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I. BIBLIOGRAPHIC DESCRIPTION 
Christian Schinke 

Neuroendocrine stress responsiveness in human obesity and non-obesity controls 

Universität Leipzig, Medizinische Fakultät, kumulative Dissertation 

84 pages, 8 figures, 3 publications, 261 references, appendices. 

 

BACKGROUND: Obesity is a leading health burden of the 21st century. Alterations of the individual 

endocrine stress response and the monoamine system may pathophysiologically contribute to the 

obesity pandemic and its metabolic and mental complications.  

OBJECTIVES: (i) to measure hypothalamic-pituitary-adrenal (HPA) axis responsiveness and its relation 

to serum concentrations of the arginine-vasopressin (AVP) surrogate copeptin in subjects with obesity 

(OB) compared to non-obesity controls (NOC), (ii) to test whether HPA axis responsiveness and 

copeptin are related to central noradrenaline (NA) transporter (NAT) availability, (iii) to assess brain 

serotonin transporter (SERT) binding potentials in OB compared to NOC. 

METHODS: 40 subjects with obesity (BMI > 35kg/m2) were compared to 25 non-obesity controls, 

matched for age and sex. (i) All individuals underwent the combined dexamethasone/corticotropin 

releasing hormone (dex/CRH) test. Plasma ACTH and cortisol curve parameters were derived, and 

copeptin was assessed in the 1500h sample. (ii) Positron emission tomography (PET) was applied in 10 

OB and 10 NOC using the NAT-selective radiotracer S,S-[11C]O-methylreboxetine (MRB) and associated 

with curve indicators derived from the dex/CRH test as well as with copeptin. (iii) PET using the SERT 

selective radiotracer [11C] DASB was performed in 30 OB and 15 NOC for intergroup comparison.  

RESULTS: (i) OB subjects showed an increased HPA axis responsiveness as measured by cortisol 

concentrations after CRH stimulation. Correspondingly, the AVP surrogate copeptin was higher in OB 

along with being significantly associated with HPA axis reactivity. OB subjects had a higher adrenal 

sensitivity as measured by a lower ACTH/cortisol ratio. (ii) In NOC, the HPA response was related to 

NAT availability of the amygdala and the orbitofrontal cortex while in OB, this association was located 

in the hypothalamus. (iii) There were no differences in SERT availability between OB and NOC, but a 

higher inter-regional SERT connectivity was observed in OB. 

CONCLUSION: This work supports the notion of an increased endocrine stress response in human 

obesity, pointing to interacting alterations of the HPA and neurohypophyseal axes. Normally, these 

stress axes seem to be linked to prefrontal-limbic NA signaling, whereas a loss of this association in 

favor of a hypothalamic-centered relation is observed in OB. The SERT network pattern is more closely 

inter-related in OB, albeit central SERT concentrations per se do not differ between OB and NOC. 
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II. INTRODUCTION 

2.1 Obesity as a global health burden 

Obesity is a leading cause of preventable disease, disability and death (Ng et al., 2014; Hruby and Hu, 

2015). According to the World Health Organization (WHO), approximately 39% of the world population 

are overweight (Body Mass Index, BMI, > 25kg/m2) and 11% of all men and 15% of all women obese 

(BMI > 30kg/m2), affecting a total of half a billion people worldwide (WHO Global Health Observatory 

data repository, 2017). The German Health Interview and Examination Survey revealed a prevalence 

of overweight of 67.1% in men and 53.0% in women, and an increasing rate of obesity affecting about 

one fourth of the German population (Mensink et al., 2013). Obesity is frequently associated with the 

metabolic syndrome as a cluster of life expectancy affecting cardiovascular risk factors which include 

abdominal obesity, dyslipidemia, hypertension and diabetes or prediabetes (Park et al., 2003; 

International Diabetes Federation, 2017). Morbidity and mortality increase with a body mass index 

(BMI) > 25kg/m2 in a J-shaped pattern, making the obesity pandemic to one of the most challenging 

health concerns of the 21st century (Berrington de Gonzalez et al., 2010; Wang et al., 2011; Di 

Angelantonio et al., 2016; Aune et al., 2016). These unfavorable physical health conditions are often 

accompanied by psychosocial distress (Hemmingsson, 2014), stigmatization (Hilbert et al., 2008; 

Dutton et al., 2014; Papadopoulos and Brennan, 2015), psychiatric illness (Pereira-Miranda et al., 2017) 

and, hence, a remarkably decreased quality of life (Collins et al., 2016). Obesity is caused by a long-

term positive energy balance to which a multitude of environmental, genetic and epigenetic factors 

predispose (Heymsfield and Wadden, 2017). The neurobiological underpinnings of obesity along with 

its metabolic and mental complications, however, are incompletely understood, and the not-yet 

individualized treatment strategies frequently fail to achieve weight loss maintenance.  

Over the last years, stress has become one of the most acknowledged contributors to the obesity 

pandemic (Chrousos, 2000; Incollingo et al., 2015). This assumption is partly based on the observed 

coincidence of a growing level of perceived stress in modern societies and the increasing prevalence 

of obesity (Chandola et al., 2006). It is noteworthy, however, that not all stressed individuals are 

equally prone to civilization diseases, underlining a varying vulnerability to stressors (van der Valk et 

al., 2018). Hence, it is to question whether it is rather the individual stress response than stress per se 

which accounts for an endophenotype predisposing to stress-associated civilization diseases such as 

obesity and its associated physical and mental disorders.  
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2.2 Neurobiology of stress 

Stress is any endangerment of the milieu intérieur (Bernard, 1879) triggered by an actual or perceived 

challenge. It is counteracted by an adaptive neuronal and hormonal response cascade to maintain 

equilibrium in situations of demanding environmental or internal changes (Cannon, 1932; Selye, 1946). 

The neuroendocrine stress response is evolutionarily highly conserved and crucial for survival 

(Sapolsky et al., 2000; Gold, 2015), but may predispose to stress-related physical and mental disorders 

once its regulation is thrown out of joint (Chrousos, 2009; Holsboer and Ising, 2010).  

 

2.3 Stress and obesity 

The change of one’s eating behavior in situations of mental stress is probably familiar to all of us. 

Analogously, the repeated administration of mild stressors leads to hyperphagia with preference for 

highly palatable food in rodents (Rowland and Antelman, 1976). This observation parallels the dose-

dependent relation of chronic work stress exposure to the risk of the metabolic syndrome in humans 

(Chandola et al., 2006). Stress hormones profoundly affect the intake, distribution and expenditure of 

energy (Cavagnini et al., 2000; Anagnostis et al., 2009), and the clinical picture of patients suffering 

from Cushing’s syndrome sheds light on the causative role of elevated glucocorticoid concentrations 

in the pathogenesis of obesity and the metabolic syndrome (Loriaux, 2017). However, basal cortisol 

concentrations are normal in common obesity (Bjorntorp and Rosmond, 2000; Loriaux, 2017), and 

stress per se does not necessarily lead to hyperphagia in all humans (Epel et al., 2001). Rather, it seems 

that in response to distress, especially high cortisol reactors preferably consume highly palatable 

rewarding food, probably to ameliorate symptoms of perceived distress (Adam and Epel, 2007). Hence, 

rather than stressors or basal cortisol concentrations per se, the individual stress response is likely to 

pre-dispose to an increased appetite and energy intake (Epel et al., 2001; van der Valk et al., 2018).  

The stress response involves the activation of the hypothalamic-pituitary-adrenal (HPA) axis, leading 

to the subsequent release of CRH, ACTH and cortisol, and the hypothalamic-posterior-pituitary-axis – 

also called neurohypophyseal axis – which triggers AVP secretion into the peripheral circulation. They 

are centrally modulated by biogenic amines which in turn affect mood, behavior, appetite and 

metabolism (Hainer et al., 2006; Nelson and Gehlert, 2006), as introduced to below.
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2.4  Neuroendocrine correlates of the stress response –    

 The hypothalamic pituitary-adrenal- and neurohypophyseal axes 

The hypothalamic-pituitary-adrenal axis consists of the medial part of the hypothalamus, the anterior 

pituitary gland and the adrenal cortex which subsequently produce corticotropin-releasing-hormone 

(CRH) and arginine-vasopressin (AVP) to trigger the release of adrenocorticotropic hormone (ACTH) 

and the production of cortisol in response to stress (Scott and Dinan, 1998; Aguilera, 2011).  

The hypothalamic-neurohypophyseal axis also consists of the medial hypothalamus but the posterior 

pituitary gland, the so-called neurohypophysis, to release AVP into the peripheral circulation to 

mediate water conservation and vascular regulation primarily in response to acute stressors such as 

osmotic stimuli and changes in blood pressure (Schrier and Bichet, 1981; Jochberger et al., 2006; 

Balanescu et al., 2011; Nickel et al., 2012).  

 

 

Figure 1. The hypothalamic pituitary-adrenal- and neurohypophyseal axes. AVP from parvocellular neurons of 

the hypothalamus reaches the anterior pituitary gland together with CRH to stimulate ACTH secretion. AVP from 

the magnocellular subdivision is released into the peripheral circulation by the posterior pituitary gland 

(neurohypophysis). Secretory activity of the latter can be measured by the cleaved AVP-precursor fragment 
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copeptin. A connection between both axes is suspected at the level of the median eminence. ACTH: 

adrenocorticotropic hormone; AVP: arginine-vasopressin. CRH: Corticotropin-releasing hormone. PVN: 

paraventricular nucleus. SON: supraoptic nucleus. Figure adapted from Nickel et al., 2012. 

 

2.4.1 Anatomy of the hypothalamic-pituitary-adrenal and neurohypophyseal axes 

The medial hypothalamus contains two nuclei involved in the regulation of the neuroendocrine stress 

response: the paraventricular (PVN) and the supraoptic nuclei (SON), which consist of parvocellular 

and magnocellular (PVN) or solely magnocellular (SON) neurons. It is generally accepted that the PVN 

is primarily involved in HPA axis regulation, and that the SON determines the neurohypophyseal stress 

response. However, mounting evidence challenges the former doctrine suggesting rather an interplay 

of the two systems than being merely parallel pathways (Holmes et al., 1986; Antoni, 1993; Keck et al., 

2002; Tanoue et al., 2004; Sivukhina and Jirikowski, 2016). The relation of serum AVP or its surrogate 

copeptin to HPA responsiveness has not been formally shown in humans. 

The paraventricular nucleus lies adjacent to the third ventricle, harboring parvocellular neurons in its 

medial and magnocellular neurons in its lateral part. The parvocellular division consists of cells of 7-10 

µm diameter which produce CRH and AVP (Sivukhina and Jirikowski, 2016). AVP and CRH producing 

neurons of the parvocellular division of the PVN project short axon terminals to the external zone of 

the median eminence where the neuropeptides are released into the pituitary portal circulation. The 

secretagogues of the parvocellular neurons are acknowledged to trigger ACTH release by CRH1- and 

V1b-receptor binding at the anterior pituitary, and hence, to be predominantly involved in the 

regulation of HPA axis activity (Volpi et al., 2004; Aguilera, 2011).  

The supraoptic nucleus is located dorsally of the optic tract with entirely magnocellular neurons of 20-

40µm diameter, producing oxytocin and AVP. AVP derived from the magnocellular division of both PVN 

and SON is transported via long axons through the internal part of the median eminence to the 

posterior pituitary gland and released into the peripheral circulation by axon swellings and fenestrated 

capillaries, leading to vasoconstriction by V1aR binding on vessels and water conservation by V2R-

triggered aquaporin-2 insertion into the renal tubules (Volpi et al., 2004). Therefore, the magnocellular 

division of the PVN and SON are neurosecretory cells primarily involved in the regulation of the 

hypothalamic-neurohypophyseal axis (Burbach et al., 2001; Dinan and Scott, 2005; Aguilera, 2011). A 

communication of the hypothalamic-pituitary and the neurohypophyseal system, however, is probably 

located in the median eminence, where AVP from the magnocellular system passes through, leading 

to physiologically relevant concentrations of the neuropeptide in the pituitary portal circulation 

following its stimulation (Wotjak et al., 1996). This CRH/AVP synergism probably becomes  
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functionally more relevant under conditions of chronic stress (de Goeij, D C et al., 1992; Keck et al., 

2002).  

 

2.4.2 The role of CRH, ACTH and cortisol in the context of metabolism and obesity 

CRH is a 41-amino acid long neuropeptide that triggers the release of ACTH from the anterior pituitary 

gland (Vale et al., 1981; Aguilera, 2011). The nonapeptide AVP acts synergistically with CRH, 

potentiating ACTH secretion (Bardeleben et al., 1985; Tsigos et al., 2000). In situations of chronic stress, 

the increased synthesis of AVP facilitates HPA responsiveness to meet the enhanced demand of 

enduring activation (de Goeij, D C et al., 1992; Antoni, 1993; Dinan and Scott, 2005; Litvin et al., 2011). 

Acutely, the peptide hormones CRH and ACTH (Yalow et al., 1964; Berson and Yalow, 1967; Schulte et 

al., 1982) suppress appetite directly via CRH1R- or melanocortin receptor binding and indirectly via 

sympathetic activation during the alarm phase of the fight and flight response (Cannon, 1932; Selye, 

1946; Yalow et al., 1964; Glowa et al., 1992; Shipp et al., 2015). Then, ACTH and probably also AVP 

trigger the production of the steroid hormone cortisol in the zona fasciculata of the adrenal gland (Arlt 

and Stewart, 2005; Aguilera, 2011; Mavani et al., 2015). Contrary to the afore-mentioned peptides, 

cortisol leads to increased appetite with preferential choice for rewarding high-caloric comfort food in 

order to restore energy resources during the resistance or exhaustion phase of the stress response 

(Selye, 1946; Tataranni et al., 1996; Dallman et al., 2005; Adam and Epel, 2007). Only slightly increasing 

energy expenditure, glucocorticoids lead to a markedly higher food intake with subsequent weight 

gain in almost all patients treated with therapeutically relevant doses of glucocorticoids as well as in 

patients suffering from Cushing’s disease (Tataranni et al., 1996; Tsigos et al., 2000; Fardet and Feve, 

2014). Glucocorticoids enable energy mobilization by gluconeogenesis, glycogenolysis, lipolysis and 

proteolysis, increasing the concentrations of circulating glucose and fatty acids acutely, and rather 

long-term, lead to a re-distribution of fat to its rapidly-available visceral depots with lipodystrophy 

(Fardet and Feve, 2014), and the higher waist-hip ratio (WHR) as a proxy of visceral fat is markedly 

linked with an increased mortality (Rosmond et al., 1998; Despres and Lemieux, 2006; Fardet et al., 

2012; Katzmarzyk et al., 2012; Tchernof and Després, 2013). Whereas basal hypercortisolism in 

common obesity is not supported by the majority of the literature (Abraham et al., 2013; Incollingo et 

al., 2015; Bailey, 2017), it is to question if it is rather a higher reactivity of the HPA axis with timely 

limited peaks of circulating cortisol that may account for the phenotypic similarities of patients 

suffering from Cushing’s syndrome and subjects with common obesity. This would imply a dynamic 

approach to assess HPA axis responsiveness upon defined stimuli, e.g., by the use of the dex/CRH test. 
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2.4.3 The role of AVP in the context of metabolism and obesity 

AVP activates sympathetic pathways (Grazzini et al., 1999), and besides its antidiuretic and pressor 

functions, raises blood glucose concentrations by hepatic glycogenolysis as well as glucagon secretion 

(Oshikawa et al., 2004; Mavani et al., 2015), and affects lipid metabolism (Koshimizu et al., 2012). 

Elevated concentrations of AVP longitudinally precede arterial hypertension, abdominal obesity, 

insulin resistance and diabetes which led to the assumption that an enhanced vasopressinergic tone 

may be causally linked with the pathogenesis of the metabolic syndrome (Enhörning et al., 2011; 

Enhörning et al., 2013; Wannamethee et al., 2015). Due to the recruitment of similar metabolic 

effector pathways, a functional interrelation of the AVP and HPA system in the context of obesity 

seems likely (Saleem et al., 2009). 

 

2.4.4 Measuring HPA axis responsiveness by means of the combined dexamethasone-

corticotropin-releasing hormone (dex/CRH) test 

HPA axis assessment is of great interest for clinicians and researchers since disturbances of its activity 

have long been recognized to be pathophysiologically linked with physical and mental health disorders, 

such as Cushing’s syndrome (Liddle, 1960), multiple sclerosis (Then Bergh et al., 1999), major 

depression (Pariante and Lightman, 2008), schizophrenia (Lammers et al., 1995), panic disorder 

(Erhardt et al., 2006) and posttraumatic stress disorder (Kloet et al., 2006).  

Cortisol secretion can be divided into different temporal patterns: (i) basal activity with circadian 

fluctuations and ultradian pulses, and (ii) stimulus-induced activity, which constitutes HPA 

responsiveness upon different types of stressors (Spencer and Deak, 2017). These HPA functions can 

be measured by a multitude of different approaches, such as the single or repeated assessment of 

cortisol in patient serum, saliva, urine or hair to reflect basal cortisol secretion and cortisol turnover, 

or by the use of dynamic paradigms (Groot et al., 2000). These endocrine challenge tests which 

dynamically assess HPA reactivity either use non-pharmacological stimuli, such as psychological stress 

induced by social evaluation in the Trier Social Stress test (Kirschbaum et al., 1993), or 

pharmacologically-induced stress. In the category of the latter, the dexamethasone suppression test 

was the first provocation test and still is the clinically most relevant tool to evaluate endogenous 

glucocorticoid excess (Liddle, 1960; Groot et al., 2000; Findling et al., 2004). Later, the CRH-stimulation 

test was shown to further increase ACTH and cortisol release specifically in patients with ACTH-

secreting pituitary adenomas but not in other forms of the Cushing’s syndrome (Chrousos et al., 1984). 

The combination of both HPA axis suppression by dexamethasone and stimulation by CRH achieved a 

higher diagnostic accuracy than either of the tests alone, reliably distinguishing between Cushing’s 
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syndrome from pseudo-Cushing states, thus, subjects with mild hypercortisolism but without ectopic 

cortisol production (Yanovski et al., 1993; Erickson et al., 2007). The combined dex/CRH test was 

initially used as a laboratory test in psychiatry research, revealing a cortisol escape in patients with 

major depression (Bardeleben and Holsboer, 1989; Heuser et al., 1994), and has later become a well-

validated tool in various mental and physical health conditions (Then Bergh et al., 1999; Holsboer, 

2001; Ising et al., 2005; Heesen et al., 2007). The advantage of the dex/CRH test is its high 

standardization due to the use of a defined pharmacological stimulus in a defined laboratory or clinical 

setting in which HPA axis reactivity can be dynamically mirrored by ACTH and cortisol concentrations 

from patients’ sera in the course of 1.5h of time (Heuser et al., 1994). The main determinants of the 

ACTH-cortisol release pattern are a negative feedback mechanism as a function of glucocorticoid 

receptor integrity (Holsboer, 2000), sensitivity to circulating CRH (Nussey et al., 1991), AVP co-

stimulation (Bardeleben et al., 1985; Keck et al., 2002) and adrenal sensitivity to circulating ACTH, as 

measured by the ACTH/cortisol ratio (Holsboer et al., 1984; Kümpfel et al., 2014). The acute as well as 

long-term effects of monoamine reuptake inhibitors on dex/CRH test responsiveness further imply a 

modulatory role of the serotonergic and noradrenergic system on HPA axis functioning (Schule et al., 

2006; Sarubin et al., 2014a). HPA axis assessment by means of the dex/CRH test has not been 

performed specifically in subjects with obesity. There are no studies on the relation of the ACTH and 

cortisol response to the AVP system or central monoaminergic signaling which are probably 

modulators of the HPA response. 

 

Figure 2. Principle of the combined dexamethasone/CRH test. (A) Under physiological conditions, CRH and its 

secretagogue AVP stimulate ACTH secretion. Cortisol inhibits the release of the neuropeptides by feedback 

control. (B) Normally, 1.5mg of dexamethasone suppress ACTH and cortisol secretion despite the stimulation by 

100μg CRH at 1500h. (C) An escape of this dexamethasone suppression was hypothesized for the obesity group, 

as well as a co-stimulation by an enhanced AVP tone, as to be measured by copeptin. (D) Expected time curve of 

cortisol by means of the dex/CRH test, and its chemical structure.  ACTH: adrenocorticotropic hormone; AVP: 

arginine-vasopressin. CRH: Corticotropin-releasing hormone; Dex: dexamethasone; NOC: non-obesity controls. 
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OB: obesity. Figure adapted from a presentation of Prof. Dr. F. Then Bergh (A-C) and Schinke et al., 2017 (D). 

Chemical structure from Pubchem Open chemistry database.  

 

2.4.5 Measuring AVP secretion by its equally-released surrogate copeptin 

AVP derives from the 164-amino-acid long precursor peptide pre-pro-AVP that is proteolytically 

cleaved into a signal peptide, AVP, neurophsyin-II and copeptin (Land et al., 1982; North, 1987; 

Morgenthaler et al., 2006). AVP is cumbersome to measure since it binds to platelets, has a short-ex 

vivo half-life and cannot be assessed by sandwich-immunoassays due to the shortness of the amino-

sequence (Robertson et al., 1973; Szinnai et al., 2007). Copeptin is the stable 39-amino-acid long c-

terminal fragment of the pre-pro-AVP precursor which is probably involved in the correct folding of 

AVP during maturation (Acher et al., 2002; Barat et al., 2004). It is released into the peripheral 

circulation by the neurohypophysis in equimolar amounts to AVP, reflecting recent vasopressin 

secretion while being a more stable analyte (Robertson, 2001; Morgenthaler et al., 2006; Szinnai et al., 

2007). It has been suggested as a new biomarker of acute illness (Katan and Christ-Crain, 2010) and is 

associated with an increased morbidity in patients with acute coronary syndrome (Keller et al., 2010; 

Lattuca et al., 2019) and ischemic stroke (Katan et al., 2009). A subject of our study is to investigate 

whether the assessment of serum copeptin concentrations could be a useful tool revealing an 

enhanced vasopressin tone and, hence, reflect chronic humoral stress.  

 

Figure 3. Cleavage of pre-provasopressin. Pre-

provasopressin is cleaved into a signal peptide, 

arginine-vasopressin, neurophysin II and the c-

terminal fragment copeptin. Copeptin is stable ex 

vivo and can be measured by sandwich- 

immunofluorescence assays, as used in our study 

(Brahms CopeptinUs®, ThermoScientific). The 

tracer is a labeled antibody which binds to copeptin 

that, in turn, binds to another antibody attached to the tube (solid phase). Numbers indicate amino sequence. 

Figure from Morgenthaler et al., 2006. 

 

2.5  The noradrenergic system in the context of obesity and stress axis 

modulation 

Noradrenaline is deeply involved the regulation of drive, sleep, behavior and the degree of alertness 

and arousal (Zhou, 2004; Schou et al., 2007). The association of noradrenaline to the endocrine stress 
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system seems intuitive given that NA chemically belongs to the group of catecholamines as the classical 

neuroendocrine hormones and neurotransmitters of the sympathetic nervous system (McCorry, 

2007). It is biosynthesized from the amino acid tyrosine in a three-step enzymatic reaction including 

the hydroxylation to dopa, the decarboxylation to dopamine and finally another hydroxylation to 

noradrenaline (Goodall and Kirshner, 1958; Axelrod, 1970). Peripherally, NA is produced by 

preganglionic sympathetic nerve fibers and chromaffin cells of the adrenal medullary (Euler, 1946) 

which are directly derived from neural crest cells during embryonic development (Le Douarin and 

Teillet, 1974; Huber et al., 2009). In the 1960s, the central noradrenaline system came out of age, 

proving the existence of monoamine nerve terminals in the brain (Dahlstroem and Fuxe, 1964) with 

highest NA-neuron densities in the locus coeruleus (LC) (Fuxe et al., 1970). From there, brainstem LC 

neurons project long axon terminals to emotional and cognitive centers embracing limbic regions such 

as the amygdala, the hippocampus and prefrontal cortex and to centers responsible for endocrine 

function and appetite regulation of the hypothalamus (Moret and Briley, 2011). In the neuron, NA is 

stored in vesicles which merge with the presynaptic membrane of the nerve terminals to release the 

neurotransmitter into the synaptic cleft (Benarroch, 2013). There, NA exerts action primarily via 

postsynaptic α1-receptor binding, and, with a lower affinity, to β-adrenoceptors. Finally, its release is 

self-limited by feedback-inhibition through presynaptic α2-autoreceptors (Starke, 2001). All NA 

receptors belong to the family of heptahelical g-protein-coupled transmembrane domains (Strosberg, 

1993). 

 

Figure 4. The brain noradrenaline system. The locus coeruleus (LC) is located in the median pons near the 

pontomesencephalic junction, harboring the largest population of NA neurons. Noradrenergic projection from 

the LC ascend to the limbic system, thalamus, hypothalamus and cortex to regulate arousal, emotions and 

endocrine function. Descending projections reach autonomic nuclei of the brainstem and spinal cord to modulate 
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the sympathetic and parasympathetic nervous system and motor function. Picture adapted from Kalat, 1997 and 

according to Samuels and Szabadi, 2008. 

 

2.5.1 NA and its influence on feeding behavior 

Clinically, the reduction of food ingestion by monoamines was observed after ephedrine-derived 

bronchodilators – the novel group of amphetamines – had been turned into the first antidepressants 

alleviating from anhedonia, and benzedrine was soon promoted an advantageous drug reducing the 

hedonic drive to eat (Piness G., H. Miller, and G. Alles, 1930; Lesses and Myerson, 1938). 

Mechanistically, the increased metabolism and diuresis, the reduced digestion and absorption of 

nutrients as well as the loss of appetite finally lead to significant weight loss (Nutrition Reviews, 1956; 

Heal et al., 2013). The exploitation of these pathways paved the way to an iatrogenic epidemic of 

amphetamine abuse as anti-obesogenic drug in the 1960s (Rasmussen, 2008).  

The amphetamine-type subjective effects of central psychostimulants are mediated by the inhibition 

of monoamine reuptake and release of dopamine, serotonin and, most potently, noradrenaline 

(Rothman et al., 2001). NA exerts effects on appetite via opposing pathways, depending on the 

hypothalamic nucleus and receptor binding site: On the one hand, it suppresses food intake by binding 

alpha1-receptors in the PVN and noradrenergic trajectories to the lateral hypothalamus (Wellman, 

2000) and direct central sympathetic activation. On the other hand, NA stimulates feeding via 

brainstem noradrenergic projections to the PVN of the medial hypothalamus, activating alpha-2 

receptors (Holtzman and Jewett, 1971; Nelson and Gehlert, 2006; Bray and Greenway, 1999; Jhanwar-

Uniyal and Leibowitz, 1986) and, more downstream, fosters feeding by engaging the HPA axis 

(Chrousos, 2000) with the subsequent release of glucocorticoids that increase the motivation for 

pleasurable reward-associated food (Dallman, 2010).  

 

2.5.2 The association of the noradrenergic system with the HPA and 

neurohypophyseal axes 

Real or anticipated stress involves the activation of neuronal circuits of the prefrontal  cortex, 

amygdala, hippocampus and hypothalamus which lead to the activation of the HPA and 

neurohypophyseal axes, resulting in a stress-adapted behavioral response (Plotsky et al., 1989; 

Holsboer and Ising, 2010). The assumption of an NA-mediated activation of the HPA and AVP stress 

system is based on anatomical, experimental and clinical observations.  
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Anatomically, noradrenergic brainstem projections directly reach CRH- and AVP-containing neurons of 

the paraventricular and supraoptic nuclei which express alpha-1-receptors, integrating acute and 

chronic stress responses at the hypothalamic level (Alonso et al., 1986; Plotsky et al., 1989; Flak et al., 

2014). Microinjection of NA into the hypothalamic PVN and SON stimulate CRH and AVP expression 

and release (Armstrong et al., 1986; Benetos et al., 1986; Itoi et al., 1994; Vacher et al., 2002) whereas 

mechanic or immunotoxic lesions as well as alpha1-R antagonism contrarily blunt respective activities 

(Laakmann et al., 1986; Feldman and Weidenfeld, 1998; Sawchenko, 1988; Ritter et al., 2003; Flak et 

al., 2014), hinting to an excitatory effect of alpha1-receptor binding NA on the HPA and 

neurohypophyseal axes (Plotsky et al., 1989; Feldman and Weidenfeld, 1998).  

Experimentally, the administration of the centrally acting alpha-1R-agonist methoxamine fosters the 

release of AVP, ACTH and cortisol into the peripheral circulation in humans (Radant et al., 1992) 

whereas alpha-1-receptor-antagonism by prazosin reverses pharmacologically-induced HPA axis 

activation (Laakmann et al., 1986). Similarly, stimulatory effects on the neurohypophyseal axis were 

reported in healthy subjects being administered the NA/5-HTT-releasing and monoamine-reuptake 

blocking drug MDMA, resulting in an increased AVP tone as measured by its surrogate copeptin 

(Simmler et al., 2011). The administration of the selective NA-reuptake inhibiting antidepressant 

reboxetine results in HPA axis activation acutely but downregulating its activity chronically in the 

course of several weeks of treatment, probably due to a gradual restoration of the glucocorticoid 

feedback control (Schule et al., 2006).  

From a clinical point of view, alterations of monoaminergic signaling (Moret and Briley, 2011; 

Moriguchi et al., 2017) and HPA dysregulation belong to the most robustly reported biological findings 

in major depression (Heuser et al., 1994; Chrousos, 2009). Similar neurobiological mechanisms seem 

to apply in OB where both deficient NA signaling (Li et al., 2014; Robertson et al., 2010) and alterations 

of HPA activity were postulated to be involved in its pathogenesis (Bjorntorp and Rosmond, 2000; 

Pasquali et al., 2006; Incollingo et al., 2015; Bose et al., 2009; Lee et al., 2016), and may partly explain 

the high prevalence of comorbid psychiatric conditions such as depression, anxiety disorder, bipolar 

disorder and schizophrenia in people with obesity (Simon et al., 2006; Kyrou and Tsigos, 2009; Jauch-

Chara and Oltmanns, 2014). This indicates that alterations in the HPA-monoamine interplay may 

constitute an unspecific endophenotype predisposing to a variety of physical and mental diseases. 

 

2.5.3 Monoamine transporters as regulators of neurotransmitter signaling  

Monoamine-signaling is critically modulated by its presynaptic transporters, limiting neurotransmitter 

concentrations in the synaptic cleft by its reuptake into the presynaptic bouton to terminate its action 
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(Hertting and Axelrod, 1961; Iversen, 1971; Benarroch, 2013). About 80-90% of the released NA is re-

captured and re-released (Schomig et al., 1989; Ding et al., 2006). Transporters of NA and 5-HTT as 

well as of dopamine, GABA and glycine belong to the solute carrier 6 (SLC6) superfamily which use the 

electrochemical gradient of sodium as driving force for neurotransmitter-recycling (Benarroch, 2013). 

They consist of about 600 amino-acids with twelve transmembrane spanning domains (Lesch et al., 

1993), and are primarily located close to the dendrites and along the axons (Zhou, 2004; Murphy and 

Lesch, 2008). Albeit NA transporters have been pharmacologically targeted in stress-associated 

diseases for decades (Zhou, 2004; Eyding et al., 2010), there is no study which investigated the status 

quo of NAT availability in the living human brain together with stress axes responsiveness.   

 

 

Figure 5. The monoamine transporter and its ligands. (A) Structure of the membrane monoamine transporter. 

SERT and NAT as members of the solute carrier superfamily (SLC) use the Na+ gradient for neurotransmitter 

recycling. (B) Chemical structure of noradrenaline and (C) the NAT-selective radiotracer S,S-[11C]O-

methylreboxetine. Picture from Benarroch, 2013; chemical structures from Pubchem Open chemistry database. 

 

2.5.4 Noradrenaline transporter imaging  

The noradrenaline transporter is involved in the pathophysiology and treatment of major depression, 

attention deficit hyperactivity disorder, substance abuse and neurodegenerative disorders (Ding et al., 

2006). Albeit these findings could initially only be derived from post-mortem tissue, it is since the early 

2000s that in vivo quantification of the noradrenaline transporter in the living human brain has become 

possible by means of NAT brain PET with suitable radiotracers (Laruelle et al., 2002; Ding et al., 2006). 

The latter were generated by labeling noradrenaline reuptake inhibitors such as desipramine, 
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nisoxetine, atomoxetine or reboxetine with the beta-emitters  [11C], [3H] or [18F] (Ding et al., 2006). The 

(S, S)-enantiomer [11C]Methylreboxetine was the most promising ligand candidate for NAT imaging, 

combining the properties of a high NAT affinity, specificity, selectivity and good lipophilicity. It shows 

the highest binding in the locus coeruleus, thalamus and hypothalamus and the lowest in the striatum 

and occipital cortex which serve as reference regions (Ding et al., 2003; Wilson et al., 2003; Ding et al., 

2006). By means of this novel radiotracer, the previously mentioned alterations in NAT signaling could 

be verified in the living human brain, e.g. with an enhanced thalamic NAT availability in patients with 

major depression (Moriguchi et al., 2017) and cocaine abuse (Ding et al., 2010). Contrarily, a lowered 

thalamic NAT availability was shown in one study investigating subjects with mild obesity (Li et al., 

2014). However, in that study, subjects with a BMI >35kg/m2 were not taken into account. Until the 

study by Hesse et al. in 2017, there were no data on NAT availability in severe obesity. 

 

2.6 The serotonergic system in obesity 

Serotonin is involved in the regulation of mood, behavioral, autonomic and endocrine responses 

(Lowry, 2002), and dysregulation of serotonergic signaling is implicated in anxiety-traits and 

susceptibility for depression (Caspi et al., 2003; Canli and Lesch, 2007). It was discovered at first 

peripherally in the late 1940s and named after its capacity to increase blood vessel tone (Rapport et 

al., 1948). Most serotonin is produced in the enterochromaffin cells of the gastrointestinal tract, 

mediating bowel movement (Berger et al., 2009; Wyler et al., 2017). Analogous to other monoamines 

such as dopamine, serotonin is not capable of crossing the blood-brain barrier. In the brain, it is 

synthesized in a two-step enzymatic reaction by the hydroxylation of the essential amino acid L-

tryptophan to 5-hydroxy-L-tryptophan and the subsequent decarboxylation finally to 5-

hydroxytryptamine (5-HT), synonymously designated serotonin (Charnay and Leger, 2010). Centrally, 

5-HT synthesizing neurons are almost exclusively located in nine nuclei of the brainstem raphe and the 

reticular formation, extending from the caudal-most pole of the medulla oblongata to the mid-level of 

the mesencephalon (Törk, 1990; Charnay and Leger, 2010, 2010; Yeo, Giles S H and Heisler, 2012). 

Serotonergic neurons extensively project axons to virtually all brain regions (Jacobs and Azmitia, 1992, 

1992; Charnay and Leger, 2010), underlining its involvement in many physiological and 

neuropsychological processes (Berger et al., 2009; Yeo, Giles S H and Heisler, 2012). There is a smaller 

caudal and a larger rostral division of brainstem serotonergic neurons. Descending projections 

originate from the caudal division located in the pons and medulla oblongata, comprising 15% of the 

central serotonergic neurons with projections to the medulla oblongata and spinal cord, where they 

modulate pain and motor function (Törk, 1990; Charnay and Leger, 2010). The majority of serotonergic 

projections, however, arise from the rostral division of the serotonergic neurons which comprise 85% 
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of the cell bodies, sending extensive collaterals to the limbic system, the hypothalamus, striatum and 

the cerebral cortex (Törk, 1990) where they modulate mood, cognitive function, emotion, motivational 

behavior and reward (Hoebel et al., 1989; Berger et al., 2009; Švob Štrac et al., 2016; Drabe et al., 

2017), along with exerting control over the metabolic homeostasis (Nelson and Gehlert, 2006; Wyler 

et al., 2017) and the neuroendocrine system (Dinan, 1996; Schule, 2007). 

 

 
Figure 6. The brain serotonin system. Central serotonergic neurons arise from the upper brainstem raphe nuclei 

through the diencephalon to reach the forebrain. Descending projections originate from the caudal division of 

the raphe nuclei to the spinal cord. Figure adapted from Kalat, 1997, description according to Törk, 1990. 

Chemical structures from Pubchem Open chemistry database. 

 

2.6.1 Role of serotonin in the context of feeding behavior and metabolism  

Serotonin exerts its effect via at least 14 pre- and postsynaptic 5HT-receptors of 7 receptor families 

that are primarily expressed in the central nervous system and the gastrointestinal tract, as well as in 

smooth muscle, the peripheral nervous system, blood vessels and platelets (Charnay and Leger, 2010; 

Švob Štrac et al., 2016). With the exception of 5-HT3R which is the only ligand-gated ion channel in the 

serotonin receptor family, all other members belong to the group of metabotropic g protein-coupled 

heptahelical transmembrane receptors (Barnes and Sharp, 1999; Švob Štrac et al., 2016), out of which 

5-HT2C and 5-HT1B probably play the most important roles in the regulation of metabolism and satiety 

(Pedigo et al., 1981; Pazos et al., 1984; Bello and Liang, 2011). The relevance of serotonin in the 

modulation of feeding behavior could be experimentally shown in the 1970s: its depletion leads to 

hyperphagia and obesity (Breisch et al., 1976; Saller and Stricker, 1976) whereas its central 

administration results in a reduced food intake (Pollock and Rowland, 1981), indicating an inverse 
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relationship of brain serotonin concentration and body weight (Lam et al., 2010). The recognition of 

this relation made the serotonergic system a target in anti-obesity pharmacotherapy, augmenting its 

synaptic concentration by either serotonin-releasing agents like fenfluramine or with combined 

monoamine reuptake inhibitors such as sibutramine (Hainer et al., 2006). Both agents were effective 

in lowering body weight, but suspended by the Federal Drug Administration due to adverse effects 

(Bello and Liang, 2011), leaving the highly selective 5-HT2C receptor agonist Lorcaserin as the only 

approved serotonin-modulating anti-obesity-medication in the market (Thomsen et al., 2008; Yeo, 

Giles S H and Heisler, 2012). Serotonin probably acts through the attenuation of the orexigenic agouti-

related peptide and the disinhibition of the proopiomelanocortin system (Heisler et al., 2002; Garfield 

and Heisler, 2009; Lam et al., 2010; Bello and Liang, 2011).  

Magnitude and duration of serotonergic signaling are mainly modulated by the presynaptic serotonin 

transporter, recycling 5-HT into the presynaptic neuron. Similar to NAT, SERT belongs to the SLC6 

superfamily (Murphy and Lesch, 2008; Benarroch, 2013). Notably, the use of SERT inhibitors in obesity, 

but also in mental health disorders such as major depression and obsessive compulsive disorder, was 

empirically established on the clinical observation of weight loss or clinical improvement in individuals 

treated with 5-HT(T) affecting  medication.  

 

2.6.3 5-HTT imaging 

Highly selective radiotracers suitable for SERT imaging were developed in the late 1990s and early 

2000s (Wilson et al., 2000), highlighting [11C]DASB (3-Amino-4-(2-dimethylaminomethyl-

phenylsulfanyl)-benzonitrile) as the most useful radiopharmaceutical for 5-HTT imaging (Wilson et al., 

2002).  5-HTT densities in the living human brain vary by region. In healthy individuals, the highest SERT 

availability is observed in the raphe nuclei, the hypothalamus, thalamus and amygdala, and the lowest 

concentrations in the prefrontal and cerebellar cortex, of which the latter serves as reference region 

in PET studies (Cortés et al., 1988; Ichise et al., 2003; Kish et al., 2005; Meyer, 2007). Molecular SERT 

imaging was performed in major depression, anxiety disorder, bipolar depression and obsessive 

compulsive disorder, elucidating the involvement of the transporter in the symptomatology of 

psychiatric illness, albeit results are eventually conflicting  (Meyer et al., 2004; Stengler-Wenzke et al., 

2004; Hesse et al., 2005; Matsumoto et al., 2010; Spies et al., 2015). In the field of obesity research 

and eating disorders, there was only one PET study on the role of SERT which showed an inverse 

relation between the BMI and 5-HTT availability, postulating a potential compensatory downregulation 

of SERT in order to compensate a per se diminished serotonergic signaling which may account for 

increased appetite in obesity (Erritzoe et al., 2010a). This interpretation, however, was driven by 

results derived from linear regression analysis of a cohort with widely varying body mass indices, with 
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only seven individuals actually having a BMI > 30kg/m2. There was no study comparing SERT availability 

in vivo between normal-weight individuals versus subjects with obesity. 

 

 
Figure 7. Regions of interest for the quantification of serotonin and noradrenaline transporter availability. Figure 

created by Dr. Julia Luthardt, Department of Nuclear Medicine, University of Leipzig, with friendly permission. 

 

2.7  Objectives and hypotheses 

(i) To measure HPA axis responsiveness in subjects with obesity and non-obesity controls, we 

conducted the combined dexamethasone suppression/CRH stimulation test. ACTH and cortisol curve 

indicators were derived. Copeptin serum concentrations were measured in the first sample of the test 

(as a single sample at 1500h, after dexamethasone ingestion and directly before CRH stimulation). 

Anthropometric data such as the waist-hip-ratio (WHR) were assessed. We expected a higher HPA axis 

responsiveness in subjects with obesity and, correspondingly, higher serum concentrations of the AVP-

surrogate copeptin. We assumed serum concentrations of copeptin to be associated with the ACTH 

and cortisol response of the dex/CRH test. We expected the WHR to be positively associated with stress 

axis responsiveness. 

(ii) To assess the relation of HPA- and neurohypophyseal axes activity to the central noradrenaline 

system, the dex/CRH test was conducted and brain PET by means of the NAT-selective radiotracer [11C] 

MRB applied. The approach was exploratory in nature. However, we expected relations to be primarily 

centered in the hypothalamus and the limbic system. We assumed these relations to regionally differ 

between the obesity group and non-obesity controls. 
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(iii) To elucidate central serotonin transporter availability in vivo, OB and NOC underwent brain PET 

with the SERT-selective radiopharmaceutical [11C]DASB. We expected SERT availability to be related to 

the BMI.  

 

2.8 Study design 

 

 

Figure 8. Study design.  65 individuals were enrolled, including 40 subjects with obesity (OB) compared 

to 25 non-obesity controls (NOC). All individuals underwent endocrine testing by means of the 

dex/CRH test and copeptin assessment, magnetic resonance imaging (MRI) and positron emission 

tomography (PET) with two different radiotracers (SERT PET: 30 OB vs. 15 NOC, NAT PET: 10 OB vs. 10 

NOC). Endocrine parameters of the dex/CRH test were correlated to NAT availability. A detailed 

description of the methods is included in the publications of the section III. RESULTS of this thesis. 
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III. RESULTS 
 

 

3. 1  Post-dexamethasone serum copeptin corresponds to HPA axis 

responsiveness in human obesity. 

 

Schinke C, Hesse S, Stoppe M, Meyer K, Schmidt E, Orthgiess J, Bechmann L, Bresch A, Rullmann M, 

Luthardt J, Sabri O, Blüher M, Kratzsch J, Then Bergh F. 

 

Psychoneuroendocrinology. 2017 Apr;78:39-47. Doi: 10.1016/j.psyneuen.2017. 
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Context: Increased  activities  of the  arginine-vasopressin  (AVP) system and  the  hypothalamic-pituitary-
adrenal (HPA)  axis  were  shown  to be  associated  with  human obesity, but  relationships  between  these
systems  in  obesity remain  unclear.
Objectives: To  assess  HPA  axis responsiveness  and  its  relation  to  serum  concentrations  of the  AVP-
surrogate  copeptin  in subjects with  obesity  (OB) in  comparison to  non-obesity controls  (NOC).
Methods:  In  a cross-sectional  monocentric  study,  thirty-nine  OB  (f/m  25/14; age  36.5  ± 10.0  years; body
mass  index,  BMI, 41.5  ± 4.7  kg/m2) were  compared  to twenty-two  NOC  (f/m  12/10;  age 35.3  ± 8.5  years;
BMI 23.1  ± 2.4  kg/m2),  matched for  age  and sex. All  individuals  underwent the  combined  dexametha-
sone/CRH  test.
Main outcome  measures:  Plasma  ACTH  and  cortisol  curve indicators derived  from  the  dex/CRH test  (post-
CRH  concentrations  30 min  after  100  �g CRH;  maximum  concentration,  MAX; area-under-the-curve,
AUC; ACTH/cortisol  ratios).  Copeptin  was assessed  in 1500 h samples of the  dex/CRH  test (after 1.5  mg of
oral dexamethasone,  prior to  CRH administration).
Results: Copeptin  serum  concentrations  were  higher  in OB  (median  [IQR]:  OB  4.62  [2.60–5.88]  vs. NOC
3.04 [2.52–4.29]  pmol/l,  P  =  0.04).  Correspondingly, OB  showed  higher post-CRH  cortisol concentrations
(OB:  51.5  [25.9–159.3] vs. NOC:  28.6  [20.0–41.6] nmol/l, P  =  0.01)  and a lower  post-CRH ACTH/cortisol
ratio (OB:  0.028  [0.016–0.053]  vs. NOC:  0.048  [0.034–0.070]  pmol/nmol,  P  <  0.01).  Serum  copeptin  was
significantly  associated  with  HPA  responsiveness  in OB  (post-CRH  ACTH:  R = 0.42,  P <  0.01),  driven by  OB
men  (post-CRH  ACTH: R  =  0.76, P  <  0.01, post-CRH cortisol:  R =  0.64,  P =  0.02).  All  associations  withstand

adjustments for  BMI  and  age.
Conclusions: The  association  between increased  copeptin  with ACTH and  cortisol release suggests a
potential mechanistic  interaction  of the  AVP  system with  HPA  activation  in human obesity.  The rela-
tion  of copeptin  and HPA  responsiveness  should  be  further  validated in situations  with  pronounced  HPA
activation,  such  as  depression  or  multiple sclerosis.
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1. Introduction

Stress is an adaptive mechanism countering threats to an

individual’s homeostasis. Its neuroendocrinological effectors are
crucial for maintaining equilibrium in  situations of  demand-
ing environmental changes (Sinha and Jastreboff, 2013). Finely
adjusted endocrine correlates of the stress response are medi-
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ted by the hypothalamic-pituitary-adrenal (HPA) axis. They are
ntertwined with the regulation of metabolism and affect intake,
istribution and expenditure of energy (Torres and Nowson, 2007).
epeated administration of stress leads to increased intake of
nergy-dense food (Rowland and Antelman, 1976) and obesity is
ore prevalent in  chronically stressed humans (Chandola et al.,

006). These fundamental observations form the foundation of the
ypothesis that obesity is, at least partly, a  stress-induced phe-
omenon.

In obesity research, HPA dysregulation is an established con-
ributor in the pathogenesis of the metabolic syndrome (Pasquali
t al., 2006; Incollingo et al., 2015). Clinical observations in
atients suffering from Cushing’s disease support the eminent role
f glucocorticoids (Anagnostis et al., 2009), and HPA dysregula-
ion constitutes a risk factor for both obesity and unfavorable

etabolic profiles (Incollingo et al., 2015). While hypothalamic
RH is the major regulator of HPA activity, the nonapeptide
rginine-vasopressin (AVP) is another hypothalamic stress hor-
one; it is  released by the neurohypophysis into the peripheral

irculation to mediate water conservation and vascular regula-
ion (Aguilera, 2011), and exerts effects on glucose homeostasis
nd fat metabolism (Saleem et al., 2009). In addition, vasopressin
nhances the CRH-mediated ACTH release from the anterior pitu-
tary to trigger the adrenal production of cortisol (Antoni, 1993;
ivukhina and Jirikowski, 2016). Large studies showed increased
ctivity of the AVP system to  precede the development of diabetes,
ypertension and obesity (Enhörning et al., 2010; Enhörning et al.,
011). These data led to the assumption that vasopressin-mediated
o-stimulation of the HPA axis may  be critically involved in  the
athophysiology of the metabolic syndrome (Saleem et al., 2009).
owever, data on this relationship are sparse, and the interaction of

erum AVP and HPA reactivity has not been investigated in human
besity.

To study HPA activity, we  conducted the
examethasone/corticotropin-releasing hormone (dex/CRH)
est (Heuser et al., 1994) in highly obese but otherwise healthy
ubjects. The dex/CRH test combines dexamethasone suppression
ith CRH stimulation and was originally applied to  distinguish
ushing’s syndrome from pseudo-Cushing’s states, with higher
iagnostic accuracy than the dexamethasone suppression test
lone (Yanovski et al., 1993). It has been extensively studied in
atients with psychiatric and stress related disorders (Heuser
t al., 1994), and its ACTH and cortisol response is presumably co-
ediated by AVP (Keck et al., 2002). We assumed higher dex/CRH

est responses in individuals with obesity compared to non-obesity
ontrols. At the same time, we measured copeptin, the c-terminal
ragment of the AVP precursor, expecting its concentrations to  be
ssociated with ACTH and cortisol release.

. Subjects and materials

.1. Study population

Thirty-nine individuals with obesity, who were otherwise
ealthy (OB; body mass index [BMI] 41.5 ±  4.7 [35.5–54.1] kg/m2;
ge 36.5 ±  10.0 years; f/m 25/14), and twenty-two age- and
ender-matched non-obesity (BMI <  30 kg/m2) controls (NOC; BMI
3.1 ± 2.4 [19.8–28.7] kg/m2; of whom 18/22 had normal weight
BMI < 25 kg/m2]  and 4/22 overweight [BMI 25–30 kg/m2]; age
5.3 ± 8.5 years; f/m 12/10) were analyzed. All subjects were
etabolically healthy and free from any neurological or psychiatric
iseases, centrally acting medications, illicit drugs or glucocorticoid
reatment. All subjects received a general physical examination
long with neurological status, and were seen by a  psychiatrist
onducting a  semi-structured interview. The degree of depres-
crinology 78 (2017) 39–47

sive symptoms was  measured using the Beck Depression Inventory
(BDI) (Hautzinger, 1991); subjects with a score higher than 22, with
symptoms or signs of clinically relevant depression were excluded.
Routine laboratory investigations and urine screening were per-
formed. For the day of neuroendocrine testing, subjects followed
their daily routine and presented in normal hydration status. Three
additional probands were originally included, but subsequently
excluded from the analysis: (i) one female NOC, due to  self-reported
shivering after dexamethasone ingestion and severe dyslipidemia,
suspected to be hereditary, (ii) one male NOC, due to severe psycho-
social stress on the day of the dex/CRH test and (iii) one female
OB, due to  suspected Cushing’s disease based on the test results.
The study was  conducted in accordance with the updated Decla-
ration of Helsinki II  and Guidelines for Good Clinical Practice and
approved by the local ethics committee. Written informed consent
was obtained from all individuals.

2.2. Procedures

All  participants underwent the combined dex/CRH test as
described previously (Then Bergh et al., 1999). In  brief, subjects
received 1.5 mg  dexamethasone orally at 2300 h the day before CRH
application. On  the test day, an intravenous catheter was  inserted
into the cubital vein at 1430 h and kept patent by isotonic saline
infusion at a  rate of 20 ml/h. The first blood sample was taken at
1500 h. At  1502 h, 100 �g of synthetic humanCRH (Ferring) were
applied as an i.v. bolus. Subsequent blood samples were taken at
1530 h, 1545 h, 1600 h and 1615 h.  They were stored at 4 degC, cen-
trifuged immediately after the test, serum and plasma, respectively,
were taken off  and samples were stored at −80 ◦C until assayed.
Copeptin was measured in  the 1500 h serum sample after dexam-
ethasone ingestion the night before, prior to  CRH administration.
Plasma osmolality and sodium concentrations were assessed. ACTH
concentrations were measured in EDTA plasma; cortisol, copeptin,
osmolality and sodium in  serum.

2.3. Assay methodology

Commercial chemiluminescence immunoassays were used to
determine hormone concentrations. Copeptin concentrations were
measured with Brahms CopeptinUs

®
, Thermo Scientific, Germany,

with a  lower detection limit of 0.9 pmol/l, an intra-assay coeffi-
cient of variation (CV) of <15% and an inter-assay CV of <17% in
the range of 3–4 pmol/l. ACTH concentrations were measured with
Liaison

®
ACTH, DiaSorin, Italy, and cortisol concentrations with

Cobas
®

, Roche Diagnostics, Germany, following the manufacturers’
instructions.

2.4. Statistical analysis

For  statistical analysis of the dex/CRH test, we compared ACTH
and cortisol “post-CRH” (30 min  after CRH application), maximum
concentration (MAX) and area under the time course curve above
zero according to the trapezoid rule (“ground” area-under-the-
curve; AUC). In addition, ACTH/cortisol ratios were computed for
each indicator.

Data analyses were performed using Microsoft Excel 2010 and
SPSS 23. Graphs were created using GraphPad Prism 5.  All  data are
given as median with interquartile range (IQR) or mean ± standard
deviation (SD). Since the dex/CRH curve parameters of ACTH, cor-
tisol and copeptin concentrations were not  normally distributed
(Shapiro-Wilk test P <  0.05) and skewed to the right in  both groups,

non-parametric inference tests were conducted (Mann-Whitney-
U test for intergroup differences). To reduce variance and to reach
normal distribution, ACTH and cortisol curve indicators were also
logarithmically transformed and analyzed using the t-test for group
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Table  1
Subject characteristics and dex/CRH test indicators.

Obesity group Non-obesity controls P-value

Number of subjects 39 22
Sex, male/female 14/25 10/12 .59c

Age (years) 36.5 ± 10.0 35.3 ± 8.5 .63a

BMI  (kg/m2) 41.5 ± 4.7 23.1 ± 2.4 <.0001a

Waist circumference (cm) 121.2 ± 13.1 84.9 ± 7.8 <.0001a

Waist/Hip ratio .92 ± 0.09 .88 ±  0.10 .11a

Smoking habits, #  with score 0/1/2/3 27/3/0/9 16/2/0/4 .90d

ACTH1500h [pmol/l] <0.84 (<0.84−0.93) <0.84 (<0.84−0.96) .90b

ACTHpost-CRH [pmol/l] 1.71 (1.33−2.51) 1.33 (1.08−1.92) .08b

ACTHMAX [pmol/l] 2.09 (1.55−3.35) 2.11 (1.58−3.21) .98b

ACTHAUC 6.70 (5.02−9.92) 6.54 (4.59−9.31) .65b

Log10ACTHpost-CRH .29 ± 0.28 .16 ±  0.19 .07a

Log10ACTHMAX .36 ± 0.25 .34 ±  0.21 .69a

Log10ACTHAUC .86 ± 0.22 .82 ±  0.19 .52a

Cortisol1500h [nmol/l] 19.8 (14.5–23.2) 16.0 (11.7–20.6) .13b

Cortisolpost-CRH [nmol/l] 51.5 (25.9−159.3) 28.6 (20.0−41.6) .01b

CortisolMAX [nmol/l] 75.5 (33.0−225.2) 59.2 (28.1–106.0) .27b

CortisolAUC 245.3 (108.1–684.3) 152.8 (85.4–271.0) .15b

Log10Cortisolpost-CRH 1.81 ± .48 1.49 ± .29 .002a

Log10CortisolMAX 1.90 ± 0.47 1.77 ± 0.31 .20a

Log10CortisolAUC 2.40 ± 0.46 2.22 ± 0.29 .06a

ACTH/Cortisolpost-CRH .028 (.016−.053) .048 (.034−.070) .009b

ACTH/CortisolMAX .025 (.014−0.049) .041 (.027−0.057) .07b

ACTH/CortisolAUC .025 (.015−0.054) .043 (.031−0.064) .06b

Osmolality [mosmol/kg] 294.0 (289.0−297.0) 292.5 (289.8–297.0) .74b

Sodium [mmol/l] 140.5 (138.4–142.4) 140.5 (138.9–141.5) .64b

Copeptin1500h[pmol/l] 4.62 (2.60−5.88) 3.04 (2.52−4.29) .04b

Data are given as median (interquartile range) or mean ± standard deviation BMI, body mass index; Smoking habits, 0. . .non-smoker, 1.  . .occasionally, 2. . .not  more than 3
cigarettes/d, 3. . .regular smoker. Dex, dexamethasone; CRH, corticotropin releasing hormone; ACTH, adrenocorticotropic hormone; MAX, maximum; AUC, area under the
curve.  Post-CRH concentrations for ACTH and cortisol were measured 30 min  after 100 �g hCRH. ACTH/cortisol ratios in pmol/nmol, AUC and log10 data in arbitrary units.
bold:  significant at P <  0.05.

a t-test.
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b Mann-Whitney-U test.
c Fisher’s exact test.
d Pearson’s Chi-Square test.

omparison. Associations between variables were analyzed by
pearman-rank correlation. Two-tailed significance was  applied.
esults were considered significant at P <  0.05 and for trend at
.05 ≤ P <  0.1.

. Results

.1. Study population characteristics

OB and NOC were well matched for age and sex (see Table 1 for
robandsı́ characteristics).

.2. Post-dexamethasone copeptin concentrations are higher in
ndividuals with obesity

Copeptin concentrations, measured at 1500 h after dexametha-
one administration but before CRH application, were significantly
igher in  OB subjects (see Table 1 and Fig. 2). Copeptin concentra-
ion was positively associated with the BMI  in the obesity group
Table 2).

.3. Subjects with obesity show mild HPA axis hyperactivity

OB individuals showed a  higher cortisol output in  the dex/CRH
est, reaching statistical significance in  the post-CRH sample (see
able 1 and Figs. 1 and 2). Post-CRH ACTH concentrations and

ogarithmically transformed cortisol AUC were also higher in OB,
eaching trend level (see Table 1). In OB, the ACTH response was
ndependently associated with the waist-hip ratio and with age
see Table 2). Within the NOC group (n =  22), there was  no statistical
difference between overweight (n  =  4) and normal weight (n =  18)
individuals.

3.4. ACTH/cortisol ratio is lower in obesity

ACTH/cortisol ratio of the post-CRH sample was significantly
lower in  OB and reached trend level for ACTH/cortisol AUC (Table 1,
Fig. 2). In OB, the ACTH/cortisol ratio was  negatively associated with
age, whereas in  NOC, a  positive relation was  found (Table 2).

3.5. Association between copeptin and HPA responsiveness

In the OB group, post-dexamethasone copeptin serum concen-
trations correlated significantly with indicators of  ACTH secretion,
namely post-CRH ACTH, ACTH AUC and ACTH maximum (see
Table 3 and Fig. 3). Since the correlation appeared to be  driven
by few subjects, we performed correlation analyses in subgroups
according to diagnostic group and gender. This revealed that the
relationship was  driven by OB men  (n  =  14), with highly signifi-
cant and substantial associations of circulating copeptin with all
ACTH and cortisol indicators (see Table 3,  Fig. 3). All  associations
remained significant after adjusting for BMI  and age. Although we
are aware that correlations including two  diagnostic groups may

be vulnerable to  false-positive results, we  still performed an addi-
tional exploratory overall correlation with all subjects (OB and NOC,
n =  61) and found the same associations between copeptin with
ACTH parameters as in the OB group.
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Table 2
Spearman-correlations of anthropometric data with neuroendocrine indicators.

Obesity group (n = 39) Non-obesity controls (n =  22)

Age BMI  Waist/Hip ratio Waist circumference Age  BMI  Waist/Hip ratio Waist circumference

ACTHpost-CRH .41 (.01) .09  (.60) .42 (.008) .34 (.03) −0.14 (.54) .14 (.52) −0.20 (.38) .01 (.98)
ACTHMAX .44 (.005) −0.03 (.86) .42 (.008) .23 (.15) −0.06  (.79) .059 (.79) −0.15 (.51) −0.07 (.77)
ACTHAUC .41 (.009) −0.04 (.84) .42 (.009) .24 (.14) −0.11 (.64) .086 (.70) −0.15 (.52) −0.01 (.98)
Cortisolpost-CRH .48 (.002) .08  (.64) .10 (.56) .21 (.20) −0.28 (.20) −0.21 (.36) −0.24 (.29) −0.16 (.48)
CortisolMAX .42 (.009) .01  (.96) .03 (.87) .07 (.68) −0.41 (.06) −0.13 (.58) −0.31 (.16) −0.13 (.56)
CortisolAUC .42 (.007) .01  (.93) .04 (.80) .09 (.58) −0.36 (.10) −0.17 (.44) −0.21 (.36) −0.11 (.64)
ACTH/Cortisolpost-CRH −0.40 (.01) −0.30 (.86) .10 (.55) −0.04 (.81) .16  (.48) .04 (.88) .14 (.55) .03 (.90)
ACTH/CortisolMAX −0.27 (.10) −0.30 (.85) .22 (.18) .08 (.63) .51 (.02) .26 (.25) .26 (.24) .15 (.52)
ACTH/CortisolAUC −0.32 (.05) −0.42 (.80) .16 (.34) .03 (.85) .44 (.04) .20 (.38) .09 (.70) .06 (.78)
Copeptinpost-dex .11 (.52) .40 (.01) .27 (.10) .51 (.001) .20 (.37) −0.16 (.47) .07 (.74) −0.05 (.84)

Spearman-rho and p-value in parantheses. Dex, dexamethasone; CRH, corticotropin-releasing hormone; ACTH, adrenocorticotropic hormone; BMI, body mass index; MAX,
maximum; AUC, area under the curve; post-CRH concentrations for ACTH and cortisol were measured 30 min  after 100  �g hCRH. ACTH and copeptin in pmol/l, cortisol in
nmol/l,  ACTH/cortisol ratios as pmol/nmol, BMI as kg/m2; waist circumference in cm; AUC in arbitrary units; bold:  significant at P <  0.05.

Time course of the HPA respon se in the obesity group and
non-obesity controls

Fig. 1. Time course of ACTH (A) and cortisol response (B) to the combined dex/CRH
test in subjects with obesity (N = 39; solid line, squares) and non-obesity controls
(N  = 22; dashed line, circles). After 1.5 mg dexamethasone, taken orally at 2300 h
the night before the test, a  bolus of 100 �g CRH was  applied i.v. at 1502 h.  Post-CRH
cortisol (30 min  after CRH stimulation, taken at 1530 h) was  significantly higher in
the  obesity group (marked with *,  p  =  0.01). Data are given as mean with standard
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Table 3
Spearman-correlations of copeptin with dex/CRH test indicators.

Obesity group (n =  39) Non-obesity controls (n  =  22)

ACTHpost-CRH .42 (.008) .05 (.84)
ACTHMAX .35 (.03) .25 (.27)
ACTHAUC .33 (.04) .17 (.45)
Cortisolpost-CRH .29 (.08) .42 (.05)
CortisolMAX .21 (.19) .28 (.21)
CortisolAUC .19 (.24) .33 (.13)

female (n = 25) male (n  = 14) female (n = 12) male (n  = 10)
ACTHpost-CRH .12 (.58) .76 (.002) .24 (.46) −0.01 (.99)
ACTHMAX .04  (.84) .67 (.009) .13 (.70) .36 (.31)
ACTHAUC −0.03 (.88) .71 (.004) .11 (.73) .20 (.58)
Cortisolpost-CRH .05  (.82) .64 (.02) .39 (.21) .48 (.16)
CortisolMAX .01  (.95) .59 (.03) .39 (.22) .49 (.15)
CortisolAUC −0.03 (.88) .60 (.02) .41 (.19) .46 (.19)

Spearman-rho and p-value in parentheses. Dex, dexamethasone; CRH,
corticotropin-releasing hormone; ACTH, adrenocorticotropic hormone; BMI,
body mass index; MAX, maximum; AUC, area under the curve; post-CRH concen-
trations for ACTH and cortisol were measured 30 min after 100 �g hCRH. ACTH and
rror. dex, dexamethasone; CRH, corticotropin-releasing hormone; ACTH, adreno-
orticotropic hormone.

. Discussion

.1. Pathophysiology of HPA axis activation in obesity

We  identified higher serum concentrations of the AVP-surrogate
opeptin to be associated with mild HPA hyperactivity in the
besity group, driven by  men  with obesity. The higher HPA respon-

iveness was shown by the significantly higher cortisol output after
RH stimulation, with the other indicators of cortisol release all
ointing in the same direction. ACTH concentrations differed for
rend in the post-CRH sample, whereas overall output was simi-
copeptin in pmol/l, cortisol in nmol/l, BMI  in kg/m2;  AUC  expressed as arbitrary
unit; bold:  significant at P <  0.05.

lar  in  both groups. Interestingly, the pituitary ACTH response was
associated with the waist-hip ratio, but not  with the BMI  itself.
The lower ACTH/cortisol ratio in subjects with obesity suggests an
increased sensitivity of the adrenal cortex to  ACTH. This relation
was negatively associated with the subjects’ age.

In accordance to earlier reports (Vicennati and Pasquali, 2000),
these results support the notion of an increased activity of  the
serum AVP system and HPA axis activation in obesity. To the best
of our knowledge, ours is the first study to show that circulat-
ing  copeptin is  associated with the ACTH and cortisol response in
human obesity, and that serum copeptin is  related to HPA respon-
siveness as measured by the dex/CRH test. These observations are
best explained by a  combination of hypothalamic-pituitary escape
of ACTH release, adrenal hypersensitivity to ACTH and an accel-
erated clearance of ACTH and cortisol. All three mechanisms are
supported by this study or previous work, as discussed below.

AVP is  a  nonapeptide produced by parvocellular and magnocel-
lular neurons of the paraventricular nucleus (PVN) and supraoptic
nucleus (SON) of the hypothalamus. Parvocellular AVP is  released
through the external zone of the median eminence into the pitu-
itary portal circulation, stimulating the HPA axis via ACTH release
(Dinan and Scott, 2005). AVP from the magnocellular division is
transported axonally, stored in the neurohypophysis and secreted

into the systemic circulation through fenestrated capillaries to
mediate water conservation and vascular regulation (Aguilera,
2011). Magnocellular AVP appears to co-mediate the interaction
between the hypothalamic-neuro-pituitary system and the HPA
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Serum copeptin and HPA responsi veness in the obesity group and 
non-obesity controls 

Fig. 2. Group comparison of dex/CRH test indicators and post-dexamethasone serum copeptin. Post-dex copeptin was measured in the sample taken at 1500 h, after ingestion
o -CRH 

P he ob
o one, A

a
p
o

f  1.5 mg  dexamethasone the night before (2300 h), but before CRH injection. Post
ost-CRH  cortisol and post-dexamethasone copeptin were significantly higher in t
besity  (E). CRH, corticotropin-releasing hormone; ACTH, adrenocorticotropic horm
xis (Sivukhina and Jirikowski, 2016)  since it reaches the pituitary
ortal blood system by en passant release through the internal zone
f the median eminence or via short portal vessels from the poste-
values were measured in the blood sample 30 min  after CRH stimulation (1530 h).
esity group (B, F). The ACTH/cortisol ratio was  significantly lower in subjects with

UC, area under the curve.
rior pituitary (Wotjak et al., 1996; Keck et al., 2002), potentiating
the CRH-induced ACTH secretion (Watabe et al., 1988). Copeptin
is released in a 1:1 ratio to  AVP from the same precursor reflect-
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Spearman  correlations  of  copeptin  and  HPA responsiveness 

Fig. 3. Spearman correlations of post-dexamethasone copeptin with dex/CRH test indicators. Subjects with obesity, but not non-obesity controls, showed significant positive
associations of copeptin with all ACTH indicators (illustrated for post-CRH ACTH, graph A). Associations were most pronounced in men  with obesity, with positive associations
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f  copeptin with all  ACTH and cortisol parameters, illustrated for post-CRH ACTH (C
-axes are log10-scaled. CRH, corticotropin-releasing hormone; ACTH, adrenocortic

ng recent AVP secretion while representing a  more stable analyte
Morgenthaler et al., 2006). Its  marked elevation in acute stress has
aised the suggestion to use copeptin concentrations as a prognos-
ic marker in patients with acute illness (Katan et al., 2008), e.g. the
cute coronary syndrome (Keller et al., 2010)  or ischemic stroke
Katan et al., 2009). By means of copeptin, our results indicate an
ncreased serum AVP tone in  subjects with obesity, corresponding
o  mild hypercortisolism, and support the prevailing concept that
VP co-stimulates HPA activity in human obesity (Saleem et al.,
009), along with being a major determinant of exaggerated ACTH
nd cortisol release in the dex/CRH test (Keck et al., 2002). This con-
ept stems from a  wealth of experimental data, showing e.g. that
ndogenous serum AVP stimulates the CRH-mediated ACTH release
Watabe et al., 1988), or escape from dexamethasone suppression
hen CRH and lysine-vasopressin are simultaneously administered

o healthy humans (Bardeleben et al., 1985). A similar situation
ppears to  apply in genetically anxious rats (Keck et al., 2002),
nd has been consistently reported in patients with major depres-
ion, who display exaggerated ACTH and cortisol secretion in the
ex/CRH test (Heuser et al., 1994) and increased spontaneous (van
onden et al., 1997)  or post-dexamethasone AVP concentrations
Watson et al., 2006). While a correlation between vasopressin and
ortisol was reported in  subgroups of depressed patients (de Winter
t al., 2003), there is  no data on the simultaneous evaluation of AVP

r its surrogate copeptin with the more sensitive dynamic dex/CRH
hallenge. Random copeptin concentrations were reported to be
ithin the reference range in one study in depressed subjects

Krogh et al., 2013). In addition to AVP costimulation, impaired
cortisol (D). Data are given with regression line and 95% confidence interval. X- and
ic hormone.

feedback control could be responsible for HPA axis dysregulation.
Reduced concentration, affinity or regulatory efficiency of gluco-
corticoid receptors result in hypo-sensitivity to circulating cortisol,
leading to inadequate adaptations to the current glucocorticoid
state (Holsboer, 2000).

It is noteworthy that the positive overall correlation between
copeptin and the HPA response was  essentially driven by  OB
men alone. Gender-specific differences were previously shown
for copeptin and HPA activity, suggesting the involvement of
sex hormones in  the regulation of both systems (Künzel et al.,
2003; Morgenthaler et al., 2006; Taskin et al., 2015; Rothermel
et al., 2016). In line with our results, a  recent study reported a
copeptin-cortisol relation in  healthy males (Spanakis et al., 2016),
whereas other studies showed associations for the overall group
(Lewandowski et al., 2016), only in women (Kacheva et. al., 2015) or
avoided potential gender-effects by including only men  (Demiralay
et al., 2016). It is  to be noted that the aforementioned studies
applied distinct methodological approaches using psychological or
pharmacological stressors and included different patient groups,
but not  specifically individuals with obesity.

The decreased ACTH/cortisol ratio in  the obesity group sug-
gests an adrenal contribution: presumably the result of  chronic
overstimulation, increased adrenal sensitivity to circulating ACTH
leads to a  higher relative cortisol secretion. This is  in  line with a

report of enlarged adrenal glands in subjects with abdominal obe-
sity and diabetes mellitus (Godoy-Matos et al., 2006). Interestingly,
we found the ACTH/cortisol ratio of obese subjects to be nega-
tively associated with age, suggesing that in obesity the adrenal
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ensitivity increases over time. This is in accordance with findings
n a longitudinal multiple sclerosis study, showing a  decrease of
CTH/cortisol ratios (Kümpfel et al., 2014). It  is  further notable that

n the obesity group the ACTH response was associated with the
aist hip ratio, but not  with the BMI  per se. This corroborates previ-

us studies which showed HPA disturbances to be linked to  visceral
at accumulation and unfavorable metabolic risk profiles rather
han to obesity itself (Porzezińska-Furtak et al., 2014; Incollingo
t al., 2015).

Mild hypercortisolism is detected with the highest diagnos-
ic accuracy by measuring ACTH and cortisol in  the early phase
fter CRH or CRH/AVP stimulation (Pasquali et al., 1999; Erickson
t al., 2007). Accordingly, the post-CRH sample showed signifi-
ant inter-group differences whereas the log-transformed AUC for
ortisol only reached trend level. A possible explanation for the
atter is that subjects with obesity clear cortisol from the circula-
ion faster than their non-obesity counterparts, as reported earlier
sing a  different paradigm (Pasquali et al., 2006). Altered activity
f 11beta-hydroxysteroid dehydrogenase, the enzyme that con-
erts cortisone into cortisol or  vice versa, has been discussed as a
ossible cause of decreased glucocorticoid feedback and the man-

festation of type2 diabetes (Cooper and Stewart, 2009); similarly,
nhanced glucocorticoid clearance could be mediated by higher
epatic 5alpha reductase activity (Tsilchorozidou et al., 2003), and
PA hyperactivity was even postulated an appropriate compen-

atory mechanism counteracting the increased cortisol clearance
Vicennati and Pasquali, 2000).

We assessed osmolalities and sodium concentrations to  exclude
ntergroup differences since copeptin correlates strongly with the
ndividual water balance (Balanescu et al., 2011). A possible limi-
ation is that we did not measure dexamethasone concentrations.
ufficient suppression by dexamethasone is  indicated since there
as no intergroup-difference of pre-CRH cortisol. Previous studies

howed a  dose-response effect of dexamethasone concentrations
n ACTH and cortisol suppression only at very low dosages, but
o difference between overweight and normal weight controls
fter the administration of 1 mg dexamethasone, which was con-
idered a  near-maximum dose (Pasquali et al., 2002). Accordingly,
o association of serum dexamethasone with the BMI was shown,

mplicating that its measurement does not improve the perfor-
ance of the dexamethasone suppression test at doses of 1 mg  or

igher (Asvold et al., 2012).

.2. Elevated copeptin − a reasonable surrogate for HPA
ysregulation?

HPA assessment using the dex/CRH test is a sensitive and
ell-validated tool (Heuser et al., 1994), but is  burdensome to

he proband and requires costly hormone measurement in  sev-
ral blood samples. Identifying a  more simply acquired surrogate
hich outlines patients at risk for diseases with HPA dysregu-

ation would facilitate neuroendocrine assessment, especially in
arger populations. Copeptin is stoichiometrically released from
he same precursor but more stable than AVP itself (Morgenthaler
t al., 2006). Subjects with obesity appeared to be a  suitable group
o assess the AVP-HPA interplay since exceeding glucocorticoids
ave long been hypothesized as a  mediator in the pathogenesis
f obesity (Pasquali et al., 2006)  and copeptin has been impli-
ated in the metabolic syndrome (Enhörning et al., 2013). A direct
ssociation of copeptin with HPA activity could recently be shown
n patients with multiple sclerosis (Baranowska-Bik et al., 2015)
nd in children with obesity (Rothermel et al., 2016). Our find-

ng of significant correlations of copeptin to ACTH curve indicators
upports this approach; further evaluation is  required, e.g. to
ssess the relative sensitivity and specificity of random and post-
examethasone measurement of copeptin. The latter may  in fact
crinology 78 (2017) 39–47 45

add discriminatory power, since it incorporates dynamic testing.
We  measured copeptin before CRH stimulation with the intention
to reflect a higher tone of serum AVP to be associated with HPA
reactivity and to explore copeptin as a potential surrogate simpli-
fying HPA assessment. However, the dynamic AVP-HPA interplay
after different types of stimulation should be further elucidated.
Whereas psychosocial stress (Urwyler et al., 2015; Spanakis et al.,
2016), stress by CCK-4 induced panic symptoms (Demiralay et al.,
2016), glucagon (Lewandowski et al., 2016) or hypoglycemic states
(Kacheva et. al., 2015)  induce copeptin and cortisol release, it would
be of interest how endocrine stimulation, e.g. by  CRH, affects serum
copeptin and how this interacts with the HPA axis in  healthy
controls compared to patients. Such validations should also be per-
formed in  people with psychiatric disorders (Heuser et al., 1994;
Schmider et al., 1995; Erhardt et al., 2006) or  multiple sclerosis
(Then Bergh et al., 1999), in whom HPA axis hyperactivity has
been reported. More frequent dexamethasone non-suppression in
depression (Heuser et al., 1994) and a  different HPA response pat-
tern in  obesity indicate a  distinct pathophysiology, and assessment
of copeptin may  contribute to  understanding the differences.

HPA dysregulation and copeptin are linked to  disadvantageous
metabolic changes (Anagnostis et al., 2009; Enhörning et al., 2011;
Ebert et al., 2016). HPA hyperactivity is pharmacologically modifi-
able (Then Bergh et al., 2001), including an attenuating effect of  a
central vasopressin receptor antagonist on HPA activity (Katz et al.,
2016). In patients with Cushing’s syndrome, eradication of severe
hypercortisolism leads to the reversal of their symptoms (Pasquali
et al., 2006). It is to question to what extent HPA downregulation,
e.g. by targeting the vasopressin system, favors weight loss in  com-
mon  obesity or in how far it has a  beneficial metabolic impact. If
this turned out to  be  true, individual stress axis assessment might
be a  promising investigative tool outlining patients who are at risk
of metabolic comorbidities but potentially susceptible for HPA nor-
malizing therapies.
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ABSTRACT
The central noradrenaline (NA) stress-response network co-mediates hypothalamic-pituitary-adrenal (HPA)
axis activation and arginine-vasopressin (AVP) release. Dysregulation of these systems contributes to
stress-related diseases such as human obesity, but their interrelation remains unclear. The study was
aimed to test for the first time in vivo whether central noradrenergic activity quantitatively indexed by the
availability of the presynaptic NA transporter (NAT) is associated with HPA axis responsiveness as meas-
ured with the combined dexamethasone suppression/corticotropin releasing hormone stimulation (dex/
CRH) test and copeptin as a surrogate marker of the serum AVP tone in highly obese, otherwise, healthy
individuals compared to age- and sex-matched non-obese, healthy controls. In order to assess central NAT
availability, positron emission tomography (PET) was applied using the NAT-selective radiotracer S,S-
[11C]O-methylreboxetine (MRB) and correlated with curve indicators derived from the dex/CRH test (max-
imum, MAX, and area under the curve, AUC, for cortisol and adrenocorticotropic hormone, ACTH) as well
as with copeptin. In non-obese controls, positive correlations were found between the NAT distribution
volume ratios (DVR) of the orbitofrontal cortex (OFC) and the amygdala with the HPA response (OFC:
ACTHMAX r¼ 0.87, p¼ .001; cortisolMAX r¼ 0.86, p¼ .002; amygdala: ACTHMAX r¼ 0.86, p¼ .002; cortisolMAX

r¼ 0.79, p¼ .006), while in obesity, the hypothalamic DVR correlated inversely with the HPA axis response
(cortisolMAX, r¼�0.66, p¼ .04) and with copeptin (r¼�0.71, p¼ .02). This association of central NAT avail-
ability with HPA axis responsiveness and copeptin suggests a mechanistic interaction between noradrener-
gic transmission with HPA axis activity and the serum AVP system that differs between non-obese
individuals with prefrontal-limbic involvement and obesity with a hypothalamic-centered relationship.
Whether the latter finding contributes to obesogenic behavior needs to be further explored.
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1. Introduction

Obesity has reached an epidemic scale; however, its neuro-
biological underpinnings are not entirely understood and
sustained treatment is limited or not available. One key
assumption includes stress to promote overeating and to
increase the vulnerability to obesity and diet-related meta-
bolic risks (Incollingo et al., 2015; Pasquali, Vicennati, Cacciari,
& Pagotto, 2006). Stressors activate forebrain, limbic, and
brainstem structures (Ulrich-Lai & Herman, 2009), of which
the latter directly extends noradrenergic projections to the
paraventricular (PVN) nuclei of the hypothalamus as integra-
tional homeostatic relay of the neuroendocrine stress
response systems (Plotsky, Cunningham, & Widmaier, 1989;

Radant et al., 1992). Noradrenergic neurotransmission exerts
control over the endocrine axes (Plotsky et al., 1989; Zhou,
2004) by integrating stress signals at the level of the brain-
stem cell bodies and noradrenaline (NA) release in the fore-
brain-limbic and hypothalamic areas (Myers, Scheimann,
Franco-Villanueva, & Herman, 2017). NA binding to hypothal-
amic NA receptors triggers corticotropin-releasing hormone
(CRH) secretion into the pituitary-portal circulation (Feldman
& Weidenfeld, 2004) and arginine-vasopressin (AVP) liberation
from the neurohypophysis into the peripheral circulation (Liu
et al., 1994; Radant et al., 1992; Simmler, Hysek, & Liechti,
2011; Spanakis, Wand, Ji, & Golden, 2016). While CRH induces
HPA activation, serum AVP mediates water conservation and
vascular regulation (Aguilera, 2011) with effects on glucose
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homeostasis and fat metabolism (Saleem et al., 2009).
Increased activity of the vasopressin system relates to HPA
activity (Rothermel et al., 2016; Schinke et al., 2017) and
seems causally linked with obesity (Enh€orning et al., 2011).
Thus, dysregulation of stress-activated neuromodulatory sys-
tems that involve (hypothalamic) NA signaling together with
hypothalamic-pituitary-adrenal (HPA) axis activity and AVP is
thought to be implicated in overeating and the pathophysi-
ology of obesity (Boundy & Cincotta, 2000; Incollingo et al.,
2015; Li et al., 2014; Pasquali et al., 2006; Plotsky et al., 1989).

The NA transporter (NAT) is a critical modulator of nora-
drenergic transmission since it limits NA concentrations in
the synaptic cleft by NA reuptake into the presynaptic neu-
ron (Mandela & Ordway, 2006; Torres, Gainetdinov, & Caron,
2003) to terminate its action. NAT alterations are implicated
in stress-related disorders (Li et al., 2014; Moriguchi et al.,
2017), while NATs represent a major pharmacological target
for the treatment of obesity as well (Astrup et al., 2008). The
pharmacological decrease of NAT availability by NA reuptake
inhibitors leads to higher concentrations of NA in the synap-
tic cleft, which in turn stimulates HPA activity (Schule, 2007)
and vasopressin release (Simmler et al., 2011). Therefore, it is
likely that NAT plays a pivotal role in the regulation of these
neuroendocrine systems. Understanding perturbations of this
interplay between central NA and the neuroendocrine stress
response system is particularly important, given that HPA
dysregulation and increased AVP tone are linked to obesity
and unfavorable physical health conditions (Enh€orning et al.,
2011; Incollingo et al., 2015).

In accordance with this, we recently showed that
increased HPA axis responsiveness is associated with
enhanced concentrations of the AVP-surrogate copeptin in
human obesity (Schinke et al., 2017). In another study, we
furthermore assessed brain NAT availability in both highly
obese, otherwise healthy individuals and non-obese, healthy
controls by using NAT-selective (S,S)-[11C]O-methylreboxetine
([11C]MRB) positron emission tomography (PET) (Hesse et al.,
2017). These data indicated a decrease in hypothalamic NAT
availability with an increase in body mass index (BMI), which
was previously shown to be related to emotional well-being
(Melasch et al., 2016).

To further investigate whether there is an association of
central NAT availability with HPA and AVP activity in human
obesity, we applied both PET imaging with [11C]MRB and the
combined dexamethasone/CRH (dex/CRH) test for HPA
responsiveness (Heuser, Yassouridis, & Holsboer, 1994;
Schinke et al., 2017; Then Bergh, Kumpfel, Trenkwalder,
Rupprecht, & Holsboer, 1999) in highly obese but otherwise
healthy individuals compared to non-obesity, healthy controls
which were carefully matched for age and sex. At the same
time, we measured copeptin, the c-terminal precursor frag-
ment of vasopressin, as a surrogate of the serum AVP tone
(Enh€orning et al., 2011). We hypothesized that NAT availabil-
ity in brain regions relevant for stress control, i.e. the pre-
frontal cortex (PFC), the amygdala, and the hypothalamus
(Arnsten, 2009), is related to HPA axis activity and copeptin
and that these relations regionally differ between individuals
with obesity compared to their non-obesity counterparts.

2. Material and methods

2.1. Participants and ethical approval

The study was conducted in accordance with the
International Council for Harmonisation of Technical
Requirements for Pharmaceuticals for Human Use Guideline
for Good Clinical Practice and the declaration of Helsinki and
approved by the local ethics committee (registration number
206-10-08032010) and the German Bundesamt f€ur
Strahlenschutz/Federal Office for Radiation Protection (Z5-
22461-2-2011-002). The study was registered at the European
clinical trial database EudraCT 2012-000568-32 and the
German Clinical Trials Register (DRKS). Written informed con-
sent was obtained from all participants.

Twenty individuals were prospectively included in the
study, which included ten obese, otherwise healthy individu-
als with a BMI >35 kg/m2 and aged over 18 years. The partici-
pants with obesity were recruited from the outpatient clinic
of the Integrated Research and Treatment Center
AdiposityDiseases (IFB) Leipzig, which is a dedicated univer-
sity clinic for obesity and associated disorders. Ten non-
obese, healthy individuals carefully matched for age and sex
and free of any medication or illicit drugs were recruited
using flyers and advertisements on the webpage of the IFB
(see Table 1 for subject characteristics). Exclusion criteria for
both cohorts were current psychiatric disease, i.e. psychosis,
depression, and anxiety disorders. To ensure the psychiatric
health, the Structured Clinical Interview for DSM-IV Axis I
Disorders (SCID-I) was performed by an experienced psych-
iatrist during the first visit. In addition, self-rating question-
naires were applied to screen for subthreshold depression
and anxiety (Beck Depression Inventory, BDI, German Version,
Hautzinger, 1991) and the Symptom Checklist-90-Revised ver-
sion (SCL-90-R, Derogatis, Lipman, & Covi, 1973). Binge-eating
disorder was excluded based on the use of the Eating Disorder
Examination (Hilbert & Tuschen-Caffier, 2006). Head trauma or
vascular encephalopathy, malignant hypertension, insulin-
dependent diabetes, or other general medical conditions that
may alter brain function, the use of anorectic medication or
other interventions for weight loss, centrally acting medication
or nutrition supplements over the last 8weeks, past or present
history of alcohol misuse and/or illicit drug abuse, pregnancy
and breastfeeding were also defined as exclusion criteria. The
intake of oral contraceptives was not defined as an exclusion
criterion and applied in only one female with obesity and
normal cortisol suppression after dexamethasone intake.
Compared to the group of highly obese participants, the BMI
of controls was significantly lower (Table 1).

All study participants underwent a general physical exam-
ination, including weight and length measurement for BMI
calculation. They also underwent magnetic resonance imag-
ing (MRI) (Magnetom Trio, 3 T, Siemens, Germany; T1-
weighted 3D magnetization prepared rapid gradient echo
(MP-RAGE); time of repetition 2300ms, time of echo 2.98ms,
176 slices, field of view (FoV) 256� 240mm, voxel size
1� 1� 1mm) for PET-MRI co-registration (Hesse et al., 2017)
and for exclusion of brain pathologies such as diffuse or con-
fluent white matter hyperintensities in T2-weighted images,
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tumors, or stroke. Dex/CRH test and [11C]MRB PET imaging
were performed within a median of 17.5 days.

2.2. Dex/CRH test

The dex/CRH test was performed according to the standard
protocols described previously (Heuser et al., 1994; Schinke
et al., 2017; Then Bergh et al., 1999). Briefly, all participants
received 1.5mg dexamethasone orally at 2300 h on the day
before CRH administration. Subjects were advised to come in
a relaxed state and to avoid psychological or physical stress
exceeding their daily routine and to have a light lunch before
the test. On the test day, an intravenous cannula was
inserted into the cubital vein at 1430 h and kept patent by
isotonic saline infusion at a rate of 20ml/h. The first blood
sample was taken at 1500 h. At 1502 h, an i.v. bolus of 100 mg
of synthetic human CRH (Ferring, Kiel, Germany) was applied.
Subsequent blood samples were taken at 1530 h, 1545 h,
1600 h, and 1615 h. The filled tubes were stored at 4 �C, cen-
trifuged immediately after the test, serum and plasma,
respectively, were taken off and samples were stored at
-80 �C until assayed. Copeptin was measured in the 1500 h
sample after dexamethasone ingestion the night before, prior
to CRH application. Sodium concentrations and plasma osmo-
lality were assessed. Copeptin, cortisol, osmolality, and
sodium concentrations were measured in serum; ACTH con-
centrations in EDTA plasma.

2.3. Assay methodology

Commercial chemiluminescence immunoassays were used to
determine ACTH (LiaisonVR ACTH, DiaSorin, Saluggia, Italy),
and cortisol (Cobas Cortisol IVR , Roche, Basel, Switzerland) con-
centrations. Respective intra- and inter-assay coefficients of
variation (CV) for ACTH were below 7.7% for a target value of
9.53 pmol/L and below 7.3% for a target value of 62.3 pmol/L.
Representative intra- and interassay CVs for cortisol were
below 3.2% for a target value of 86.2 nmol/L and below 2.0%
for a target value of 1120 nmol/L. The functional sensitivity of
20% CV was set to be 0.84 pmol/L for ACTH and 8.5 nmol/L

for cortisol, according to the manufacturer’s instruction.
Copeptin concentrations were measured with Brahms
CopeptinUsVR (ThermoScientific, Hennigsdorf, Germany) with a
lower detection limit of 0.9 pmol/l, an intra-assay coefficient of
variation (CV) of <15% and inter-assay CV <17% in the range
of 3–4pmol/l, according to the manufacturer’s instruction.

2.4. Radiotracer synthesis and PET imaging

[11C]MRB was synthesized with [11C]methyliodide ([11C]MeI) as
previously described (Hesse et al., 2017). Dynamic PET was
performed between 1000h and 1200h after intravenous bolus
injection (90 sec) of 359±11 MBq [11C]MRB (average injected
mass: 0.027±0.023lg/kg) using the ECAT EXACT HRþ scanner
in three-dimensional acquisition mode (Siemens, Erlangen,
Germany; intrinsic resolution at the center 4.3mm (full-width
at half maximum, FWHM), axial resolution: 5–6mm, field
of view: 15.5 cm). Emission scan duration was 120min acquir-
ing 26 frames (4� 0.25, 4� 1, 5� 2, 5� 5, 8� 10min).
Immediately before the application of the radiotracer, a
10-min-transmission scan (from three 68Ge/Ga sources) was
performed for attenuation correction and iterative data recon-
struction was applied (Hesse et al., 2017).

2.5. Imaging data processing

For PET data processing, individual MRI data sets of the sub-
jects were spatially reoriented onto a standard brain dataset
similar to the Talairach space using the image processing
software PMOD version 3.3 (PMOD Technologies, Zurich,
Switzerland). Hereafter, volumes of interest (VOIs) were
manually drawn atlas-based on consecutive transversal slices
of the reoriented individual MRI data sets by the consensus
of two experienced readers. The VOI set included the NAT-
rich thalamus, the hypothalamus, and the LC, but also
regions of moderate-to-low NAT density of the prefrontal-lim-
bic brain, which are the orbitofrontal cortex (OFC), the insula,
the hippocampus, and the amygdala. PET data were cor-
rected for head motion artifacts with the help of SPM2 soft-
ware (Statistical Parametric Mapping; Wellcome Trust Centre

Table 1. Subject characteristics and dex/CRH test indicators.

Non-obesity controls Obesity group p-Value

Number of subjects 10 10
Sex, male/female 6/4 6/4 1.0b
Age (years) 33.3 ± 10.0 34.4 ± 9.0 0.80a
Body mass index (kg/m2) 23.9 ± 2.5 (21.7 - 28.7) 42.4 ± 3.7 (35.7 - 47.8) <0.0001a
Waist circumference (cm) 89.3 ± 6.3 128.9 ± 13.4 <0.0001a
Waist/Hip ratio 0.91 ± 0.1 0.96 ± 0.09 0.27a
Ethnicity Caucasian
ACTHMAX 2.69 (1.89–4.30) 1.86 (1.34–6.28) 0.47c
ACTHAUC 7.85 (5.44–14.05) 6.26 (4.32–18.82) 0.76c
CortisolMAX 77.8 (36.6–193.4) 123.2 (29.0–284.7) 0.71c
CortisolAUC 226.1 (85.4–552.2) 378.2 (97.8–918.5) 0.55c
ACTH/CortisolMAX 0.037 (0.023–0.051) 0.022 (0.017–0.046) 0.17c
ACTH/CortisolAUC 0.035 (0.027–0.055) 0.023 (0.016–0.044) 0.13c
Copeptinpost-dex 3.10 (2.01–4.15) 4.32 (2.10–6.54) 0.41c
Osmolality (mosmol/kg) 293.9 ± 4.6 290.8 ± 6.6 0.33a
Sodium (mmol/l) 140.8 ± 2.6 139.5 ± 3.1 0.60a
at-test;
bPearson’s Chi-Square test;
cMann–Whitney U-test. Data are given as mean ± standard deviation (range) or median (interquar-
tile range). BMI: body mass index. Bold: significant at p< .05.
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for Neuroimaging, London, UK) and co-registered to the indi-
vidual MRI including VOIs (Figure 1). Corresponding tissue
time activity curves (TACs) were obtained from the dynamic
PET data via PMOD and kinetic modeling of these regional
brain TACs was performed using the multilinear reference tis-
sue models MRTM2 (2 parameters) with the occipital cortex
as a reference region for the calculation of the DVR (Hesse
et al., 2017).

2.6. Statistical analysis

PASW/SPSS 25 was used for statistical analysis. Graphs were
created with GraphPad Prism 5 (La Jolla, USA). All data are
given as median with interquartile range or mean± standard
deviation (SD). After excluding asymmetries of corresponding
brain regions, DVR was averaged side-by-side to reduce the
number of variables and multiple comparisons. For statistical
analysis of the dex/CRH test results, “post-CRH” concentra-
tions for ACTH and cortisol (30min after CRH application),
maximum concentration (MAX) and area under the time
course curve above zero according to the trapezoid rule
(“ground” area-under-the-curve; AUC) were calculated from
the plasma hormone concentrations measured at the five
time points mentioned above and shown in Figure 2. In add-
ition, ACTH/cortisol ratios were computed for each indicator.
The Shapiro–Wilk test was performed to test if data were nor-
mally distributed and yielded p< .05 for all neuroendocrine
data. Hence, relationships between DVR and dex/CRH test
parameters, i.e. ACTH and cortisol MAX and AUC, respectively,
were analyzed using Spearman-rank correlation for categor-
ical data. To correct the putative DVR-copeptin correlation for
sodium and osmolality, copeptin data were logarithmically
transformed so they reached normal distribution
(Shapiro–Wilk test: p¼ .5). Then, partial correlation was

applied, correcting for sodium and osmolality as covariates.
Two-tailed significance was applied. The Mann–Whitney U-
test (not-normally distributed data) or unpaired t-test (data
with normal distribution) was conducted for group compari-
son. Results were considered significant at p< .05.

3. Results

3.1. Group statistics

Individuals with obesity and non-obese participants did not
differ in demographical variables (with the exception of BMI
and waist circumference), see Table 1.

3.2. Individuals with obesity exhibit a tendency to
higher HPA responsiveness and copeptin concentrations

Figure 2 shows the time course of ACTH and cortisol
response to the combined dex/CRH. On a group level, the
obesity group tended to show higher cortisol secretion and
post-dexamethasone copeptin concentrations, and lower
ACTH/cortisol ratios, albeit not reaching statistical significance
(Table 1).

3.3. Correlative analyses revealed associations between
NAT DVR of selected brain areas with the stress
response, which are different between obese and non-
obese individuals

In non-obesity controls, NAT DVRs of the OFC and the amyg-
dala, but not in the hypothalamus or the midbrain, showed
significant positive correlations with neuroendocrine stress
test indicators (Table 2; Figure 3). This includes both the
ACTH and the cortisol response (MAX, AUC). No association
between NAT and copeptin was found in non-obese controls.

Figure 1. Regions-of-interest for the quantification of noradrenaline transporter availability. The outlined regions-of-interest are exemplarily shown on an individual
MR (top row). The same regions are depicted with arrows on an averaged parametric PET (NAT DVR) image (bottom row).
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In the obesity group, there was no association between pre-
frontal and limbic NAT, respectively. Instead, hypothalamic
NAT correlated negatively with cortisol and copeptin (Table
2, Figure 4). A moderate negative association between NAT
and copeptin was also found for the hippocampus. No other
significant correlations were detected. The associations
between hypothalamic NAT and copeptin remained signifi-
cant after correcting for sodium concentrations and osmolal-
ity (r¼�0.79, p¼ .02).

4. Discussion

The current study demonstrates for the first time in vivo a
putative association between regional noradrenergic activity
as measured by means of NAT-selective [11C]MRB PET with
neuroendocrine stress response indicators. These data add
value to our previous findings of an increased HPA axis
responsiveness in highly obese individuals, which was related
to higher concentrations of the AVP-surrogate copeptin in
human obesity (Schinke et al., 2017). These first data on an in
vivo association between NAT availability with HPA axis
parameters and the AVP system indicate that in non-obese
controls, noradrenergic activity in the prefrontal-limbic brain
(that is, in the OFC and the amygdala) is positively related to
stress responsivity while in obese individuals, we observed
that noradrenergic activity of the hypothalamus is negatively
associated with HPA axis responsiveness and copeptin.

This observed pattern of a distinct neuroendocrine stress
adaptation suggests a switch from forebrain (prefrontal) and
limbic NAT-HPA associations towards a bottom-up regulation
primarily involving the hypothalamic neural-NA system
together with HPA and neuro-hypophyseal axes regulation
(Bains, Wamsteeker Cusulin, & Inoue, 2015; Arnsten, 2009).

4.1. Potential role of hypothalamic NA(T) in the
regulation of the activity of the HPA axis and the
vasopressin system

Hence, the present work supports both a physiological and
pathophysiological role of the noradrenergic system in the
regulation of the HPA axis and the vasopressin system in
obesity and potentially in other stress-related diseases. Given
that the activation of the neuroendocrine stress systems
involves overlapping circuits of the limbic forebrain, the
brainstem, and the hypothalamus (Ulrich-Lai & Herman,
2009), the positive association between prefrontal-limbic NAT
availability with the HPA axis response in non-obese, healthy
individuals is in line with a top-down control of HPA axis
activity mediated by the forebrain and limbic system. The
prefrontal brain is extensively connected with subcortical
structures inhibiting HPA axis responses by limiting gluco-
corticoid secretion (Aihara et al., 2007; Arnsten, 2009; Ulrich-
Lai & Herman, 2009) while the amygdala presumably

(A) (B)

Figure 2. HPA responsiveness in the course of time. Obesity group vs. non-obesity controls. Time course of ACTH (A) and cortisol response (B) to the combined
dex/CRH test in subjects with obesity (N¼ 10; solid line, squares) and non-obesity controls (N¼ 10; dashed line, circles). After 1.5mg dexamethasone, taken orally
at 2300 h, the night before the test, a bolus of 100 ug CRH was applied i.v. at 1502 h. Data are given as mean with standard error. Dex: dexamethasone; CRH: cor-
ticotropin-releasing hormone; ACTH: adrenocorticotropic hormone.

Table 2. Spearman correlation of dex/CRH test indicators and noradrenaline transporter availability.

Obesity group Non-obesity controls

ACTHMAX ACTHAUC CortisolMAX CortisolAUC Copeptin ACTHMAX ACTHAUC CortisolMAX CortisolAUC Copeptin

OFC 0.21 (0.56) 0.21 (0.56) 0.05 (0.88) 0.05 (0.88) �0.35 (0.33) 0.87 (0.001) 0.86 (0.002) 0.86 (0.002) 0.84 (0.002) �0.24 (0.51)
Insula �0.22 (0.53) �0.22 (0.53) �0.21 (0.56) �0.21 (0.56) �0.44 (0.21) 0.32 (0.37) 0.18 (0.63) 0.38 (0.28) 0.24 (0.51) �0.21 (0.56)
Hippocampus �0.30 (0.40) �0.30 (0.40) �0.44 (0.20) �0.44 (0.20) �0.65 (0.04) 0.16 (0.65) 0.14 (0.70) 0.12 (0.75) 0.10 (0.78) 0.30 (0.41)
Amygdala �0.01 (0.99) �0.01 (0.99) �0.07 (0.85) �0.07 (0.85) �0.05 (0.89) 0.86 (0.002) 0.88 (0.001) 0.79 (0.006) 0.75 (0.013) 0.08 (0.83)
Thalamus �0.50 (0.14) �0.50 (0.14) �0.15 (0.68) �0.15 (0.68) �0.35 (0.33) 0.13 (0.73) 0.03 (0.93) �0.01 (0.99) 0.10 (0.78) �0.27 (0.45)
Hypothalamus �0.50 (0.14) �0.50 (0.14) �0.66 (0.04) �0.66 (0.04) �0.71 (0.02) 0.14 (0.70) �0.02 (0.96) 0.09 (0.80) �0.01 (0.99) 0.04 (0.91)
Locus coeruleus 0.16 (0.65) 0.16 (0.65) �0.19 (0.60) �0.19 (0.60) 0.24 (0.51) 0.31 (0.38) 0.15 (0.68) 0.30 (0.40) 0.24 (0.51) �0.10 (0.78)

Spearman-rho coefficients and significance values (p). MAX: maximum; AUC: area under the curve; ACTH: adrenocorticotropic hormone; OFC: orbito-frontal cor-
tex. ACTH in pmol/l, cortisol in nmol/l, AUC expressed as arbitrary unit. Noradrenaline transporter availability was indexed by distribution volume ratios.
Bold: significant at p< .05.
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mediates HPA axis responsiveness via intervening hypothal-
amus-projecting neurons (Ulrich-Lai & Herman, 2009).

The hypothalamus is a central homeostatic control region
for both the regulation of weight and the neuroendocrine
axes (Farr, Li, & Mantzoros, 2016; Radant et al., 1992) that has
dense noradrenergic innervation. As shown by preclinical
experiments, hypothalamic noradrenergic activity is closely
related to energy expenditure, feeding behavior, and the
pathogenesis of obesity (Boundy & Cincotta, 2000; Nelson,
Gehlert, & Gehlert, 2006; Paeger et al., 2017; Robertson et al.,
2010). These hypothalamic centers stimulate ACTH release to
trigger the adrenal production of cortisol (Aguilera, 2011).

Furthermore, hypothalamic neurons contain AVP, which is
transported axonally into the posterior pituitary and released
into the systemic circulation in response to stress (Aguilera,
2011; Katan et al., 2009), but also stimulates HPA axis activity
(Keck et al., 2002; Sivukhina & Jirikowski, 2016). Alterations of
these endocrine stress systems have been frequently associ-
ated with obesity and health impairment (Enh€orning et al.,
2011; Incollingo et al., 2015; Pasquali et al., 2006). However,
there is still an inconsistency in the literature on the relation
of cortisol to metabolic parameters (Abraham, Rubino, Sinaii,
Ramsey, & Nieman, 2013). This is partly based on the variety
of methodological approaches and the high inter-individual

Figure 3. Non-obesity controls. NAT DVR in relation to HPA axis responsiveness and serum copeptin. Noradrenaline transporter distribution volume ratios and neu-
roendocrine parameters in non-obesity controls. Spearman-rho and p-value given for significant correlations. Data are presented in ranks with regression line and
95% confidence interval. MAX: maximum; ACTH: adrenocorticotropic hormone. Significant positive correlations were found between noradrenaline transporter (NAT)
distribution volume ratios (DVR) of the orbitofrontal cortex (OFC) and the amygdala with ACTH and cortisol maxima (D, E, G, H). No correlation of copeptin with
NAT DVR was found (C, F, I).
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variability of cortisol secretion (Incollingo et al., 2015).
Further, peripheral determinants of cortisol concentration
such as the activity of the 11-beta-hydroxysteroid dehydro-
genases 1 and 2, enzymes converting active cortisol into
inactive cortisone and vice versa, contribute to the complex
regulation of circulating cortisol concentrations (Bailey, 2017;
Cooper & Stewart, 2009). While basal hypercortisolism is not
supported by the majority of the literature (Abraham et al.,
2013; Bailey, 2017; Incollingo et al., 2015), it seems that
rather alterations of HPA reactivity in response to different
kinds of stressors are associated especially to abdominal
obesity (Bjorntorp & Rosmond, 2000; Incollingo et al., 2015;
Schinke et al., 2017; van der Valk, Savas, & van
Rossum, 2018).

4.2. Relation of NAT to noradrenergic function and an
approach to explain the inverse relation to the HPA axis
and copeptin

Considering the positive relation between NAT availability
and HPA axis responsiveness in non-obese controls in con-
trast to absent or, respectively, negative relations in obese
individuals, the following assumptions can be made: (1)
Normally, NAT density depends on synaptic NA concentration
in a homeostatic attempt to normalize noradrenergic trans-
mission (Lee, Javitch, & Snyder, 1983), indicating that a
higher NAT density is associated with higher synaptic NA
concentrations and therefore with a higher HPA response, as
reflected by the close association between prefrontal and

Figure 4. Obesity group. NAT DVR in relation to HPA responsiveness and serum copeptin. Noradrenaline transporter distribution volume ratios and neuroendocrine
parameters in the obesity group. Spearman-rho and p-value given for significant correlations. Data are presented as ranks with regression line and 95% confidence
interval. MAX: maximum; ACTH: adrenocorticotropic hormone. Significant negative correlations were found between noradrenaline transporter (NAT) distribution
volume rations (DVR) of the hypothalamus with cortisol maximum (B) and copeptin, measured after dexamethasone ingestion, prior to CRH administration (C). No
correlations between the neuroendocrine parameters with NAT DVR of the orbitofrontal cortex (OFC) or amygdala DVR were found (D–I).
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limbic NAT availability with HPA axis responsiveness observed
in healthy, non-obesity controls. (2) The absence of a signifi-
cant association between prefrontal-limbic NAT availability
and HPA axis activity in individuals with obesity hint towards
a loss (or gradual reduction) of the prefrontal top-down con-
trol to a distress-induced regulation mediated by the subcor-
tical noradrenergic system. In keeping with this hypothesis,
one may speculate that lowered NAT in obesity is accompa-
nied by higher intra- or extra-synaptic NA concentrations as
an indicator of a higher noradrenergic tone that increases
HPA axis activity and changes AVP tone (as indexed by
copeptin). This is in accordance with pharmacological studies
showing that NAT inhibition by reboxetine leads to higher
ACTH and cortisol responses in the dex/CRH test (Schule
et al., 2006), or to higher copeptin serum concentrations after
the consumption of amphetamines (Simmler et al., 2011). It
has to be noted that only the short-term application of NAT
inhibitors produce enhanced HPA activity, whereas long-term
administration leads to a gradual normalization of HPA acti-
vation by the restoration of feedback control, partly explain-
ing the effectiveness of NAT inhibitors in the treatment of
stress-related disorders (Schule, 2007).

4.3. Limitation

This is an observational trial. From the pilot character of the
study, we cannot conclude whether the individual stress
response helps to predict phenotype; this has to be eluci-
dated in larger, longitudinal samples that reduce the rela-
tively high variance in HPA axis activity, which was driven by
a few subjects with pronounced stress reactivity. Another
limitation, which was yet beyond the score of this research
project, is that the number of study participants appeared
inappropriate to differentiate effects of age and sex on the
outcome measures of the stress test results or NAT DVR
(Bangasser et al., 2013; K€unzel et al., 2003; Rothermel
et al., 2016).

The time interval between PET scan and the dex/CRH test
was within a median of 17.5 days. A possible limitation, how-
ever, is that two participants out of the non-obesity controls
underwent NAT PET and neuroendocrine testing within
>2months due to logistic difficulties, maybe partly explain-
ing the high variance. Moreover, a challenging aspect of any
PET study on central NAT availability is that NAT levels are
low and changes in modulatory systems to which the nora-
drenergic fibers belong are rather low and difficult to balance
for accuracy and noise. Hence, the interpretability of data, in
particular, of areas with low NAT expression, which includes
the prefrontal cortex, is limited and the results need replica-
tion in studies with large sample sizes.

5. Conclusion

Stress has long been associated with obesity (Spencer &
Tilbrook, 2011; van der Valk et al., 2018). Previous literature
suggested individual alterations of the HPA and AVP stress
response to predispose to an obesogenic phenotype or
behavior in some individuals (Enh€orning et al., 2011; Epel,

Lapidus, McEwen, & Brownell, 2001; Rosmond & Bjorntorp,
2000; Schinke et al., 2017). Our work aimed to add new
insights into how the HPA and AVP axes are related to the
NA neurotransmitter system in the living human brain in
obesity and potentially in other stress-associated diseases.
Altogether, this study combined for the first time in vivo PET
measures of brain noradrenergic transmission with an assess-
ment of HPA axis activity and the AVP system. The findings
suggest a distinct NA modulated stress response in human
obesity, which is centered in the hypothalamus and which is
different from NA-mediated stress adaptation in healthy, non-
obese individuals. If this points to a noradrenergic dysregula-
tion or an alteration of homeostatic control together with
changes in eating behavior that lead to obesity remains to
be elucidated in a larger population or in diseases with pro-
nounced stress axis dysregulation. If confirmed, the findings
of our study may support pharmacological or behavioral
treatment strategies to normalize NA transmission in individ-
uals susceptible to compensate with overeating.
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Abstract
Purpose The role of the central serotonin (5-hydroxytryp-
tamine, 5-HT) system in feeding has been extensively
studied in animals with the 5-HT family of transporters
(5-HTT) being identified as key molecules in the regula-
tion of satiety and body weight. Aberrant 5-HT transmis-
sion has been implicated in the pathogenesis of human
obesity by in vivo positron emission tomography (PET)
and single-photon emission computed tomography
(SPECT) imaging techniques. However, results obtained
thus far from studies of central 5-HTT availability have
been inconsistent, which is thought to be brought about
mainly by the low number of individuals with a high body
mass index (BMI) previously used. The aim of this study
was therefore to assess 5-HTT availability in the brains of
highly obese otherwise healthy individuals compared with
non-obese healthy controls.

Methods We performed PET using the 5-HTTselective radio-
tracer [11C] DASB on 30 highly obese (BMI range between 35
and 55 kg/m2) and 15 age- and sex-matched non-obese vol-
unteers (BMI range between 19 and 27 kg/m2) in a cross-
sectional study design. The 5-HTT binding potential (BPND)
was used as the outcome parameter.
Results On a group level, there was no significant difference
in 5-HTT BPND in various cortical and subcortical regions in
individuals with the highest BMI compared with non-obese
controls, while statistical models showed minor effects of age,
sex, and the degree of depression on 5-HTT BPND.
Conclusion The overall finding of a lack of significantly
altered 5-HTT availability together with its high variance
in obese individuals justifies the investigation of individual
behavioral responses to external and internal cues which
may further define distinct phenotypes and subgroups in
human obesity.
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Introduction

Obesity rates are currently at pandemic levels and if not
curbed, the disease is on course to becoming the major pre-
ventable public health threat of the 21st century. A better un-
derstanding of the causative biological factors of obesity un-
doubtedly would aid both to prevent the development and the
perpetuation of the disease and to identify potential treatment
targets.

Studies in rodents have for decades implicated the central
monoamine system in the regulation of energy homeostasis
[1]. Only relatively recently this system has been suggested to
play a role in the pathogenesis of human obesity. Focus has
predominantly been placed so far on brain dopamine signaling
and much less is known about the function of serotonin (5-
HT) in the development of overweight and obese phenotypes.
Central serotonergic mechanisms are prime candidates since
there are numerous drugs that target 5-HT transmission, in
particular 5-HT transporter (5-HTT) inhibitors such as
sibutramine and fenfluramine, with proven clinical efficacy
[2]. This includes the novel US Food and Drug
Administration (FDA)-approved appetite-suppressing drug
lorcaserin which is a 5-HT2c receptor agonist [3].

The use of mouse and rat strains that are resistant or prone
to diet-induced obesity when placed on a high fat diet has
provided insight into the role of central 5-HT transmission in
body weight regulation. Diet-induced obese mice have higher
levels of 5-HTTs in the nucleus accumbens, a brain region
involved in the motivational aspects of feeding, compared to
diet resistant mice [4]. Additionally, diet-induced obese rats
have higher levels of 5-HT2A and 5-HT4 receptors [5], which
is in general agreement with in vivo human PETstudies [6–8].

To date, there have been several in vivo human PET
studies using the highly selective 5-HT radioligand [11C]
DASB examining the association between brain 5-HTT
levels with obesity; however, findings so far have been
inconsistent. Our preliminary data hinted at a positive
correlation between BMI (range between 18 and 32 kg/
m2) and 5-HTT availability in the insula, the ventral stri-
atum, and the hypothalamus [9]. A subsequent PET study
showed a negative correlation between subcortical (cau-
date-putamen-thalamus) [11C] DASB binding potential
with BMI. These results were likely skewed by the low
number of participants with higher BMI (>30 kg/m2)
used. Thus, correlation curves may have been driven by
outliers in the upper range. Recently it was shown that
there is no difference in subcortical 5-HTT availability
in obese patients before and after gastric bypass surgery

or compared to lean controls, although no detailed corre-
lation analysis was performed [10].

Tomore comprehensively assess central 5-HTTavailability
in human obesity, we aimed to investigate highly obese
(BMI>35 kg/m2), otherwise healthy, non-depressed individ-
uals compared with non-obese (BMI <30 kg/m2), healthy con-
trols in various cortical, subcortical, and limbic regions using
PET and [11C] DASB. Based on rodent andour own prelimi-
nary data, we hypothesized that higher BMI is associated
with higher 5-HTT availability in brain areas involved in
feeding.

Material and methods

Subjects

Thirty obese individuals with a BMI>35 kg/m2 and aged over
18 years were included. After obtaining informed consent,
screening for inclusion/exclusion criteria, a general physical
examination (including weight and height measures for BMI
calculation) and magnetic resonance (MR) imaging, eligible
study participants underwent PETwith [11C] DASB as well as
a comprehensive psychiatric and neuropsychological assess-
ment. This included validated German language versions of
the Beck depression inventory (BDI) [11]. Exclusion criteria
were current or past neurological or psychiatric illness, i.e.,
depression (as assessed by a psychiatrist at the first visit), head
trauma or vascular encephalopathy, resistant hypertension,
insulin-dependent diabetes, or other medical conditions that
may alter brain function, the use of anorectic medication or
other interventions for weight loss, centrally acting medica-
tion, over-the-counter-medication or nutrition supplements
over the last 8 weeks, past or present history of alcohol misuse
and/or illicit drug abuse, pregnancy, and breast-feeding.
Fifteen non-obese subjects, carefully matched for age and
sex and free of any medication or illicit drugs, participated
as controls. The study participants were Caucasians; none of
the subjects fulfilled the criteria for binge-eating disorder nor
were there participants with reported glucose intolerance. The
amount of alcohol and/or nicotine consumption was recorded
for both cohorts. One normal-weight control was excluded
due to insufficient PET data statistics (less counts).
Additionally, we investigated a length polymorphism of the
5-HTT coding gene (5-HTTLPR) as the potential influencing
factor on in vivo 5-HTT PET signal [12].

Magnetic resonance (MR) imaging

Structural MR images were acquired using a 3T Siemens
scanner and a T1-weighted 3D magnetization prepared rapid
gradient echo (MP-RAGE) sequence (repetition time 2,
300 ms, echo time 2.98 ms, 176 slices, field of view (FOV)
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256×240 mm, voxel size 1×1×1 mm) for PET-MRI co-
registration and (with other sequences based on the
Alzheimer’sDiseaseNeuroimaging Initiative protocol) for exclu-
sion of brain pathologies such as diffuse or confluent white
matter hyperintensities in T2-weighted images, tumors, and
stroke but not malformation without functional impairment.

Positron emission tomography (PET) imaging

[11C]DASB was synthesized according to a previous publica-
tion [13]. Dynamic PETwas performed for 90 min after intra-
venous bolus injection (90 s) of (mean±SD) 484±10 MBq
[11C]DASB using the ECAT EXACT HR+ scanner
(Siemens, Erlangen, Germany; intrinsic resolution at the cen-
tre: 4.3 mm, axial resolution: 5–6 mm FOV 5.5 cm, 3–4 mm
full width at half maximum) in three-dimensional (3D) acqui-
sition mode. Emission scan acquired 23 frames (4×0.25, 4×1,
5×2, 5×and 5, 5×10 min). We used a 10-min transmission
scan (from 3 68Ge sources), which was performed prior to the
emission scan, for attenuation correction and iterative recon-
struction (ten iterations, 16 subsets) in transverse image series
(63 slices, 128×128 matrix, voxel size 2.6×2.6×2.4 mm3)
with a Hann filter (cutoff 4.9 mm) for image reconstruction.
PET data were corrected for headmotion artifacts using SPM2
(Statistical Parametric Mapping, Wellcome Department of
Cognitive Neurology, London, UK) implemented in Matlab
7.3.0 (The MathWorks Inc., Natick, MA, USA). Then a
summed image was built of the first 13 frames and co-
registered with the individual 3DMRI data using PMOD soft-
ware (Version 3.4) for re-alignment and stereo-tactical nor-
malization (according to the anterior commissure-posterior
commissure line). The same transformation was applied to
the dynamic PET data. Parametric images of 5-HTT binding
potential (BPND) were generated from the PET data by the
multi-linear reference tissue model with two parameters
(MRTM2) and the cerebellar cortex as the reference tissue
[14, 15].

Imaging data analysis

Regional analyses of BPND values were consecutively per-
formed atlas-based [16] by manual delineation of the volumes
of interest (VOIs) for cortical, subcortical, and limbic areas
including the amygdala, the hippocampus, the striatal subre-
gions the head of the caudate and putamen, the nucleus ac-
cumbens (Acb), the thalamus, the hypothalamus, and the mid-
brain including the substantia nigra (SN) and ventral tegmen-
tal area (VTA) (Fig. 1). A voxelwise statistical analysis was
performed using SPM8 (Statistical Parametric Mapping,
Wellcome Department of Cognitive Neurology, London,
UK) also implemented in Matlab 7.3.0 (MathWorks Inc.,
Natick, MA, USA). BPND maps were spatially normalized
on the SPM8 integrated PET template and smoothed with

8 mm full-width-at-half-maximum (FWHM) on a Gaussian
Filter. Group comparisons (two-sample t-test, obese vs.
normal-weight controls) were considered significant for
p<0.005, unadjusted for multiple comparisons (T>3.5) and
a minimum of 30 voxels / cluster.

Statistical analysis

The data were tested for normal distribution using the
Shapiro-Wilks test and the Levene test for homogeneity of
variance. After thorough review and tests excluding
asymmetries between corresponding left and right brain re-
gions, VOIs were averaged side-by-side to reduce the number
of dependent variables within the models. To estimate the
difference in variance between and within the groups, an anal-
ysis of variance (ANOVA) was performed. For correlative
analysis the Pearson product–moment correlation was applied
(two-sided) and partial analysis if univariate analysis of co-
variance (ANCOVA) indicated a significant covariate effect
by comparing the groups of obese and non-obese subjects
regarding differences between the measured BPND within all
brain VOIs and epidemiological factors (age, sex, and
smoking habits), seasonal data (day length and sunshine du-
ration), BDI, and 5-HTTLPR genotypes as covariates (com-
plete data set for n=44). Additionally, a mixed linear model-
ing analysis was performed including the regions with high
BPND (e.g., grouping the subcortical and the limbic regions in
two separate analyses) to test whether there is a significant
difference in subcortical or limbic regions between obese
and non-obese subjects. If many relationships were tested,
correction for multiple comparisons using a false discovery
rate was applied to adjust the significance level.

Results

Subject characteristics and epidemiological data are summa-
rized in Table 1. Obese and non-obese study participants not
only differed in BMI but also in BDI and the length of the
scanning day. All other parameters (sex, smoking habits, and
5-HTTLPR) were well matched.

Serotonin transporter (5-HTT) binding potential (BPND)
in obese versus non-obese individuals

The BPND values in selected regions relevant for appetite
control are shown in Fig. 2. Overall, no significant group
differences in mean BPND were found (ANOVA); the en-
tire BPND data are summarized in Table 2. Mean between-
subject variability was 12.1 % in obese and 9.5 % in non-
obese individuals, respectively, but this was not signifi-
cantly different (for region-specific variability see
Table 3). Results also indicate no significant differences
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in the test for homogeneity of variances between the
groups. In the analyses of each sub-cohort, BMI and
BPND did not correlate (voxel-wise and VOI-based anal-
yses), ranging from r=0.27 (p=0.14) for the thalamus to
r=0.03 (p=0.89) for the hippocampus in the obese study
group, and from r=0.28 (p=0.33) for the head of the
caudate to r=−0.33 (p=0.24) for the insula in the non-
obese study group (Table 3). Neither did we find a

significant difference between obese and non-obese sub-
jects by grouping either the subcortical or the limbic
regions in a mixed linear model analysis (p=0.53, and
p=0.51, vs. BMI p=0.51, and p=0.25, respectively).
Inter-regional correlation analyses of BPND revealed more
robust associations in obese compared with non-obese
controls as this mainly included the insula and the ACC
(Fig. 3).

Fig. 1 Parametric maps of
binding potentials (BPND) and
co-registered magnetic resonance
images (MRIs) at two different
levels, the striatum/thalamus
(upper row) and the brainstem
(bottom row). Arrows indicate (A)
anterior cingulate cortex, (B) head
of the caudate, (C) amygdala, (D)
substantia nigra, and (E)
periaqueductal grey

Table 1 Subject characteristics
and seasonal data (n=44) Obese subjects Non-obese controls p-value

Number of subjects (complete data sets) 30 14

Sex, male/female 8/22 5/9 0.72c

Age (years), mean±SD (range) 36.5±10.2 (21–59) 36.1±7.2 (21–49) 0.89a

BMI (kg/m2), mean±SD (range) 41.2±4.9 (35.5–54.1) 22.5±2.6 (19.1–26.9) <0.0001a

Smoking habits, #with score 0 / 1 / 2 / 3 21 / 2 / 0 / 7 12 / 1 / 0 / 1 0.54c

BDI, mean±SD (range) 9.8±6.9 (0–25) 2.4±2.7 (0–7) <0.0001a

Injected activity (MBq), mean±SD 481.9±10.8 488.2±6.2 0.02a

Sunshine (h), median (IQR) 4.8 (0.2–9.75) 1.9 (0.0–6.6) 0.15b

Outside temperature (°C), median (IQR) 13.7 (7.6–18.2) 5.6 (0.8–8.2) 0.003b

Day length (h), mean±SD 13.0±2.5 11.0±2.2 0.02a

5-HTTLPR: SS / SL / LL 2 / 13 / 15 0 / 8 / 6 1c

a t test
bMann-Whitney test
c Fisher’s exact test

SD standard deviation, IQR interquartile range, BMI body mass index, BDI Beck Depression Inventory,
5-HTTLPR serotonin-transporter-linked polymorphic region, S short allele, L long allele, bp base pairs

Bold values indicate statistical significance (p<0.05) and italics borderline significance (0.05<p<0.1)
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Corrected model of body mass index (BMI)-associated
5-HTT binding potential (BPND)

Bivariate correlative analyses indicated an effect of age
(in the thalamus r=−0.35; p=0.02) and of BDI (in the
OFC r=0.30; p=0.05) on BPND. Considering all covari-
ates in an analysis of covariance, no overall significant
effect on obese versus non-obese subjects were detected
(Table 4). For distinct VOIs, however, covariates showed
significant or borderline-significant effects, e.g., age in
the dorsolateral PFC, the ACC, the thalamus, and 5-
HTTLPR in the hippocampus, respectively (Table 4). By
using these variables as covariates in SPM analyses, how-
ever, we found either no additional effect on the relation-
ship between BMI and BPND or small clusters of

BPNDversus BMI correlation when considering BDI as
covariate (Fig. 4).

Discussion

Among the various drugs available that target central biogenic
amine pathways, the combined 5-HTT and norepinephrine
transporter (NET) inhibitor sibutramine has been demonstrat-
ed to be the most effective for both the long-term treatment of
obesity and amelioration of obesity-related health risks [2,
17]. Hence, brain 5-HTTs have been implicated in the etiology
of obesity; the evidence obtained from in vivo human imaging
data thus far, however, are sparse and contradictory [8–10].
This is the first study to comprehensively compare highly

Fig. 2 Individual binding potential BPND values (correlation coefficients r and p-values are: 0.19, 0.20 for the amygdala; 0.23, 0.13 for the
hypothalamus; 0.27, 0.08 for the orbito-frontal cortex, OFC; 0.23, 0.14 for the raphe; and 0.12, 0.42 for the thalamus)

Table 2 Serotonin transporter (5-HTT) binding potential (mean±SD) in obese subjects compared with non-obese controls

Volume of interest Obese subjects
(n=30)

Non-obese controls
(n=14)

Levene-F (p) ANOVA-F (p)

Medial prefrontal cortex 0.24±0.13 0.21±0.07 1.88 (0.18) 0.59 (0.45)

Orbitofrontal cortex 0.47±0.17 0.41±0.11 3.83 (0.06) 1.92 (0.17)

Dorsolateral prefrontal cortex 0.26±0.13 0.22±0.07 4.54 (0.04) 1.16 (0.29)

Anterior cingulate cortex 0.42±0.14 0.39±0.10 3.37 (0.07) 0.59 (0.45)

Insula 0.68±0.21 0.64±0.14 1.06 (0.31) 0.45 (0.50)

Hippocampus 0.59±0.27 0.53±0.15 1.33 (0.26) 0.78 (0.38)

Amygdala 1.36±0.41 1.24±0.33 0.58 (0.45) 0.98 (0.33)

Nucleus accumbens 1.60±0.44 1.60±0.35 1.58 (0.22) 0.01 (0.93)

Head of the caudate 1.48±0.36 1.43±0.38 0.01 (0.92) 0.18 (0.67)

Putamen 1.29±0.32 1.28±0.33 0.04 (0.85) 0.01 (0.96)

Thalamus 1.55±0.47 1.43±0.36 0.57 (0.46) 0.69 (0.41)

Hypothalamus 2.10±0.59 1.86±0.50 0.79 (0.38) 1.74 (0.19)

Substantia nigra/ventral tegmental area 1.62±0.25 1.55±0.46 1.58 (0.22) 1.36 (0.71)

Raphe 3.46±0.87 3.09±0.67 1.05 (0.31) 1.90 (0.18)

Levene test of homogeneity of variances; ANOVA analysis of variance
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obese yet metabolically healthy and non-depressed individ-
uals with non-obese healthy controls using in vivo 5-HTT
brain PET. The findings obtained here indicate that there is
no significant effect of BMI on regional 5-HTTavailability on
a group level, in line with a recent PET analysis on patients
undergoing bariatric surgery [10]. In particular, there was no

indication that in cortical, subcortical, or limbic regions 5-
HTT availability is higher in obese subjects. Notably, the
group difference was comparatively large and approaching
statistical significance in the OFC, a brain region strongly
activated by the appetite suppressant and 5-HT1B/2C receptor
agonist mCPP [18].

In terms of pathophysiology, a change in serotonergic tone
or compensatory up-regulation of 5-HTT may determine the
individual variance in response to favorite-food or stress cues,
and in appetitive or defensive motivated behavior. In our pre-
vious study, the high 5-HTT availability associated with high
BMI was hypothesized to lead to or result from low synaptic
5-HT levels underlying hyperphagia and weight gain [9, 19].
The higher 5-HTTavailability in the OFC of obese subjects in
the present study is in keeping with this theory. In contrast, a
SPECT study exclusively focusing on the hypothalamus in
human subjects revealed reduced 5-HTT availability that oc-
curred within 6 weeks of consuming a high calorie diet asso-
ciated with modest weight gain [20]. It is possible that these
inconsistencies can be explained by the quadratic relationship
between 5-HTT and 5-HT implied by the study of Haahr and
colleagues [10]. Thus, expected group differences will be
harder to prove and are meaningful only in relation to other
parameters such as stress or behavioral responses, similar to
that that has been discussed for NET [21]. We surmise that
since the 5-HT system is a tonic, modulatory network with
widespread serotonergic innervation from the raphe nuclei,
5-HTT availability does not necessarily simply reflect either
decreases or increases in synaptic 5-HT concentrations. One
can assume rather that input from internal and external sources
differentially activate serotonergic tone in obese versus non-

Table 3 Coefficients of
correlation (r, corrected for age)
and variance (COV) between
serotonin transporter (5-HTT)
binding potential (mean±SD) and
bodymass index (BMI) in each of
the two sub-cohorts (obese and
non-obese)

Volume of interest Obese subjects (n=30) Non-obese controls (n=14)

r COV r COV

Medial prefrontal cortex 0.12 10.7 −0.28 6.0

Orbitofrontal cortex 0.25 11.2 −0.17 7.5

Dorsolateral prefrontal cortex 0.24 10.7 −0.23 5.9

Anterior cingulate cortex 0.29 10.0 −0.28 7.3

Insula 0.13 12.3 −0.33 8.5

Hippocampus 0.03 16.8 −0.21 9.5

Amygdala 0.21 17.3 −0.16 14.9

Nucleus accumbens 0.16 17.1 −0.21 13.5

Head of the caudate 0.08 14.7 −0.28 15.0

Putamen 0.14 14.1 −0.11 14.4

Thalamus 0.08 18.6 −0.26 14.7

Hypothalamus 0.22 18.9 −0.32 17.6

Substantia nigra/ventral segmental area 0.22 21.2 −0.25 17.9

Raphe 0.18 19.6 −0.30 16.4

Correlations are not statistically significant (p>0.05); %: between-subject variability for every region, which is
defined as the coefficient of variation: COV=SD/Mean * 100 %

Fig. 3 Spearman rank correlation coefficients matrix of serotonin
transporter (5-HTT) binding potentials between every volume of
interest for the obese subjects (lower left triangle) and non-obese
controls (upper right triangle). Regions are sorted based on the mean
correlation coefficient per volume of interest. Ins insula, ACC anterior
cingulate cortex, Amg Amygdala, Cd head of the caudate, Hypothal
hypothalamus, Pu putamen, DLPFC dorsolateral prefrontal cortex, Acb
nucleus accumbens, SN_/_VTA substantia nigra/ventral tegmental area,
Th thalamus, OFC orbito-frontal cortex, Hi hippocampus, FC medial
prefrontal cortex, Raphe raphe nuclei)
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obese controls which can be addressed by dedicated challenge
studies when probes sensitive for endogenous 5-HT fluctua-
tions become available.

Studies on high fat diet-resistant mice have previously
shown increased 5-HTTs in the nucleus accumbens compared
to diet-induced obese mice [4]. This finding was not
reproduced when comparing high fat diet-resistant with diet-
induced obese rats or in other brain regions including the
hypothalamus [5]. Long-term manipulation of 5-HTT func-
tion in knockout (KO) animals has also yielded conflicting
findings. Such animals develop paradoxical sex-specific
forms of obesity not attributable to changes in feeding and
which may be due to changed 5-HT signaling in the periphery
[22, 23]. These findings nevertheless suggest that 5-HTTs

play redundant roles in the control of feeding behavior. It
seems instead that 5-HT receptors are indispensable for nor-
mal appetite regulation. For instance, 5-HT2C receptor KO
mice are hyperphagic and obese and when 5-HT2C receptors
are restored in a subpopulation of hypothalamic neurons, this
leads to reversal of obesity and in re-sensitization to the ano-
rectic effect of 5-HTT inhibitors [24]. The importance of 5-HT
receptors in body-weight regulation is also supported by the
consistent observations of changes in levels of 5-HT2A and 5-
HT4 receptors in human obesity [6, 7].

We did not find major effects of potential covariates
(sex, age, 5-HTTLPR, or seasonal data) on 5-HTT bind-
ing potential within the age range and sample size of our
cohort; mainly age interferes with BP in parts of the

Table 4 Results of the post-hoc univariate analysis of covariance (ANCOVA)

Model (n=44) mPFC OFC dlPFC ACC Insula Hippoc. Amygd. Acb Caudate Putamen Thal. SN/VTA Raphe Hypoth.

Factors

Obese vs. non-obese 0.23 0.31 0.11 0.32 0.45 0.65 0.30 0.73 0.69 0.90 0.35 0.79 0.06 0.41

Covariates

5-HTTLPR 0.96 0.74 0.99 0.46 0.58 0.04 0.65 0.81 0.47 0.95 0.63 0.30 0.18 0.16

Sex 0.15 0.69 0.18 0.25 0.67 0.45 0.18 0.33 0.07 0.14 0.42 0.40 0.79 0.78

Age 0.06 0.48 0.03 0.04 0.08 0.24 0.09 0.13 0.54 0.33 0.01 0.13 0.19 0.19

Smoking 0.10 0.25 0.21 0.19 0.23 0.83 0.55 0.18 0.53 0.41 0.61 0.94 0.56 0.99

BDI 0.90 0.67 0.67 0.90 0.82 0.62 0.84 0.98 0.79 0.91 0.48 0.77 0.47 0.73

Sunshine 0.28 0.78 0.30 0.27 0.64 0.52 0.41 0.53 0.92 0.87 0.49 0.97 0.95 0.78

Day length 0.95 0.94 0.99 0.98 0.51 0.53 0.73 0.92 0.94 0.78 0.76 0.81 0.08 0.64

P-values of between-group effects observed are presented in the table (bold: significant: p<0.05; italics: borderline significant: 0.05<p<0.1)

5-HTTLPR insertion/deletion polymorphism in the 5-HTT-linked promoter region, BMI body mass index, BDI Beck depression inventor, sunshine
sunshine duration, mPFC medial prefrontal cortex, OFC orbito-frontal cortex, dlPFC dorsolateral prefrontal cortex, ACC anterior cingulate cortex,
Hippoc. hippocampus, Amygd. amygdala, Acb nucleus accumbens, Caudate nucleus caudate, Thal thalamus, SN/VTA substantia nigra/ventral tegmental
area, Hypoth hypothalamus

Fig. 4 Statistical parametric
mapping (SPM8) projections
superimposed on representative
magnetic resonance imaging
slices, small clusters with
significant decreased values
(blue/top; putamen) and increased
values (green/bottom; pons) in
obese subjects (n=30) compared
with normal-weight (n=14)
controls (using Beck depression
inventory as a covariate)
(p<0.005, uncorrected, 30 voxel/
cluster minimum)
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forebrain. On a voxel-level, depression was demarked by
smaller clusters in the brainstem and the striatum (but not
amygdala) which requires further validation with clinical-
ly depressed participants [24]. Given that the current BDI
version includes items for weight loss, body shape, or
libido, the validity and performance of the questionnaire
for mood disorders (i.e., subsyndromal depression) in
obese patients is likely to be modest [25]. Regression
analysis was hampered by the fact that weight/BMI is a
continuous variable but we did not include here subjects
between 30 and 35 kg/m2 due to the intended extreme
cohort design of the study; thus BMI appears rather to
be dichotomous and correlative analysis needs further
prospective validation by including subjects with a BMI
range of between 30 and 35 kg/m2.

In order to obtain first insights on connectivity between
the regions as an index of obesity beyond regional 5-HTT
availability, we further inter-correlated regional BPND. This
analysis revealed that there is a higher degree of correlation
in the obese cohorts with a larger number of significant
associations between regions as compared with non-obese
controls (and possibly indicating an altered tone as well).
Connectivity within this 5-HTT network seems to be signif-
icantly stronger in areas of saliency attribution and
interoception with the insula and the ACC demonstrated to
be robustly connected in the obese but not in the non-obese.
However, we cannot rule out a specific network pattern in
either obese individuals or non-obese controls as the corre-
lation matrix was obtained solely from BPND and not from
dynamic data. Future studies on network correlates may in-
clude covariant information using sparse inverse covariance
estimation [26]. It is hence of further interest how the
resting-state data of the study participants are modulated
by individual 5-HTT availability, both at baseline and with
interventions such as testing for food-cue reactivity. From
functional MRI (fMRI) data an enhanced reactivity and a
more effortful strategy for appetite control in obese individ-
uals [27] corroborates the idea of higher 5-HT-mediated
arousal, in particular in areas of affective-cognitive process-
ing, in such persons. It is of further interest that the BPND of
the obese group is highly correlated but still exhibits a high
degree of variation (although the difference in variance is
not significant). Future studies therefore will focus on this
variability by entering additional parameters such as obesity-
related leptin, ghrelin, and stress-related indicators.

The present findings may have implications in design-
ing optimal treatment strategies for obesity. For instance
targeting 5-HTTs may not prevent obesity development
per se in susceptible individuals. However, inhibiting 5-
HTTs in established obesity still remains an attractive
therapeutic option. This is further supported by the re-
cent finding that changes in subcortical 5-HTTs inversely
correlate with extent of body weight loss in obese

individuals after gastric bypass surgery [10]. The role
of the other biogenic amines in this context are also of
interest and dedicated studies (e.g., by dual-tracer ap-
proaches) warrant consideration. Additionally, serotoner-
gic mechanisms have been implicated in obesity-related
medical conditions like depression where resting-state
hyperactivity in subcortical core–paracore regions was
found to be related to abnormal function of the
neuromodulatory systems located in the raphe nucleus
and the locus coeruleus with 5-HT and NE (and other
transmitters like dopamine and acetylcholine) [28, 29].
In keeping with this, preclinical findings in 5-HTT
knock-out mice point to modulation of the limbic
cortical-ventral striatopallidal pathway as a consequence
of perturbed 5-HTT function. Thus, molecular disruption
of 5-HTT that produce behavioral changes alter the func-
tional anatomy of the reward circuitry in which all the
monoamine systems are involved [30].

One further limitation in the interpretation of our study
results is the fact that we did not implement a 1:1 case-
cohort design, although we carefully matched obese and
non-obese samples on an individual basis. Although large
for a PET study, the sample size was relatively small, which
may have obscured individual differences (e.g., sex, age, and
5-HTTLPR) that have been linked to important aspects of
eating behaviors such as impulse control and obesity.

In conclusion, we showed no significant alterations of 5-
HTT availability in obese compared with non-obese individ-
uals but, seemingly, there is high variance of 5-HTTavailabil-
ity. These results may provide a useful platform upon which to
further investigate 5-HT functions in human obesity.
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IV. SUMMARY 

The present work elucidates neuroendocrine correlates of stress responsiveness in human obesity and 

non-obesity controls, with focus on HPA reactivity and its potential modulation by the AVP system and 

central monoamine signaling. To the best of my knowledge, this cumulative thesis includes the first 

study to dynamically assess stress axis responsiveness by means of the combined dex/CRH test in 

obesity and the first to show a relation of HPA axis reactivity to the serum AVP tone as measured by 

its surrogate copeptin. A further novel finding is the association of the HPA axis and copeptin with the 

noradrenergic system in vivo. This thesis includes the largest PET study on serotonin transporter 

availability and connectivity in the living human brain of individuals with severe obesity. 

 

4.1 Subjects with obesity show an enhanced HPA axis responsiveness which 

correlates to serum concentrations of the AVP surrogate copeptin and 

abdominal fat distribution 

The ACTH and cortisol response of the dex/CRH test is determined by the integrity of feedback 

mechanisms (Holsboer, 2000; Watson et al., 2006; Laryea et al., 2013), the sensitivity to applied CRH 

(Nussey et al., 1991), a co-stimulation of the HPA axis by the AVP system (de Goeij, D C et al., 1992; 

Bardeleben et al., 1985; Keck et al., 2002, 2002) and the strength of the adrenocortical response to 

circulating ACTH (Holsboer et al., 1984; Kümpfel et al., 2014). In line with previous literature (Yanovski 

et al., 1993; Pasquali et al., 2002), we found basal ACTH and cortisol concentrations after 

dexamethasone suppression not to differ between the groups. The novel finding, however, is that OB 

subjects show a higher HPA axis responsiveness as measured by cortisol concentrations after CRH 

stimulation, and that the ACTH and cortisol curve indicators in OB seem to relate to the serum tone of 

the AVP-surrogate copeptin. Further, subjects with obesity tend to have a higher adrenal sensitivity to 

ACTH, as indicated by a lower ACTH/cortisol ratio. The HPA response increases with the waist-hip-ratio 

as a marker of visceral fat in abdominal obesity.  

Our results are best explained by a pituitary-escape from dexamethasone suppression due to 

insufficient feedback control, a facilitation of HPA reactivity by AVP and a hypersensitivity of the 

adrenal glands to ACTH. The apparent HPA-copeptin relation emphasizes that not only AVP from 

parvocellular hypothalamic neurons stimulates the HPA axis in vivo, but that also magnocellular AVP 

released into the peripheral circulation augments HPA reactivity. The enhanced AVP tone can be 

measured by its surrogate copeptin, and this approach may now outline patients which are more likely 

to show an enhanced stress axis reactivity.  
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Albeit the median of post-CRH cortisol values differ between the groups, it is noteworthy, however, 

that the majority of subjects with obesity show a normal or only slightly enhanced cortisol reactivity in 

the dex/CRH test, as the right-skewed distribution in Figure 2b of the first article indicates (Schinke et 

al., 2017). This underlines that an enhanced endocrine stress response is not a conditio sine qua non 

in obesity, which is in accordance with the assumption of its etiological heterogeneity (Heymsfield and 

Wadden, 2017).  

On a morphological level, the finding of sensitized adrenal glands in OB functionally corroborates 

previous reports on enlarged adrenal glands in major depression (Nemeroff et al., 1992), multiple 

sclerosis (Reder et al., 1994) and obesity (Godoy-Matos et al., 2006). This indicates a rather long-term 

stimulation of the adrenal cortex by ACTH in these situations (Hoeflich and Bielohuby, 2009), thereby 

pointing towards chronic HPA axis hyperactivity in the OB cohort. The association of an enhanced HPA 

activity with an increasing WHR but not with the BMI supports previous findings (Porzezińska-Furtak 

et al., 2014), and emphasizes the necessity to better understand this relation since a high WHR is a 

stronger predictor of cardiovascular mortality than the BMI per se (Despres and Lemieux, 2006; 

Katzmarzyk et al., 2012; Tchernof and Després, 2013). 

Programming effects on the HPA axis which may lead to its dysregulation occur throughout the whole 

lifespan. Exposure to cortisol or repeated stress during susceptible developmental stages - prenatally, 

the childhood and adolescence - leads to long-lasting increases of stress-induced glucocorticoid 

secretion (Lupien et al., 2009). A genetic pre-determination is suspected since healthy first-degree 

relatives of patients with major depression show higher cortisol reactivity in the dex/CRH test than 

individuals without familial risk (Holsboer et al., 1995), and epigenetic modifications moderate the 

association of life trauma and cortisol reactivity (Houtepen et al., 2016). Despite this long-term 

imprinting effects of internal and environmental factors, HPA axis responsiveness is modifiable by 

pharmacotherapy (Then Bergh et al., 2001; Schule et al., 2006), and a few studies investigated the 

effect of lifestyle interventions  (Sarubin et al., 2014b; Deuschle et al., 2017) or the influence of dietary 

behavior  (Dallman et al., 2005; Tryon et al., 2015; Hryhorczuk et al., 2017). This is of interest since the 

unspecific endophenotype of the dysregulated HPA axis has clinical implications, predisposing to 

physical health conditions such as diabetes and cardiovascular disease (Pasquali et al., 2006; Bose et 

al., 2009; Incollingo et al., 2015; Jackson et al., 2017), as well as to depressive and anxiety-like 

behaviors (Erhardt et al., 2006; Lupien et al., 2009). It is to be noted that these conditions more 

frequently co-occur in obesity (Incollingo et al., 2015). However, our cohort had a higher prevalence 

of an enhanced cortisol reactivity but without signs of clinically relevant psychiatric disorders. It is 

hence to be speculated if unhealthy behaviors such as the consumption of highly palatable rewarding 

food constitutes a resilience factor relieving from endocrine stress upon chronic stimulation as a form 
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of self-medication (Dallman et al., 2005; Adam and Epel, 2007; Jackson et al., 2010), of which higher 

calorie intake and obesity are the flip-side of the coin.  

 

4.2 HPA axis responsiveness and copeptin concentrations are differentially 

related to central NAT availability in subjects with obesity compared to non-

obesity controls 

We found hints for a dysregulation of the HPA axis which is related to enhanced copeptin 

concentrations as a serum marker of the AVP system in obesity (Schinke et al., 2017). To further 

elucidate the neurobiological underpinnings of this endophenotype, we assessed the brain 

noradrenaline system as a likely modulator of the stress response. Our results indicate an association 

between HPA axis responsiveness and central noradrenergic signaling, with a prefrontal-limbic control 

of HPA reactivity in NOC versus a loss of this relation in favor of a hypothalamic-centered relation in 

OB.  

Only one previous study investigated central NAT availability in obesity, hinting to decreased NAT 

binding potentials in the thalamus of obese subjects, suggesting a noradrenergic dysfunction (Li et al., 

2014). In the hypothalamus as a regulation center of appetite, hunger, satiety and endocrine function, 

however, no differences could be detected, and the finding of changed NAT availability in OB could not 

be replicated by our working group (Hesse et al., 2017). An interesting additional finding, however, 

was that Hesse et al. reported OB subjects to have a higher symmetry of NAT availability among the 

hemispheres, especially in the putamen, and higher inter-regional associations as the correlative 

matrix of NAT BPND revealed (Hesse et al., 2017). The latter also held true for the connectivity of the 

serotonin transporters in OB, as discussed below (Hesse et al., 2015). This indicates subtle changes in 

the monoamine system, and that a higher lateralization of monoamine transporter availability is a 

characteristic of the brain of non-obese individuals.  

There was one previous study which investigated the HPA response in relation to in vivo monoamine 

signaling, but with focus on the brain’s serotonin system in depressed individuals. A negative 

association between SERT availability and HPA reactivity was found, centered in the thalamus (Reimold 

et al., 2011).  

The NAT regions we found to be involved in HPA axis modulation are best explained by anatomic 

studies on the noradrenaline-endocrine stress network: Ascending noradrenergic fibers project from 

the Locus coeruleus to the cortex and amygdala, controlling the level of alertness and arousal (Samuels 

and Szabadi, 2008). The prefrontal cortex is a highly evolved brain region regulating thought and 

emotion, and is extensively connected with subcortical structures inhibiting the HPA axis indirectly 

(Aihara et al., 2007; Ulrich-Lai and Herman, 2009; Arnsten, 2009), whereas the amygdala, a center 
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regulating fear and anxiety, probably affects the HPA axis more directly via intervening hypothalamus-

projecting neurons (Ulrich-Lai and Herman, 2009). Interestingly, the expected relation of the HPA 

response to the noradrenergic prefrontal cortex could not be shown in the obesity group, in which we 

reported a dysregulation of the HPA and neurohypophyseal axes.  Previous literature provides strong 

hints that especially chronic uncontrollable stress impairs prefrontal cortex function which may lead 

to a disinhibition of the stress response network. It is to be speculated if the enhanced HPA axis 

responsiveness we found in OB also constitutes such a type of chronic endocrine stress, or if it is rather 

just the endocrine result of chronic perceived distress in obesity. Either way, our findings indicate a 

switch from the normal top-down control of HPA axis activity by the forebrain and limbic system in 

NOC towards a bottom-up control of HPA reactivity in OB, driven by the hypothalamus (Radant et al., 

1992; Robbins and Arnsten, A F T, 2009; Farr et al., 2016).  

A potential pitfall of the NAT PET approach is the fact that in vivo it is not entirely clear yet how NAT 

actually relates to the concentration or turnover of NA in the synaptic cleft. The classic point of view 

rather supports the notion of NAT to homeostatically adapt to NA concentrations in order to normalize 

NA transmission than the other way around (Lee et al., 1983). Another missing piece is how NAT relates 

to NA receptors (or even more downstream, to their affinity to NA, its intracellular signal cascades and 

so forth), which cannot be addressed in vivo yet due to the lack of suitable radiotracers (Finnema et 

al., 2015). Such knowledge would enable a better understanding of actual NA activity.  

In a nutshell, our cross-sectional approach highlights two findings: First, the stress response and 

copeptin are linked with noradrenergic activity, which has not been shown in vivo. Second, the 

observation that the HPA-AVP axes are related to NAT in different brain regions supports the 

hypothesis on changes of stress regulating systems in obesity.  

 

4.3 Central serotonin transporter availability does not significantly differ in 

subjects with obesity compared to their non-obesity counterparts 

Various drugs targeting monoamine transporters or receptors showed clinical efficacy achieving 

weight loss in subjects with obesity (Hainer et al., 2006; Smith et al., 2010) or were lately proven to 

decrease the incident of metabolic complications such as diabetes (Bohula et al., 2018). Based on these 

clinical observations and well-established models of the role of serotonin in the regulation of energy 

homeostasis (Breisch et al., 1976), altered 5-HT(T) signaling would be expected in obesity. The few 

previous studies on the in vivo situation of SERT availability in OB, however, revealed inconsistent 

findings (Kuikka et al., 2001; Erritzoe et al., 2010a; Hesse et al., 2015; Haahr et al., 2015). 
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Ours was the largest PET study to investigate serotonin transporter availability in non-depressed 

subjects with severe obesity. In this exploratory approach, unexpectedly, no differences of 5-HTT BPND 

were found on a group level. Possibly, there are simply no changes of serotonergic signaling in OB, and 

weight loss success upon SERT inhibitors is solely based on a post-synaptic 5-HT2C, 5-HT2A or 5-HT4 

receptor stimulation, decreasing the motivation for food intake (Jean et al., 2007; Erritzoe et al., 2009; 

Halford and Harrold, 2012; Valencia-Torres et al., 2017). However, a complicating factor studying the 

brain serotonin system is the non-linear relation of the pre-synaptic serotonin transporter to its post-

synaptic receptor which is characterized by an inverted U-shape (Erritzoe et al., 2010b). This makes it 

more sophisticated to detect changes in serotonergic signaling if only one determinant is investigated. 

Moreover, there is quite convincing evidence that lowered central SERT levels predispose to obesity: 

in SERT knockout mice, locomotor activity is decreased which leads to late onset obesity (Uceyler et 

al., 2010), and carriers of the short SLC6A4 allele of the SERT promotor region are prone to overweight 

in adolescence (Sookoian et al., 2007) and adulthood (Sookoian et al., 2008). Further, on an epigenetic 

level, the methylation status of the serotonin transporter promoter is associated with an attenuated 

reward sensitivity in obese subjects (Drabe et al., 2017) which may reinforce a hedonic drive for highly 

palatable food. Analogous to the various diverging SERT PET studies performed in major depression, a 

similar etiological and symptomatic heterogeneity is observed in obesity (Heymsfield and Wadden, 

2017), and may contribute to the high variance of serotonergic signaling. This underlines the need for 

a more accurate stratification of patients into different clinical subsets facilitating future research 

(Spies et al., 2015). 

Albeit our study failed to detect inter-group differences of SERT BPND, associative patterns were not 

the same between the groups: the correlation matrix revealed a higher inter-regional connectivity for 

SERT, which corroborates analogues findings of a higher inter-hemispheric symmetry for NAT in OB 

(Hesse et al., 2017). This indicates different inter-regional associations in NOC compared with OB, 

hinting towards changes of SERT on a network level. Interestingly, this correlative SERT network 

pattern is modifiable by pharmacotherapy, as it was shown in a longitudinal PET study including 

patients with major depressive disorder who were followed up after SSRIs treatment (James et al., 

2017). If future studies prove the observed network changes to be of clinical relevance in OB, e.g. 

predicting weight loss failure despite lifestyle interventions, it may constitute an easily accessible 

target for pharmacological treatment. 
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4.4 Future direction  

In summary, we found hints for dysregulated HPA axis responsiveness in OB that is associated with 

copeptin as a serum marker of the AVP system. These stress axes seem to be differentially linked to 

the central noradrenaline system in OB compared to NOC. From the cross-sectional approach of our 

study, we cannot tell if HPA dysregulation is cause or consequence of obesity. However, this endocrine 

phenotype has previously been shown to be associated with physical and mental illness in other 

entities (Heuser et al., 1994; Then Bergh et al., 1999), which raises the need to better characterize the 

subset of OB patients with pronounced HPA reactivity – e.g., with respect to their propensity to 

develop affective disorders, or their metabolic risk profile of inflammatory markers, blood glucose and 

lipids. The observed association of HPA reactivity with the WHR, a strong risk factor of morbidity and 

mortality in OB, already hints to a pathophysiological link of HPA axis dysregulation with metabolic 

complications. Since HPA reactivity is modifiable by pharmacotherapy and potentially by lifestyle 

interventions (Then Bergh et al., 2001; Schule et al., 2006; Wirtz et al., 2010; Sarubin et al., 2014a), it 

constitutes a promising target for experimental treatment strategies  in susceptible individuals. 
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