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ABSTRACT 

Vanadium has previously been linked to elevated toxicity of leachates derived from oil sands 

petroleum coke. However, geochemical controls on V mobility within coke deposits remain 

poorly constrained. Detailed examinations of pore-water and solid-phase V geochemistry were, 

therefore, performed on oil sands fluid petroleum coke deposits in Alberta, Canada. Sample 

collection focused on both active and reclaimed deposits, which contained more than 3 × 107 m3 

of fluid petroleum coke. Dissolved V concentrations were highest (up to 3.0 mg L-1) immediately 

below the water table, but decreased rapidly with increasing depth. This trend corresponded to a 

transition from mildly acidic (pH 6 – 7) and oxic conditions to mildly alkaline (pH 7 – 8.5) and 

anoxic conditions. Scanning electron microscopy (SEM), electron microprobe analysis (EMPA) 

and micro-X-ray fluorescence (µXRF) mapping revealed coke particles exhibited an internal 

structure characterized by successive concentric layers. The outer margins of these layers were 

characterized by elevated V, Fe, Si, and Al concentrations, indicating the presence of inorganic 

phases. Micro-X-ray absorption near-edge structure (μXANES) spectroscopy revealed that V 

speciation was dominated by V(IV) porphyrins except at outer margins of layers, where 

octahedrally-coordinated V(III) was a major component. Minor to trace V(V) was also detected 

within fluid petroleum coke particles. 

INTRODUCTION 

Large quantities of petroleum coke are generated during upgrading of oil sands bitumen 

to synthetic crude oil. This carbonaceous material exhibits elevated S and trace element 

contents,1 making it largely unsuitable for combustion or industrial applications. Consequently, 

greater than 108 t of petroleum coke is currently stockpiled in the Athabasca Oil Sands Region 
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(AOSR) of northern Alberta, Canada.2 Mine closure landscapes could contain more than ten 

times this amount upon conclusion of mining.3 Although petroleum coke offers utility as a 

construction material for mine closure landscapes, previous studies have reported toxic effects on 

invertebrates4-6 and plants.7 Baker et al.8 observed increased V uptake by a macrophytic green 

alga and benthic invertebrates in coke-amended sediment from a reclamation wetland. 

Puttaswamy et al.5 found that coke leachates were toxic to an aquatic invertebrate, and identified 

dissolved V as a principal source of this toxicity. Aeolian transport of fine particles from sub-

aerial stockpiles has led to more widespread distribution in the AOSR.9 Additionally, large 

stockpiles of oil sands petroleum coke have also been reported in urban industrial areas in major 

U.S. cities.10 Consequently, a detailed understanding of V sources and mobility is critical for 

assessing and mitigating long-term environmental risk associated with this oil sands bitumen 

upgrading byproduct. 

Vanadium occurs naturally at elevated concentration in oil sands bitumen and other 

heavy oil deposits.11,12 Petroleum coke, generated during thermal conversion of the non-

distillable bitumen fraction into volatile compounds, becomes enriched in trace elements present 

in heavy oils. Fluid petroleum coke from the AOSR typically exhibits total V concentrations of 

1000 to 2000 mg kg-1.1,12-16 The V speciation of petroleum coke is dominated by V(IV) as the 

vanadyl ion (VO2+) in porphyrin-like atomic coordination environments within asphaltenic 

micelles.17,18 These stable metalloporphyrin complexes are generally resistant to both weathering 

and thermal decomposition.12 Substantial V(IV) porphyrin breakdown during natural weathering 

has, however, been observed in Early Toarcian Age (183 Ma) black shales.19 Additionally, 

thermal decomposition of these stable complexes has been reported at temperatures exceeding 

400°C, 12 which is consistent with fluid coking temperatures of 480 to 565°C used during oil 
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sands bitumen upgrading.20 Thermal decomposition of V porphyrins was previously inferred 

based on crystalline V-bearing nanocluster occurrence in AOSR fluid petroleum coke.12 

Vanadium was associated with Si, O, S and Fe within these nanoclusters; however, V speciation 

within this phase remains unknown.  

Despite the apparent stability of V(IV) porphyrins, total dissolved V concentrations 

exceeding 2 mg L-1 for coke pore water and leachate have been reported.4 Vanadium mobility 

within surface water and groundwater is strongly influenced by reduction-oxidation (redox), 

precipitation-dissolution, and sorption-desorption reactions.21-24 Enhanced V leaching has been 

observed under oxic conditions at neutral to alkaline pH.5,25 This transition metal exhibits six 

possible oxidation states, but V(III), V(IV) and V(V) dominate in the environment.24,26 Although 

both V(IV) and V(V) can occur in petroleum coke leachates, V(IV) is rapidly oxidized to V(V) 

under oxic conditions.27 Microbial reduction of dissolved V(V) to V(IV) and V(III) under anoxic 

conditions is also possible.28 Aqueous V(V) speciation is generally dominated by H2VO4
- and 

HVO4
2- oxyanions at pH 4 to 10. Cationic V(III) and V(IV) species can occur under these 

conditions; however, precipitation of V (hydr)oxide phases can occur at elevated V(III) and 

V(IV) concentrations.24 Redox processes, therefore, influence pH-dependent sorption-desorption 

and precipitation-dissolution reactions that control V mobility.21 Consequently, complex 

interactions between (bio)geochemical processes likely control the occurrence and distribution of 

dissolved V within coke deposits. 

 This study focused on improving understanding of V geochemistry in oil sands fluid 

petroleum coke deposits. Detailed groundwater sampling was performed to constrain 

geochemical controls on V concentrations and distribution in active and reclaimed fluid coke 

deposits in the AOSR. Solid-phase analyses were performed to examine micro-scale V 
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speciation variability and potential pore-water V sources. Results improve capacity for predicting 

V mobility in oil sands mine closure landscapes and, more generally, provide new insight into 

environmental V geochemistry. 

MATERIALS AND METHODS 

Study Site. Field sampling was focused on fluid petroleum coke deposits at the Mildred 

Lake oil sands mine, which is located approximately 35 km north of Fort McMurray, Alberta, 

Canada (Figure 1). The two deposits examined during this study, Coke Beach (CB) and Coke 

Watershed (CW), are located within the containment dam for the Mildred Lake Settling Basin 

(MLSB). This active tailings pond contains fluid fine tailings (FFT), produced during bitumen 

extraction and upgrading, stored under a shallow water cover comprised of oil sands process 

water (OSPW).29 The CB and CW deposits contain approximately 3 × 107 m3 of fluid petroleum 

coke that was hydraulically deposited at the western margin of MLSB beginning in 2000. Coke 

Beach is a 1.5 km2 sub-aerial deposit (i.e., coke is directly exposed to the atmosphere) where 

freshly-produced coke has been deposited since 2000. Coke Watershed  is an inactive 0.28 km2 

deposit that received fresh coke from 2000 to 2003, when deposition ceased and an experimental 

reclamation soil cover was applied. The CB and CW deposits are hydraulically connected to FFT 

and the overlying OSPW water cover within MLSB. 

Well Installations. Multi-level groundwater wells were installed at several locations in 

the CB (n = 5) and CW (n = 3) deposits (Figure 1) to assess spatial variability of V 

geochemistry. These wells were constructed from 0.3 cm inner diameter (ID) polyethylene (PE) 

tubes, which were perforated and screened over the bottom 10 cm with 125 µm Nitex mesh. 

Nine tubes were then fastened to a central 1.9 cm ID PE with screens spaced on center at 0.25 to 
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1.00 m intervals. The bundles were installed using a sonic drilling rig (ML SRS, Fraste S.p.A., 

Italy) by advancing 7.6 cm diameter steel casing fitted with an aluminum knock-out tip to 6.0 or 

8.0 m below surface. Bundles were then lowered into the casing, which was then retrieved 

leaving the multi-level well and knock-out tip in place. Water was added to minimize the 

buoyancy of the well bundle during well installation. The water table was positioned 0.6 to 1.6 m 

below ground surface at CB well locations and 2.9 to 4.5 m below ground surface at CW well 

locations. 

 

Figure 1. Plan view image of field site showing location in Alberta, Canada, aerial photo of the 

Mildred Lake Settling Basin, and plan view map of well installation and associated coring 

locations in the Coke Beach (CB) and Coke Watershed (CW) deposits. 

Water Sampling and Analyses. Water samples were collected a minimum of 30 days 

after well installations. Static water table elevations were measured and three well volumes then 

were purged before sampling. A peristaltic pump (Geopump Series II, Geotech Environmental 
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Equipment Inc.) was connected with Pt-cured silicone pump tubing directly to the screened 0.3 

cm ID tubing. The opposite end of the pump tubing was connected to an in-line flow-through 

cell, where measurements of pH, redox potential (Eh), electrical conductivity (EC), and 

temperature were performed. The pH electrode (Orion 8156BNUWP ROSS Ultra, Thermo 

Scientific, USA) was calibrated to NIST-traceable pH 7, 4 and 10 buffer solutions. The 

calibration was checked before each measurement and recalibration was completed as required. 

ZoBell’s solution30 and Light’s solution31 were used to verify Eh electrode (Orion 9678BNWP, 

Thermo Scientific, USA) performance. The conductivity cell (Orion 013010MD, Thermo 

Scientific, USA) was calibrated to NIST-traceable conductivity standards. Additional field 

measurements were performed, following removal of the flow-through cell, on water passed 

through inline 0.45 μm surfactant free cellulose acetate (SFCA) filters. Alkalinity was quantified 

by titration with H2SO4 to the bromocresol green methyl red endpoint (i.e., 4.5). 

Spectrophotometric NH3-N and H2S(aq) determinations were performed using salicylate (HACH 

Method 10031) and methylene blue (HACH Method 8131) methods, respectively.  

Water samples for inorganic anion, dissolved organic carbon (DOC), and stable isotopes 

of water analyses were passed through 0.45 μm SFCA filters into PE bottles and stored at 4°C 

until analysis. Inorganic anions (Br, Cl, F, NO3, NO2, PO4, SO4) were quantified by ion 

chromatography (IC), while δ18O and δ2H vales were determined by cavity ring-down 

spectroscopy (L2120-i Isotopic Water Analyzer, Picarro, USA).32 Samples for DOC analysis 

were transferred into amber borosilicate vials and acidified with 5% (v/v) H3PO4 remove 

inorganic carbon. Quantification was performed by wet UV/persulfate oxidation of DOC and 

thermal conductivity detection of evolved CO2 (Model 1010 TOC Analyzer, OI Analytical, 

USA). Water samples for trace element and major cation analyses were passed through 0.1 µm 
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polyethersulfone membranes, acidified to < pH 2 using concentrated trace metals grade nitric 

acid (OmniTrace, EMD Millipore, USA), and stored in PE bottles at 4°C until analysis. Trace 

elements were quantified using inductively-coupled plasma mass spectrometry (ICP-MS; 

NexION 300D, Perkin Elmer, USA) and major cation concentrations were determined by 

inductively-coupled plasma optical emission spectrometry (ICP-OES; Varian Vista RL, Agilent 

Technologies, USA). Thermodynamic modelling of pore-water geochemistry was performed 

using PHREEQCi (Version 3.1.5)33 with the MINTEQA2 V4 database. 

Core Sampling and Analyses. Continuous core sampling was at locations in the CB (n = 

5) and CW (n = 3) deposits corresponding to multi-level well installations (Figure 1). Core 

tubing was advanced in 2.0 m depth intervals using a sonic drilling rig (ML SRS, Fraste S.p.A., 

Italy) to between 6.0 and 8.0 m below ground surface. Sub-samples collected at 0.5 m depth 

intervals from each location were immediately transferred to PE bottles and frozen until analysis. 

Elemental and mineralogical analyses were previously conducted on bulk coke core samples to 

delineate bulk elemental relationships.16 Thin sections were prepared for select coke samples to 

facilitate spectroscopic analyses. These samples were freeze-dried, vacuum-embedded in 

medical-grade epoxy, and mounted on 27 by 47 mm quartz-glass slides using cyanoacrylate 

adhesive. The sections were then ground and polished to 30 μm thick using 0.5 µm diamond and 

synthetic kerosene to avoid dissolution of water-soluble phases.  

Electron Micro-Analyses. Samples were examined using an electron microprobe 

analyzer (EMPA; JXA-8600 Superprobe, JEOL, Japan) fitted with an electron dispersive X-ray 

(EDX) detector. A 20 nm thick C coating was applied to thin sections before EMPA examination 

using a 15 kV acceleration voltage.  
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Synchrotron Micro-Analyses. Thin sections were examined by µXRF and µXANES 

spectroscopy on beamline 13-ID-E at the Advanced Photon Source, Argonne National 

Laboratory. The storage ring was operated at 102 mA current in continuous top-up mode during 

data collection. Incident beam energy was selected using a cryo-cooled double crystal 

monochromator fitted with Si(111) crystals. The incident beam was focused to a 2 by 2 µm spot 

size on mounted thin sections.  

Two-dimensional µXRF mapping of the V Kα emission line was performed at incident 

energies of 5486 eV, 5492 eV, and 5600 eV to examine V distribution and speciation within 

coke particles. These energies were selected based upon preliminary V K-edge µXANES 

measurements.  Fluorescence data was collected with a four-element Si drift detector (Vortex 

ME4, Hitachi, Japan) in continuous scanning mode using a 25 ms practical pixel time. Beamline 

software (GSECARS X-ray Microprobe Map Viewer, Version 8) and custom matrix 

manipulation code (MATLAB 2010a, MathWorks, USA) were used for XRF data processing, 

which included subtraction of the Ti Kβ signal from V Kα maps.  

Subsequent locations for V K-edge µXANES measurements were identified from the 

µXRF maps. These measurements involved scanning the incident energy from -100 to +644 eV 

relative to the theoretical V (5465 eV) K-edge. The energy resolution was 0.1 eV across the 

absorption edge. Sample spectra were collected in fluorescence mode using the same Si drift 

detector, while reference spectra were collected in transmission mode. Reference materials were 

prepared by grinding, diluting in BN, and packing into 0.5 mm thick polytetrafluoroethylene 

holders between two layers of polyimide adhesive tape. The Athena module of the Demeter 

software package (Version 0.9.21)34 was used for data reduction and analysis. Linear 

combination fitting (LCF) was performed from −30 to +65 eV relative to the theoretical V 
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(5465 eV) K-edge. Reference spectra for V(V) oxide [V2O5], V(IV) octaethyl porphyrin 

(VOOEP), V(IV) tetraphenyl porphyrin (VOTPP), V(IV) bis-phenyl butane dionate (VOPBD), 

and roscoelite [K(Al,V)3Si3O10(OH)2]
35 , and vanadium carbide [VC] were measured and 

considered during LCF analysis. 

The V Kα µXRF mapping at 5486 and 5492 eV was performed to further assess the 

spatial distribution of V(IV) and V(III) within coke particles. These energies were selected 

because they corresponded to maximum absorbance of the roscoelite white line (5486 eV) – 

surrogate for octahedrally-coordinated V(III) – and the maximum absorbance of the VOOEP 

edge (5492 eV). Additionally, these energies avoided issues with potential contributions from 

V(V) to the V(IV) pre-edge peak. Speciation maps were generated by dividing the Ti Kβ-

subtracted and I0-normalized V Kα µXRF map obtained at an incident energy of 5486 eV, by 

those obtained at an incident energy of 5492 eV. The resulting quotient maps provide spatial 

information on the relative distribution of V(IV) porphyrin complexes and octahedrally-

coordinated V(III) as V Kα counts per second ratios. 

RESULTS AND DISCUSSION 

Pore-water geochemistry. Geochemical conditions within the CB and CW deposits 

were characterized by a shallow mixing zone between meteoric water and OSPW isotopic 

signatures. This mixing zone was delineated from pore-water δ18O values and Cl concentrations, 

which were strongly correlated (R = 0.77) and exhibited distinct depth-dependent trends 

(Figure 2). More depleted δ18O values characteristic of meteoric water36 were generally observed 

in shallow wells. Pore-water Cl concentrations ranged from 0 to 200 mg L−1 in these shallow 

wells and increased to greater than 400 mg L−1 with depth. Less depleted δ18O and higher Cl 
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concentrations are consistent with OSPW36, which was predominant in deeper wells at most 

locations. Similar to Cl, DOC concentrations generally increased with depth below the water 

table; however, with the exception of samples from location C, concentrations were consistently 

below 8 mg L-1. This mixing zone was, however, less pronounced at location CB where Cl 

concentrations remained low to 8 m depth. Although the mixing zone depth varied among the 

remaining locations, the transition from low to elevated Cl concentrations was typically 

positioned between 2 and 4 m below the water table. 

Pore-water pH ranged from 6.2 to 8.4 and generally increased with depth below the water 

table. Redox potential (Eh) decreased concomitantly with depth from between 300 and 550 mV 

to less than 100 mV at several locations (i.e., AB, AM, AX). The largest pH and Eh variations 

were observed within 2 m of the water table, which ranged from 0.6 to 4.5 m below ground 

surface among all locations. These variations, therefore, occurred above the upper boundary of 

the mixing zone between mildly acidic meteoric water with underlying OSPW, which is 

characterized by alkaline pH and anoxic conditions.29 

Pore-water vanadium. Dissolved V concentrations were commonly elevated 

immediately below the water table and decreased rapidly with depth at all locations (Figures 2, 

3). Vanadium concentrations ranged from less than 0.01 to 3.0 mg L−1; however, values were 

consistently less than 0.5 mg L−1 at depths greater than 1.5 m below the water table. These rapid 

declines in pore-water V generally correspond to the zone of increasing pH and decreasing Eh. 
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Figure 2. Depth profiles of pore-water V, pH, Eh, δ18O and Cl for all sites relative to water table 

elevation. 

Vanadium concentrations were significantly (p < 0.05) correlated with Eh values (R = 

0.65) and thermodynamic modelling indicated H2VO4
- was consistently the dominant aqueous 

species. These findings are consistent with previous research21 that showed V(V) oxyanions 

exhibit greater mobility in natural waters. Although dissolved V(IV) and V(V) species have been 

detected in pore water of a covered oil sands petroleum coke deposit,26 subsequent oxidation of 

V(IV) to V(V) is likely under oxic conditions.27 Oxygen ingress into the uncovered CB deposit 

was expected given the high permeability of coke deposits.37 Therefore, oxidation is likely to 

occur during V release and transport as infiltrating meteoric water migrates downward through 

the vadose zone. Elevated Eh values and V concentrations near the water table, therefore, 

suggest oxic conditions dominated within the vadose zone of the CB and CW deposits. 

Depth profiles of Fe, Mn, SO4 and H2S were generally consistent among Sites A and AM 

(Figure 3), which exhibited distinct differences in dissolved V concentrations. Dissolved Fe and 

Mn concentrations exhibited maximum concentrations of 0.2 and 0.6 mg L-1 near the upper 

boundary of the mixing zone between meteoric water and OSPW. Elevated V concentrations 

typically corresponded to low Fe concentrations observed above this zone (Figures S1, S1). 

Thermodynamic modelling indicated that Mn(II) dominated Mn speciation and predicted the 
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presence of both Fe(II) and Fe(III). However, poor agreement between measured and theoretical 

Eh values is well established38 and slight decreases (i.e., -50 mV) in input Eh values shifted 

model predictions to Fe(II) as the dominant Fe oxidation state. Dissolved H2S concentrations 

approached 10 μg L-1 proximal to maximum Fe and Mn concentrations, suggesting a sharp 

transition from oxic to anoxic conditions at the upper boundary of the mixing zone between 

meteoric water and OSPW. The concentration of DOC increased downward slightly, 

corresponding to a transition to OSPW and anoxic conditions, but exceeded 8 mg L-1 only at 

location C in the CW deposit. Reduction of V(V) can be coupled with microbial oxidation of 

organic matter;39 however, rates generally decrease with increasing pH and are slowest above pH 

6.24 Reduction of V(IV) to V(III) coupled with H2S oxidation is possible; however, reduction 

rates are slow even at H2S concentrations much higher than those measured.40 Therefore, the 

occurrence of elevated V concentrations under anoxic conditions suggests that V(V) reduction 

was inhibited. Complexation of V(IV) or V(III) with organic and inorganic ligands has potential 

to inhibit redox transformations and enhance solubility.24,27,40 Nevertheless, V concentrations 

within and below the mixing zone consistently decreased to less than 0.2 mg L-1 with depth at all 

locations including Sites A and AM. 
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Figure 3. Depth profiles of pore-water V, pH, Eh, alkalinity (Alk.; as CaCO3), Cl, Fe, Mn, SO4, 

and H2S at Sites A and AM. Horizontal dashed line represents the water table elevation at the 

time of sampling. 

Previous laboratory studies have reported V concentrations in coke leachates generally 

increase with pH.5,21,25,41 Although site-dependent variations in redox conditions were not 

apparent, shallow wells at Sites A and AM exhibited substantial differences in pH and alkalinity. 

Dissolved V concentrations ranged from 1.0 to 3.0 mg L-1 within the upper 2 m of the saturated 

zone at Site A (Figure 3). Pore-water pH at this site was consistently greater than 7.4 which is 

higher than the point of zero charge (pHPZC) of 6.5 ± 0.3 of oil sands fluid petroleum coke.41 In 

contrast, pore-water pH increased from 6.1 to 8.1 with depth at Site AM, where the maximum V 

concentration was 0.6 mg L-1. Thermodynamic modelling indicated that pore-water was 

consistently undersaturated with respect to calcium vanadates and other V(V) phases. These site-

dependent differences in V concentrations could, therefore, result from pH-dependent sorption of 

V(V) oxyanions onto coke particle surfaces. Coke particles would exhibit net positive surface 
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charge within the upper 2 m of the saturated zone at Site AM. Sorption of H2VO4
- onto coke 

particle surfaces would limit dissolved V concentrations at this site. Less extensive 

H2VO4
- sorption at higher pH could explain higher V concentrations observed at Site A. 

Previously-reported positive relationship between dissolved V and HCO3
- concentrations in coke 

leachates6 may result from formation of neutral or negatively-charged aqueous V(IV) carbonate 

complexes (e.g., VOCO3
0, VO(OH)CO3

−).24,40 Although alkalinity was greater than 100 mg L-1 

(as CaCO3) for Site A samples that exhibited V concentrations above 1 mg L-1, modelling 

suggests that formation of aqueous V(IV) species was thermodynamically unfavorable. 

Solid-Phase Geochemistry. Fluid petroleum coke particles were composed of a sub-

spherical core bounded by several successive concentric layers (Figure S3). These concentric 

layers were comprised of two zones: (1) an inner region measuring 5 to 10 µm thick; and (2) an 

outer margin measuring 1 to 5 µm thick. The inner region of individual layers was comprised 

mostly of C and S and generally consistent with bulk coke composition.15 In contrast, the outer 

margins contained elevated K, Al, Si, Ca and Mg contents relative to C and S, and both Fe and 

Ti were commonly detected (Figure S4). Previous TEM-EDX analysis of oil sands fluid 

petroleum coke identified V-bearing nanocrystalline mineral clusters containing Si, O, S and Fe. 

However, these samples were crushed prior to analysis and the location of these clusters within 

coke particles was not reported.12 The chemical and mineralogical composition of coke is 

derived from the bitumen source; therefore, spatial variations are attributed to the fluid coking 

process. Coke particles are continuously circulated between burner vessel – operated at 480 to 

565°C – and coker vessel (i.e., fluidized bed reactor).42 Bitumen is sprayed onto hot coke 

particles within the coker vessel to facilitate thermal decomposition of the non-distillable 
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bitumen fraction. Volatile compounds are recovered and residual hydrocarbons form a new layer 

at particle surfaces. 

Vanadium Speciation in Coke Particles. Coke particles exhibited heterogeneous V 

distribution with concentrations typically highest at the outer margins of concentric layers 

(Figure 4). Additionally, V K-edge µXANES spectra commonly differed between the inner 

region and outer margin of individual concentric layers (Figure 4, Table S1). Spectra obtained 

from layer inner regions were generally consistent with bulk V K-edge spectra for oil sands fluid 

petroleum coke.16 These spectra exhibited a distinct pre-edge peak positioned at 5469 eV, which 

may be associated with the V(IV) or V(V) oxidation state. However, LCF analysis of these 

µXANES spectra and previous finite difference modelling of the near-edge structure 

(FDMNES)16,43 indicated that V(IV) in porphyrin-like square-pyramidal N and O coordination 

dominated V speciation (Table S1). Nevertheless, V(V) likely constituted minor to trace 

component of these V K-edge µXANES spectra that was not associated with V(IV) porphyrin 

complexes. 

Corresponding µXANES spectra obtained from outer margins of individual concentric 

layers exhibited a lower magnitude pre-edge peak at 5469 eV. Additionally, these spectra 

exhibited a doublet feature between 5484 and 5499 eV that was inconsistent with V K-edge 

spectra for V(IV) porphyrins.44 These spectral features were, however, generally consistent with 

V(III) substituted into distorted octahedral O-coordinated sites in (phyllo)silicate minerals.35,45 

The phyllosilicate roscoelite [KAlV2Si3O10(OH)2], which contains this manner of V(III) 

coordination, exhibited V K-edge XANES spectra35 similar to those obtained from outer 

margins. Similar distorted octahedrally-coordinated V(III) has previously been reported for 
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coals.45  Similar to the layer inner regions, V(V) likely represented a minor to trace component of 

sample spectra from the our margins of concentric layers. 

 

Figure 4. Vanadium Kα µXRF maps obtained at 5600 eV for samples from depths of 0 m (a), 

2 m (b) and 7 m (c) for location AB in the CB deposit. (d) Measured (solid lines) and fitted (open 

circles) V K-edge µXANES spectra for multiple spots from V Kα maps. Scale bars on µXRF 

maps represent 20 µm and units are counts per second (CPS). 

Linear combination fitting was performed for V K-edge µXANES spectra (n = 34) from 

selected spots on multiple V Kα µXRF maps (n = 8) for various sampling locations. The LCF 

results revealed that relative proportions of V(IV) porphyrins compared to octahedrally-
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coordinated V(III) ranged from 5.8 to 0.8 (Table S1). Fitted spectra for particle cores and layer 

inner regions comprised up to 86% V(IV) porphyrin reference spectra (i.e., VOOEP, VOPBD) 

(Figure S5). In contrast, fitted spectra for outer layer margins included up to 50% octahedrally-

coordinated V(III) standard (i.e., roscoelite). For example, LCF results for a sample obtained 

2.0 m below surface at site AB (AB-2m) displayed substantial spatial differences (Figure 4). 

Approximately 50% of a µXANES spectrum from the outer layer margin of this sample (AB-

2m-M3-S1) was attributed to distorted octahedrally-coordinated V(III). Vanadium(IV) porphyrin 

reference spectra accounted for greater than 60% of spectra obtained for other spots (AB-2m-

M3-S2, AB-2m-M3-S3) on this sample, which were located within a layer inner region and 

particle core, respectively. These results revealed that V(IV) porphyrins dominated V speciation 

within coke particles; however, octahedrally-coordinated V(III) was prevalent at the outer 

margins of concentric rings. Vanadium(V) phases exhibit a high-intensity pre-edge peak shifted 

to slightly higher energy compared to V(IV) porphyrins (Figure S5). The V(V) spectrum slightly 

improved fits over the pre-edge peak region (5465 to 5473 eV), suggesting the presence of a 

minor to trace V(V) component. 

Similar spatial variations in the relative proportion of V(IV)-porphyrin complexes and 

octahedrally-coordinated V(III) were revealed by speciation mapping (Figure 5). These maps 

showed that V(IV)-porphyrin complexes generally dominated solid-phase V speciation. 

However, octahedrally-coordinated V(III) was commonly more abundant in outer margins of 

layers (i.e., AB-7m-M4-S3), where total V Kα counts were generally highest, compared to inner 

regions of layers (i.e., AB-7m-M4-S1, AB-7m-M4-S2). These maps provided speciation 

information at a much higher spatial coverage compared to V K-edge µXANES point 
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measurements. Nevertheless, interpretations based on these speciation maps were consistent with 

the µXANES data. 

 

Figure 5. (a) Vanadium Kα µXRF map obtained at incident energy of 5600 eV for sample from 

depth of 7 m at location AB in the CB deposit. (b) Corresponding oxidation state map calculated 

from the pixel-wise quotient of V Kα µXRF maps obtained at incident energies of 5486 and 

5492 eV. (c) Measured (solid lines) and fitted (open circles) V K-edge µXANES spectra for 

selected spots on this sample. Scale bars on µXRF maps represent 20 µm and units are counts 

per second (CPS) and CPS quotient. 

Conceptual Model of V Mobility. Oil sands fluid petroleum coke particles exhibit 

systematic zonation of V species, which is attributed to the coking process. Although bulk V 

speciation is dominated by V(IV) porphyrin complexes,16 octahedrally-coordinated V(III) was 

abundant at outer margins of concentric layers. The prevalence of V(III) at coke-particle surfaces 

– the outer margin of outer-most concentric layer – and expected stability of V(IV) porphyrin 

complexes suggest V(III) is a potential dissolved V source. However, the minor to trace V(V) 

component represents another possible contributor to dissolved V in fluid petroleum coke 

deposits.  

Thermodynamic modeling indicated that the V(V) oxyanion H2VO4
- dominated aqueous 

speciation and consistent undersaturation of pore-water with respect to V(V) phases (e.g., Ca-

vanadates). Extensive V leaching in the presence of deionized water and exchangeable ions has 
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previously been reported for fluid petroleum coke.16 Therefore, extensive V(V) accumulation 

within coke particles is unlikely. These results suggest that oxidative V(III) weathering at coke 

particle surfaces may produce a pool of soluble V(V) within the vadose zone, which could be 

transported downward to the saturated zone with infiltrating meteoric water. However, the 

presence of an initial V(V) pool produced during coking cannot be ruled out. 

Dissolved V concentrations within the saturated zone were strongly controlled by pH and 

redox conditions. The highest V concentrations were generally observed under oxic conditions 

and neutral to alkaline pH. Substantial decreases in dissolved V concentrations were, however, 

observed for the same pH conditions under anoxic conditions. Since precipitation of V(V) phases 

was thermodynamically unfavorable, these observations suggest that V(V) reduction to V(IV) or 

V(III) may lead to sorption of cationic species at alkaline pH or to precipitation of secondary 

(hydr)oxide phases. Overall, these results indicate that V leaching and mobility are enhanced 

when fluid petroleum coke is exposed to oxygen in the presence of meteoric waters. 

ASSOCIATED CONTENT 

Supporting Information  

One additional table and five additional figures referenced in the text (PDF). 

AUTHOR INFORMATION 

Corresponding author 

*E-mail: matt.lindsay@usask.ca; phone: 306-966-5693; fax: 306-966-8593  

Notes 

The authors declare no competing financial interest. 

mailto:matt.lindsay@usask.ca


ACCEPTED MANUSCRIPT 

https://doi.org/10.1021/acs.est.6b05682  21 

 

ACKNOWLEDGEMENTS 

Funding was provided by the Natural Sciences and Engineering Council of Canada (NSERC) 

and Syncrude Canada Ltd. through the NSERC Industrial Research Chairs program (Grant 

No. IRCPJ-450684-13). A portion of the research described in this paper was performed at the 

Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility 

operated for the DOE Office of Science by Argonne National Laboratory under Contract No. 

DE-AC02-06CH11357. We thank N. Chen, T. Lanzirotti and M. Newville for assistance with 

XAS data collection and analysis. 

REFERENCES 

(1) Furimsky, E. Gasification of oil sand coke: Review. Fuel Proc. Technol. 1998, 56 (3), 263–

290. DOI 10.1016/S0378-3820(98)00048-4 

(2) ST98-2015: Alberta’s Energy Reserves 2014 and Supply/Demand Outlook 2015–2024. 

Alberta Energy Regulator: Calgary, AB, 2015; https://www.aer.ca/documents/sts/ST98/ST98-

2015.pdf 

(3) Fedorak, P.M; Coy, D.L. Oil sands cokes affect microbial activities. Fuel 2006, 85, 1642-

1651. DOI 10.1016/j.fuel.2006.02.015  

(4) Puttaswamy, N.; Turcotte, D.; Liber, K. Variation in toxicity response of Ceriodaphnia dubia 

to Athabasca oil sands coke leachates. Chemosphere 2010, 80 (5), 489–497. DOI 

10.1016/j.chemosphere.2010.04.071 

(5) Puttaswamy, N.; Liber, K. Identifying the causes of oil sands coke leachate toxicity to aquatic 

invertebrates. Environ. Toxicol. Chem. 2011, 30 (11), 2576-2585. DOI 10.1002/etc.653  



ACCEPTED MANUSCRIPT 

https://doi.org/10.1021/acs.est.6b05682  22 

 

(6) Puttaswamy, N.; Liber, K. Influence of inorganic anions on metals release from oil sands 

coke and on toxicity of nickel and vanadium to Ceriodaphnia dubia. Chemosphere 2012, 86, 

521-529. DOI 10.1016/j.chemosphere.2011.10.018  

(7) Nakata, C.; Qualizza, C.; MacKinnon, M.D.; Renault, S. Growth and physiological responses 

of Triticum aestivum and Deschampsia caespitosa exposed to petroleum coke. Water, Air, Soil, 

Pollut. 2011, 216 (1), 59-72. DOI 10.1007/s11270-010-0514-x 

(8) Baker, L.F., Ciborowski, J.J.H., MacKinnon, M.D. Petroleum coke and soft tailings sediment 

in constructed wetlands may contribute to the uptake of trace metals by algae and aquatic 

invertebrates. Sci. Total Environ. 2012, 414, 177-186. DOI 10.1016/j.scitotenv.2011.10.011  

(9) Zhang, Y.; Shotyk, W.; Zaccone, C.; Noernberg, T.; Pelletier, R.; Bicalho, B.; Froese, D.G.; 

Davies, L.; Martin, J. Airborne petcoke dust is a major source of polycyclic aromatic 

hydrocarbons in the Athabasca oil sands region. Environ. Sci. Technol. 2016, 50 (4), 1711-1720. 

DOI 10.1021/acs.est.5b05092  

(10) Caruso, J.A.; Zhang, K.; Schroeck, N.J.; McCoy, B.; McElmurry, S.P. Petroleum coke in 

the urban environment: A review of potential health effects. Int. J. Environ. Res. Public Health 

2015, 12 (6), 6218–6231. DOI 10.3390/ijerph120606218 

(11) Dechaine, G.P.; Gray, M.R. Chemistry and association of vanadium compounds in heavy oil 

and bitumen and implications for their selective removal. Energy Fuels 2010, 24, 2795-2808. 

DOI 10.1021/ef100173j  

(12) Zuliani, J.E.; Miyata, T.; Mizoguchi, T.; Feng, J.; Kirk, D.W.; Jia, C.Q. Characterization of 

vanadium in oil sands fluid petroleum coke using electron microscopy. Fuel 2016, 178, 124–128. 

DOI 10.1016/j.fuel.2016.03.015 



ACCEPTED MANUSCRIPT 

https://doi.org/10.1021/acs.est.6b05682  23 

 

(13) Har, S. Characterization of Oil Sands Fluid Coke. M.Sc. Thesis, University of Alberta, 

Edmonton, AB, 1981. 

(14) Chung, K.H.; Janke, L.C.G.; Dureau, R.; Furimsky, E. Leachability of cokes from Syncrude 

stockpiles. Environ. Sci. Eng. 1996, 9 (1), 50-53. 

(15) Zubot, W.; MacKinnon, M.D.; Chelme-Ayala, P.; Smith, D.W.; Gamal El-Din, M. 

Petroleum coke adsorption as a water management option for oil sands process-affected water. 

Sci. Total Environ. 2012, 427-428, 364-372. DOI 10.1016/j.scitotenv.2012.04.024 

(16) Nesbitt, J.A.; Lindsay, M.B.J.; Chen, N. Geochemical characteristics of oil sands fluid 

petroleum coke. Appl. Geochem. 2017, 76, 148-158. DOI 10.1016/j.apgeochem.2016.11.023 

(17) Reynolds, J.G.; Gallegos, E.J.; Fish, R.H; Komlenic, J.J. Characterization of the binding 

sites of vanadium compounds in heavy crude petroleum extracts by electron paramagnetic 

resonance spectroscopy. Energy Fuels 1987, 64 (1), 36-44. DOI 10.1021/ef00001a007 

(18) Filby, R.H.; Strong, D. Nickel (II) and vanadium (IV) complexes in Alberta oil-sand 

bitumens. Tar sand and oil upgrading technology. AIChE Symp. Ser. 1991, 282.  

(19) Grosjean, E.; Adam, P.; Connan, J.; Albrecht, P. Effects of weathering on nickel and 

vanadyl porphyrins of a Lower Toarcian shale of the Paris basin. Geochim. Cosmochim. Acta 

2004, 64 (4), 789–804. DOI 10.1016/S0016-7037(03)00496-4 

(20) Furimsky, E. Characterization of cokes from fluid/flexi-coking of heavy feeds. Fuel 

Process. Technol. 2000, 67, 205-230. DOI 10.1016/S0378-3820(00)00103-X 

(21) Wehrli, B.; Stumm, W. Vanadyl in natural waters: Adsorption and hydrolysis promote 

oxygenation. Geochim. Cosmochim. Acta 1989, 53, 69-77. DOI 10.1013/0016-7037(89)90273-1 

(22) Peacock, C.L.; Sherman, D.M. Vanadium(V) adsorption onto goethite (α-FeOOH) at pH 1.5 

to 12: a surface complexation model based on ab initio molecular geometries and EXAFS 



ACCEPTED MANUSCRIPT 

https://doi.org/10.1021/acs.est.6b05682  24 

 

spectroscopy. Geochim. Cosmochim. Acta 2004, 68 (8), 1723–1733. DOI 

10.1016/j.gca.2003.10.018 

(23) Wright, M.T.; Stollenwerk, K.G.; Belitz, K. Assessing the solubility controls on vanadium 

in groundwater, northeastern San Joaquin Valley, CA. Appl. Geochem. 2014, 48, 41–52. DOI 

10.1016/j.apgeochem.2014.06.025 

(24) Huang, J.-H.; Huang, F.; Evans, L.; Glasauer, S. Vanadium: Global (bio)geochemistry. 

Chem. Geol. 2015, 417, 68–89. DOI 10.1016/j.chemgeo.2015.09.019 

(25) Zubot, W. Removal of naphthenic acids from oil sands process water using petroleum coke. 

M.Sc. Eng. Thesis, University of Alberta, Edmonton, AB, 2010. 

(26) Baes, C.F., Mesmer, R.E. The hydrolysis of cations. John Wiley & Sons, 1976. 

(27) Jensen-Fontaine, M. Vanadium speciation in samples relevant to the Athabasca oil sands 

region. M.Sc. Thesis, University of Alberta, Edmonton, AB, 2012. 

(28) Li, X.S.; Glasauer, S.; Le, X.C. Erratum to "Speciation of vanadium in oilsand coke and 

bacterial culture by high performance liquid chromatography inductively coupled plasma mass 

spectrometry" [Anal. Chim. Acta 602 (2007) 17-22] (DOI:10.1016/j.aca.2007.09.004). Anal. 

Chim. Acta 2009, 648 (1), 128. DOI 10.1016/j.aca.2009.06.053 

(29) Allen, E.W. Process water treatment in Canada’s oil sands industry: I. Target pollutants and 

treatment objectives. J. Environ. Eng. Sci. 2008, 7 (2), 123–138. DOI 10.1139/S07-038 

(30) Nordstrom, D.K. Thermochemical redox equilibria of ZoBell's solution. Geochim. 

Cosmochim. Acta 1977, 41, 1835-1841. DOI 10.1016/0016-7037(77)90215-0 

(31) Light, T.S. Standard solution for redox potential measurements. Anal. Chem. 1972, 44 (6), 

1038-1039. DOI 10.1021/ac60314a021 



ACCEPTED MANUSCRIPT 

https://doi.org/10.1021/acs.est.6b05682  25 

 

(32) Wassenaar, L.I.; Hendry, M.J.; Chostner, V.L.; Lis, G.P. High resolution pore water δ2H 

and δ18O measurements by H2O(liquid)-H2O(vapor) equilibration laser spectroscopy. Environ. 

Sci. Technol. 2008, 42, 9262-9267. DOI 10.1021/es802065s  

(33) Parkhurst, D.L.; Appelo, C.A.J. Description of input and Examples for PHREEQC - A 

computer program for speciation, batch-reaction, one-dimensional transport, and inverse 

geochemical calculations. In U.S. Geological Survey Techniques and Methods, Book 6; USGS 

2013; p 497.  

(34) Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray 

absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537-541. DOI 

10.1107/S0909049505012719  

(35) Wong, J.; Lytle, F.W.; Messmer, R.P.; Maylotte, D.H. K-edge absorption spectra of selected 

vanadium compounds. Phys. Rev. B 1984, 30 (10), 5596-5610. DOI 10.1103/PhysRevB.30.5596 

(36) Baer, T.J. An evaluation of the use of natural stable isotopes of water to track water 

movement through oil sands mine closure landforms. M.Sc. Thesis, University of Saskatchewan, 

Saskatoon, SK, 2014. (37) Lahmira, B.; Barbour, L.; Huang, M. Numerical modeling of gas flow 

in the Suncor coke stockpile covers. Vadose Zone J. 2013, 13 (1), 1-12. DOI 

10.2136/vzj2013.07.0119  

(38) Lindberg, R.D.; Runnells, D.D. Ground Water Redox Reactions: An Analysis of 

Equilibrium State Applied to Eh Measurements and Geochemical Modelling. Science 1984, 225 

(4665), 925-927. DOI 10.1126/science.225.4665.925 

(39) Borch, T.; Kretzschmar, R.; Kappler, A.; Van Cappellen, P.; Ginder-Vogel, M.; Voegelin, 

A.; Campbell, K. Biogeochemical Redox Processes and their Impact on Contaminant Dynamics. 

Environ. Sci. Technol. 2010, 44, 15-23. DOI 10.1021/es9026248 



ACCEPTED MANUSCRIPT 

https://doi.org/10.1021/acs.est.6b05682  26 

 

(40) Wanty, R.B.; Goldhaber, M.B. Thermodynamics and kinetics of reactions involving 

vanadium in natural systems: Accumulation of vanadium in sedimentary rocks. Geochim. 

Cosmochim. Acta 1992, 56 (4), 1471–1483. DOI 10.1016/0016-7037(92)90217-7 

10.1016/j.gca.2003.10.018 

(41) Pourrezaei, P.; Alpatova, A.; Chelme-Ayala, P.; Perez-Estrada, L.A.; Jensen-Fontaine, M.; 

Le, X.C.; Gamal el-Din, M. Impact of petroleum coke characteristics on the adsorption of the 

organic fractions from oil sands process-affected water. Int. J. Environ. Sci. Technol. 2014, 11, 

2037-2050. DOI 10.1007/s13762-013-0406-x  

(42) Anthony, E. Fluidized bed combustion of alternate solid fuels; status, success and problem 

of the technology. Prog. Energy Combust. Sci. 1995, 21, 239-268. DOI 10.1016/0360-

1285(95)00005-3 

(43) Bunău, O.; Joly, Y. Self-consistent aspects of x-ray absorption calculations. J. Phys.: 

Condens. Matter 2009, 21, 345501 (11pp). DOI 10.1088/0953-8984/21/34/345501 

(44) Lytle, F. Cold Lake asphaltene V and Ni XAS spectra. International X-ray Absorption 

Society XAFS Database, 1983. Retrieved from 

http://ixs.iit.edu/database/data/Farrel_Lytle_data/RAW/ on Mar. 31, 2016. 

(45) Maylotte, D.H.; Wong, J.; St. Peters, R.L.; Lytle, F.W; Greegor, R.B. X-ray absorption 

spectroscopic investigation of trace vanadium sites in coal. Science 1981, 214 (4520), 554-556. 

DOI 10.1126/science.214.4520.554 


