
 

UWS Academic Portal

D7-R4

Olszewska, J.I.

Published in:
Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and
Knowledge Management - Volume 2: KEOD

DOI:
10.5220/0008354804350441

Published: 30/09/2019

Document Version
Publisher's PDF, also known as Version of record

Link to publication on the UWS Academic Portal

Citation for published version (APA):
Olszewska, J. I. (2019). D7-R4: software development life-cycle for intelligent vision systems. In Proceedings of
the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge
Management - Volume 2: KEOD (Vol. 2, pp. 435-441). SciTePress. https://doi.org/10.5220/0008354804350441

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 14 Nov 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Repository and Portal - University of the West of Scotland

https://core.ac.uk/display/233061206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.5220/0008354804350441
https://uws.pure.elsevier.com/en/publications/a0f8fa68-ff2e-4597-9014-069e73e110d5
https://doi.org/10.5220/0008354804350441


D7-R4: Software Development Life-Cycle for Intelligent Vision Systems

J. I. Olszewska
School of Computing and Engineering, University of West Scotland, U.K.

Keywords: Expert Systems, Intelligent Vision Systems, Intelligent Agents, Intelligent Robotics, Autonomous Systems,
Machine Vision, Human-machine Cooperation, Cybernetics, Software Engineering, Software-hardware
Design, Software Development Life-Cycle.

Abstract: Intelligent Vision Systems (IVS) are omnipresent in our daily life from social media apps to m-health services,
from street surveillance cameras to airport e-gates, from drones to companion robots. Hence, IVS encompass
any software which has a visual input processed by means of algorithm(s) involving Artificial Intelligence (AI)
methods. The design and development of these IVS softwares has become an increasingly complex task, since
vision-based systems have evolved into (semi-)autonomous AI systems, usually requiring effective and ethical
data processing along with efficient signal processing and real-time hardware/software integration as well as
User Experience (UX) and (cyber)security features. Consequently, IVS system development necessitates an
adapted software development life-cycle (SDLC) addressing these multi-domain needs, whilst being developer
friendly. Hence, we propose in this paper a new SDLC we called D7-R4 which allows developers to produce
quality, new-generation IVS to be deployed in real-time and in real-world, unstructured environments.

1 INTRODUCTION

Intelligent vision systems (IVS) provide information
resulting from the processing of visual inputs such as
still images, online databases, or live video streams
captured by camera(s) (Forsyth and Ponce, 2012).
Nowadays, IVS are present everywhere in our So-
ciety, ranging from autonomous vehicles (Winfield,
2012) to assisted-living devices (Kaaz et al., 2017),
from rescue operations (Olszewska, 2017) to video
surveillance (Bhat and Olszewska, 2014) like illus-
trated in Fig. 1.

Hence, the new-generation of IVS allows systems
to get higher autonomy as well as further levels of au-
tomated reasoning based on visual input and involves
softwares integrating AI-based algorithms and/or Ap-
plication Programming Interfaces (APIs) (Warrier,
2018). Such IVS softwares need to be not only de-
pendable (Meyer, 2006), but also explainable (Samek
et al., 2017) and interoperable (Ciccozzi et al., 2017),
leading to new challenges for software developers
(Olszewska, 2019).

In the past, most of the IVS softwares were de-
veloped as research projects outside the framework
of any particular Software Development Life-Cycle
(SLDC) (Rezazadegan et al., 2017).

More recently, the development of IVS softwares

Figure 1: Snapshot of an Intelligent Vision System (IVS)
software (Bhat and Olszewska, 2014).

has followed plan-driven methodologies (Som-
merville, 2015) or Agile approach (Abrahamsson
et al., 2003). Hence, the use of SDLCs like Waterfall
(Royce, 1970) assists in a systematic planning of
project tasks, but does not incorporate actions such as
the adaptation or tuning of a particular AI algorithm.
The V-model mainly consists in the production of
the requirement documentation and the integration of
relevant software units as well as on their associate,
thorough, level-by-level testing, rather than on any re-

Olszewska, J.
D7-R4: Software Development Life-Cycle for Intelligent Vision Systems.
DOI: 10.5220/0008354804350441
In Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2019), pages 435-441
ISBN: 978-989-758-382-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

435



Figure 2: Overview of the D7-R4 Software Development Life Cycle.

(a) (b)
Figure 3: Mechanism details for the following processes
within the D7-R4 SDLC: (a) Test iterative process; (b) Re-
view iterative process.

quirement or solution refinement. The prototyping
model allows to iteratively refine the requirements,
whereas it does not present a mechanism to incorpo-
rate user’s feedback, e.g. during the User Interface
(UI) design. The spiral model (Boehm, 1986) dis-
plays an iterative approach to develop software ver-
sion(s), whilst necessitates the entire product to be
produced before getting any user’s feedback about it.

On the other hand, the Agile-based Rapid Ap-
plication Development Model (RAD) (Martin, 1991)
has been quite popular to develop effective and user-
friendly intelligent systems in short-time frameworks,
but the methodology does not permit an in-depth anal-
ysis of the data, e.g. to design/manage visual in-
puts and to consider their ethical implications. The
Dynamic System Development Method (DSDM) en-
ables to iteratively determine the software functional
design and its development, while it involves a busi-
ness study not always available in case of new re-
search softwares. Extreme Programming (XP) (Beck,
1999) is an effective methodology to elucidate the re-

quirements and to develop the software by continu-
ously incorporating the user’s stories and feedbacks.
However, this approach must deal with a client and
implies extensive reviewing by this client/user, rather
than the refinements of AI algorithms/methods by the
developer. The Scrum approach manages the project
time in an efficient way by organizing sprints of two to
four weeks. During each sprint, the developers create
a product increment. Though, the full Scrum method-
ology is intrinsically not adapted for lone developers
such as individual researchers.

As none of the existing SLDCs covers the increas-
ingly complex needs and the multi-disciplinary spec-
ifications of the new generation of IVS softwares, we
propose a new SDLC called D7-R4 in order to de-
velop such IVS softwares.

This SDLC (Fig. 2) is an Agile, iterative, and test-
driven development (TDD) approach (Fig. 3), which
could be used by either a lone developer, by a group of
software developers, or by an artificial agent-human
team.

The D7-R4 software engineering model provides
a systematic and ethical way to develop IVS soft-
wares. Indeed, IVS are alloying together informa-
tion systems, computer vision systems, expert sys-
tems, and embedded systems, as well as blend-
ing autonomous systems (AS) (Fiorini et al., 2017),
user experience (UX) (Ferre and Medinilla, 2007),
and cybersecurity (Peruma and Krutz, 2018) capa-
bilities, requiring among others actions such as im-
age/video signal processing (Zendel et al., 2017),
visual database management/processing (Ammirato

KEOD 2019 - 11th International Conference on Knowledge Engineering and Ontology Development

436



et al., 2017), AI/Machine Learning algorithms/API
implementation/integration (Warrier, 2018), UI de-
sign (Dix et al., 2004); all these actions implying ex-
plainable AI and ethical considerations.

Thus, the contributions of this paper are manifold.
On one hand, we present a new SDLC called D7-
R4 to address the new challenges raised by the use
of technologies relying on Artificial Intelligence and
Machine Vision. On the other hand, we provide a new
SLDC which (i) includes an ethical review in the pro-
cess itself, (ii) is cybersecurity-driven, (iii) inherently
incorporates quality in its process, (iv) allows interop-
erability. Moreover, we introduce the agent-friendly
concept along the Agent Experience (AX), extending
the user-friendly and UX notions, respectively.

The paper is structured as follows. Section 2 de-
scribes the new IVS software development life-cycle
called D7-R4. Experiments are described in Section
3, while conclusions are drawn up in Section 4.

2 PROPOSED SDLC

2.1 D7-R4 SDLC Overview

The D7-R4 SDLC provides designers and developers
with a framework to build reliable, ethical, quality,
and secure IVS. It consists in seven stages and four
reviews described in Section 2.2 and Section 2.3, re-
spectively. The first stage (i.e. discover) is the in-
put of the project or kick-off point, while the final
stage (i.e. deploy) is the final product consisting of
all the project outputs which have been successively
produced in the different runs of the five core stages,
i.e. dig, describe, design, develop, and demonstrate
(Fig. 2). These five core components could be itera-
tively repeated in sprints, and each of these five core
steps could be carried out in loops; the number of the
sprints and loops being variable and adjustable con-
sidering the requirements, size, and progress of the
project/product. Indeed, D7-R4 is a flexible process,
and its components are modular, i.e. they could be
followed entirely or partially, depending of the project
scope and/or product development needs. It is worth
noting that IVS projects could start from scratch or
build upon a previous project and/or reuse existing
components such as algorithms, libraries, API, etc.
Figures 3(a)-3(b) show the different mechanism ap-
plied to the iterative processes of testing and review-
ing, respectively, as described in the next section.

2.2 D7-R4 SDLC Stages

2.2.1 Discover Stage

This phase is the first stage of the SDLC and consists
in a brief context study, as well as in the quick capture
of the project scope and aims.

2.2.2 Dig Stage

This step focuses on the research and feasibility study.
This could include actions such as the project do-
main study (e.g. identification of the specific techni-
cal challenges, identification/selection of the pertinent
state-of-the-art methods, existing tools, appropriate
research methods), the project planning (in terms of
time and resources), the risk analysis, a business study
(in terms of foreseen costs/available budget/potential
market), and the quality planning. As the initial con-
ditions of the project (e.g., on one hand, the allocated
budget, the market opportunities, and on the other
hand, the available tools, the state-of-the art meth-
ods, etc.) could evolve during the project, even within
short period of time, this stage could be subject to fur-
ther iterations, if need be.

2.2.3 Describe Stage

This phase consists in the requirement gathering,
e.g. the expression of the IVS software functional-
ities (by means of the MoSCoW analysis), the cap-
ture of the business/system/user requirements as well
as the database requirements (persistence) and the
Human-Computer Interactions (HCI)/User Interface
(UI)/ User Experience (UX) needs. This task also in-
cludes a reflection on the associated professional, so-
cial, environmental and legal (PSEL) considerations
as well as on the safety and quality assurance and rel-
evant norms and standards (Olszewska et al., 2018). It
is worth noting that based on the user/client/developer
feedback during the design and development process,
the requirements may be amended.

2.2.4 Design Stage

This stage contains three components, namely, the
software design, the database design, and the algo-
rithm design. The software design itself involves
the software analysis using e.g. the Unified Model-
ing Language (UML), the software architecture/data
flow modeling e.g. by means of Data Flow Dia-
grams (DFDs), including aspects of software modu-
larity and extendibility, and the choice of the soft-
ware language(s), Integrated Development Environ-
ment (IDE), design pattern(s), including reflections

D7-R4: Software Development Life-Cycle for Intelligent Vision Systems

437



on software portability, accessibility, and adaptabil-
ity. The database design implies the visual input
data analysis, including the determination of the data
ground truth, training/testing datasets, etc. The algo-
rithm design is an iterative process in itself and con-
sists of the establishment of the algorithm specifica-
tions, the algorithm formalization, the algorithm im-
plementation and debugging, as well as the algorithm
performance review based on metrics to assess, in par-
ticular, its accuracy, computational efficiency, com-
plexity, and reliability (Olszewska, 2019). After that,
the algorithm could undergo the training and testing
processes, which can also been carried out iteratively.

2.2.5 Develop Stage

This stage is dedicated to the software development
and integration. The software development includes
the software implementation along of the integration
of previously developed algorithm. This phase is cou-
pled with software unit testing (using both white box
and black box testing techniques, test plans, code in-
spection, etc.). The software integration consists in
the integration of all the software units and of the
hardware/software integration, if appropriate, as well
as of the integration testing and system testing. Sys-
tem performance testing and capability testing could
also been performed at this stage, in an iterative way.

2.2.6 Demonstrate Stage

This step aims to assess the UX of the IVS. It can in-
corporate tests such as further robustness testing, user
acceptance testing, interactivity testing, software us-
ability, learnability as well as interoperability testing.

2.2.7 Deploy Stage

This is the final stage which ends in the IVS software
release. This action could require an internal approval
by the developer/manager/client and an external ap-
proval by relevant professional bodies, if appropriate.

2.3 D7-R4 SDLC Reviews

2.3.1 Quality Review

The quality management (Futong and Tingting, 2013)
review could be performed at different stages in the
described process, e.g. at stages 2, 4, and 6 (Fig.
2). It is worth noting that, in this approach, the
project/product boundaries are blurred to accommo-
date situations where products such as autonomous
systems can be required to do by themselves or by

teaming with human(s) a series of stages to accom-
plish a project aiming their own reconfiguration, in
order e.g. to fix their softwares’ errors or to change
requirements, modify plans, etc. to adapt to new situ-
ations.

2.3.2 AX Review

This review aims to provide an up-to-standard Agent
Experience (AX) (Olszewska and Allison, 2018). It
includes usability tests, while it extends User Expe-
rience (UX) concept, since the review is not only
user-focused but tends to be ‘agent-friendly’ for
any intelligent agent, i.e. a human agent such as
user/designer/expert, or an artificial agent such as ex-
pert systems, robots, etc. getting to interact with that
interoperable system. The AX review could be car-
ried out at stages 3, 4, 5, and 6 (Fig. 2).

2.3.3 Ethical Review

Integrating ethical considerations in the cycle is of
prime importance for intelligent systems (Wallach
and Allen, 2009) such as IVS. The review could ad-
dress various questions, as follows: is the database
compliant with the General Data Protection Regula-
tion (GDPR), where the data does come from, how
they are kept, is there a bias in collecting the data
(Fang et al., 2013), is there a bias in the algorithm
when processing them, what are the true positive (TP)
rate and the true negative (TN) rate of the training
dataset, etc. The review could also reflect on aspects
such as the safety of the final behaviour of the system,
the evolution of the IVS system behaviour over time,
its dual applications and possible misuses, etc. This
review could be done at stages 2, 3, 4, and 6 (Fig. 2).

2.3.4 Security Review

The process allows a system security review (Peruma
and Krutz, 2018) which should be adapted to the spe-
cific project requirements and run periodically. In
particular, this review should identify any transmit-
ted and/or stored data, especially if containing sen-
sitive information and ensure it is encrypted accord-
ingly. This review could be integrated at stages 2, 3,
4, and 6 (Fig. 2).

3 EXPERIMENTS

Experiments have consisted in collecting primary
data from the available documentation of 84 super-
vised/led projects aiming to develop intelligent sys-
tems, in order to identify the main advantages and

KEOD 2019 - 11th International Conference on Knowledge Engineering and Ontology Development

438



Figure 4: Sample results of the adopted SDLC models in successful AI-based projects.

Figure 5: Sample results of the adopted SDLC types in successful AI-based projects.

drawbacks of the existing SDLC models as reported
in Section 1. The typical duration of these projects
was between 2 to 12 months. Projects were carried
over the five past years and were all tested success-
fully as per standards (Beller et al., 2018a), (Beller
et al., 2018b).

Results displayed in Fig. 4 show that the most
popular SDLCs were the Waterfall model and the
RAD model, one due to its clear sequence of tasks and
the other one for the ease of feedback incorporation
and the possibility of iterative refinement. The further
analysis of the software documentations shows that,
in the past, one developer over five did not find an ad-
equate SDLC among the existing ones to develop an

IVS system (Fig. 5), whereas, recently, a pilot group
of 5 software developers has unanimously adopted the
new SDLC named D7-R4, which has thus been tested
on all their 5 projects; the IVS outputs being very suc-
cessfully delivered as per internal and external, rele-
vant assessments.

4 CONCLUSIONS

In order to develop intelligent vision systems (IVS)
with an increasing degree of sophistication, we
propose a new Software Development Life-Cycle
(SDLC) we called D7-R4. The presented SDLC is

D7-R4: Software Development Life-Cycle for Intelligent Vision Systems

439



an Agile, iterative approach which is inherently test
driven and which consists of seven stages, namely,
discover, dig, describe, design, develop, demonstrate,
and deploy, as well as four reviews from different per-
spective such as quality, user/agent experience, ethics,
and security. This D7-R4 methodology has been suc-
cessfully applied to develop recent as well as cur-
rent IVS projects and shows promising results for
IVS ranging from computer-vision systems to vision
agents.

REFERENCES

Abrahamsson, P., Warsta, J., Siponen, M. T., and
Ronkainen, J. (2003). New directions on Agile meth-
ods: A comparative analysis. In Proceedings of the
IEEE International Conference on Software Engineer-
ing (ICSE), pages 244–254.

Ammirato, P., Poirson, P., Park, E., Kosecka, J., and Berg,
A. C. (2017). A dataset for developing and bench-
marking active vision. In Proceedings of IEEE Con-
ference on Robotics and Automation (ICRA), pages
1378–1385.

Beck, K. (1999). Extreme Programming Explained: Em-
brace Change. Addison-Wesley.

Beller, M., Georgios, G., Panichella, A., Proksch, S.,
Amann, S., and Zaidman, A. (2018a). Developer Test-
ing in The IDE: Patterns, Beliefs, And Behavior. IEEE
Transactions on Software Engineering.

Beller, M., Spruit, N., Spinellis, D., and Zaidman, A.
(2018b). On the dichotomy of debugging behavior
among programmers. In Proceedings of IEEE/ACM
International Conference on Software Engineering
(ICSE), pages 572–583.

Bhat, M. and Olszewska, J. I. (2014). DALES: Automated
tool for detection, annotation, labelling and seg-
mentation of multiple objects in multi-camera video
streams. In Proceedings of the ACL International
Conference on Computational Linguistics Workshop
(COLING).

Boehm, B. W. (1986). A spiral model of software develop-
ment and enhancement. In ACM SIGSOFT Engineer-
ing Notes, pages 14–24.

Ciccozzi, F., Ruscio, D. D., Malavolta, I., Pelliccione, P.,
and Tumova, J. (2017). Engineering the software of
robotic systems. In Proceedings of the IEEE/ACM
International Conference on Software Engineering
(ICSE), pages 507–508.

Dix, A., Finlay, J., Abowd, G. D., and Beale, R. (2004).
Human Computer Interaction. Pearson, 3rd edition.

Fang, C., Xu, Y., and Rockmore, D. N. (2013). Unbiased
metric learning: On the utilization of multiple datasets
and web images for softening bias. In Proceedings of
IEEE Conference on Computer Vision (ICCV), pages
1657–1664.

Ferre, X. and Medinilla, N. (2007). How a human-centered
approach impacts software development. In Pro-

ceedings of the International Conference on Human-
Computer Interaction (HCI), pages I.68–I.77.

Fiorini, S. R., Bermejo-Alonso, J., Goncalves, P., de Fre-
itas, E. P., Alarcos, A. O., Olszewska, J. I., Prestes, E.,
Schlenoff, C., Ragavan, S. V., Redfield, S., Spencer,
B., and Li, H. (2017). A suite of ontologies for
robotics and automation. IEEE Robotics and Automa-
tion Magazine, 24(1):8–11.

Forsyth, D. A. and Ponce, J. (2012). Computer Vision: A
Modern Approach. Pearson.

Futong, H. and Tingting, S. (2013). Software project
metrics and quality management. In Proceedings of
IEEE Conference on Intelligent Information Hiding
and Multimedia Signal Processing, pages 615–618.

Kaaz, K. J., Hoffer, A., Saeidi, M., Sarma, A., and Bobba,
R. B. (2017). Understanding user perceptions of pri-
vacy, and configuration challenges in home automa-
tion. In Proceedings of IEEE Symposium on Visual
Languages and Human-Centric Computing, pages
297–301.

Martin, J. (1991). Rapid Application Development.
Macmillan.

Meyer, B. (2006). Dependable Software, pages 1–33.
Springer.

Olszewska, J. I. (2017). Clock-model-assisted agent’s
spatial navigation. In Proceedings of the Interna-
tional Conference on Agents and Artificial Intelli-
gence (ICAART), pages 687–692.

Olszewska, J. I. (2019). Designing transparent and au-
tonomous intelligent vision systems. In Proceedings
of the International Conference on Agents and Artifi-
cial Intelligence (ICAART), pages 850–856.

Olszewska, J. I. and Allison, I. K. (2018). ODYSSEY: Soft-
ware Development Life Cycle Ontology. In Proceed-
ings of the International Conference on Knowledge
Engineering and Ontology Development (KEOD),
pages 303–311.

Olszewska, J. I., Houghtaling, M., Goncalves, P., Haideg-
ger, T., Fabiano, N., Carbonera, J. L., Fiorini, S. R.,
and Prestes, E. (2018). Robotic ontological standard
development life cycle. In IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 1–6.

Peruma, A. and Krutz, D. (2018). Understanding the
relationship between quality and security: A large-
scale analysis of android applications. In Proceed-
ings of IEEE/ACM International Workshop on Secu-
rity Awareness from Design to Deployment, pages 19–
25.

Rezazadegan, F., Shirazi, S., Upcrofit, B., and Milford, M.
(2017). Action recognition: From static datasets to
moving robots. In Proceedings of IEEE Conference on
Robotics and Automation (ICRA), pages 3185–3191.

Royce, W. W. (1970). Managing the development of large
software systems. In Proceedings of IEEE Conference
of Western Electronic Show and Convention, pages
205–210.

Samek, W., Wiegand, T., and Muller, K.-R. (2017). Ex-
plainable artificial intelligence: Understanding, visu-
alizing and interpreting deep learning models. ITU

KEOD 2019 - 11th International Conference on Knowledge Engineering and Ontology Development

440



Journal: ICT Discoveries - Special Issue 1 - The Im-
pact of Artificial Intelligence (AI) on Communication
Networks and Services, 1:1–10.

Sommerville, I. (2015). Software Engineering. Pearson,
10th edition.

Wallach, W. and Allen, C. (2009). Moral Machines: Teach-
ing Robots Right from Wrong. Oxford University
Press.

Warrier, G. (2018). Breaking The Common Myths Around
Artificial Intelligence. In DDD Scotland.

Winfield, A. (2012). Robotics: A Very Short Introduction.
Oxford University Press.

Zendel, O., Honauer, K., Murschitz, M., Humenberger, M.,
and Dominguez, G. F. (2017). Analyzing computer
vision data - the good, the bad and the ugly. In Pro-
ceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 6670–6680.

D7-R4: Software Development Life-Cycle for Intelligent Vision Systems

441


