGA outperforms the other
three heuristics especially at high activation threshold. Based
on the results in Figure 7 and Figure 8, we conclude that LGA
is more efficient than the other three heuristics especially at
heavy network load (i.e., large number of data source nodes
and high activation threshold).

Finally, we examine the activation time at the sink node.
Recall that a node is activated only after all the relayed nodes

FIGURE 9. Sink node activation time w.r.t. |D|.

on the routing path back to the sink node have been activated.
For instance, in Figure 2(a), the activation time of node S is
the largest activated time among two paths (i.e., A→D→S
and B→E→S). Note that the activation time at the sink node
is not addressed in Problem (P). However, by setting al as
the MNBOT propagation delay (i.e., τl) and the objective
function to minimize the total MNBOT propagation delay,
the LGA algorithm will implicitly identify the MNBOT rout-
ing decisions with reasonable activation time at the sink as
shown in Figure 9.

In Figure 9, we see that SPT has the smallest activation
time at the sink node because of its shortest path nature
when link arc weight al is set as the MNBOT propagation
delay on each link l. Even though LGA does not perform
the best in this performance metric, the activation time at
the sink is confined within acceptable range. In addition,
it is very interesting to observe that the activation time at the
sink node is decreased after |D| ≥ 18. This shows that by
leveraging on node activation constraint, minimizing the total
propagation delay via the molecular aggregation strategy can
help to stabilize the activation time at the sink node especially
at high network load.

VI. CONCLUSION
Thanks to rapid progress of nanotechnologies, the advance-
ment of MNBOTs show their huge potential in the cellular
level biomedical applications. Instead of molecular diffusion-
based communication, molecular communication and routing
scheme based on guided MNBOTs is adopted in this paper
with the advantages of faster propagation speed and better
motion control. We first propose a generic EMAR model
to capture the node activation property in existing biologi-
cal processes (e.g., neuron signal propagation and cytokines
communication in immune system). Then, an optimization-
based algorithm (i.e., LGA) is devised to tackle this problem.
The basic idea of LGA is to encourage molecular aggre-
gation with considering the penalty cost from violating the
node activation constraint. According to the computational
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experiments, the LGA outperforms the other three heuris-
tics (CACAMA, MCST and SPT) in terms of the total
magnetic guiding cost. In addition, the MNBOT movement
deviation along the trajectory of the magnetic field due to
non-negligible interference from Brownian motion is also
captured. Taking theMNBOT lifetime into account, diffusion
based MNBOT routing scheme fails to reach the destination
node with small receiving volume. Magnetic guidance in
MNBOT routing can help to reduce the MNBOT travel-
ling time, which is important in high precision bio-medical
applications. With the consideration of the interplay between
magnetic force and Brownian motion, LGA algorithm is
still superior to the other three heuristics in terms of total
travelled distance under different traffic loads and activation
thresholds. By minimizing the total MNBOT propagation
delay as the objective function, LGA algorithm can identify
the routing decision in MNBOT networks with acceptable
activation time at the sink node. Moreover, the activation
time at the sink node decreases at high network load (i.e.,
|D| ≥ 18). This shows that LGA algorithm is also applicable
to the activation time aware applications, such as time sensi-
tive immune response against bacteria and virus.
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