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ABSTRACT 

 

Huntington’s disease (HD) is a fatal neurodegenerative disorder resulting from a CAG repeat 

expansion in the first exon of the gene encoding the Huntingtin protein (Htt) with physical, 

emotional, and cognitive symptoms. Current standard-of-care regimens for HD are limited to 

symptom-mitigating therapies with little potential for increasing the overall quality of life. As such, 

there is an imminent need for the development of more effective treatment options, efforts for 

which are enabled by a greater understanding of the molecular basis of disease initiation, 

progression, and pathology. Alterations in numerous signal transduction pathways in HD result 

from aberrant kinase signaling. 

 Protein phosphorylation is catalyzed by a class of enzymes called kinases, the cellular 

complement of which is referred to as its kinome. The kinases responsible for driving the fate of 

phosphoproteomes are central to elucidating various complex cellular events. The interactive 

capacity of the phosphate group makes the phosphorylated protein versatile in communicating. 

The study of kinome led to the development of a high throughput screening tool, peptide arrays. 

The arrays were exposed to lysates from cells / tissues where in the kinases from them 

phosphorylate the peptide spotted on the arrays. The degree of phosphorylation is measured for 

each spot on the array and compared to the controls thereby determining the upregulation or 

downregulation of signaling pathways in response to different biological treatments or conditions. 

The online tools used were a data analysis pipeline, Platform for Integrated, Intelligent Kinome 

Analysis-2 (PIIKA 2), and pathway analysis pipeline InnateDB. The kinases regulating the 

significantly (de)phosphorylating peptides were predicted through an online tool NetworKIN 

which utilized the output from PIIKA 2.  

 Peptide arrays were utilized to identify the dysregulated kinase signaling in a) Neural stem 

cells (NSC) using a previously designed array with 298 peptides b) R6/2 HD mouse model across 

key developmental  time points using customized arrays with 1268 peptides. In an effort to 

investigate disease-associated changes in signal transduction activity, global patterns of kinase 

activity (kinome analysis) were characterized within a NSC line derived from a patient with a 

confirmed diagnosis of HD. As indicated by kinome analysis and independently verified by 

phosphorylation-specific antibodies, cytoskeletal signaling, and in particular 

LIMK1/cofilin/slingshot signaling, was dysregulated in HD NSC’s. GSK3β was reported as a 



iii 

 

major upstream kinase potentially activated in the HD NSCs by NetworKIN analysis, an online 

tool. These changes in cytoskeletal associated signaling align with differences in dendrite 

formation between NSCs from HD and age-/sex-matched healthy controls (HC). Dendrites in the 

HD NSCs were 25% shorter relative to dendrites in control NSCs. The peptide array technique 

was then applied to R6/2 HD mouse model using the lysates from 8 key developmental time points 

(Embryonic 9 and 14; at birth; weeks 3, 4, 5, 7, 10) from both sexes.  The subsequent confirmation 

of PIIKA 2 enhanced data transformation followed by pathway analysis revealed cytoskeletal 

dynamics as significantly dysregulated temporally. Changes in upstream regulators ROCK2 and 

PAK were prominent in the embryonic time points and LIMK1/cofilin/slingshot along with 

profilin showed alterations in the later time points especially the 3w and 4w, when the mutant 

huntingtin protein (mHtt) appears in the striatum the most affected cell type in HD brain. 

Collectively, these data highlight the potential role of cytoskeletal dynamics in HD pathology and 

shows that the targeted modulation of these signaling molecules may confer therapeutic benefit. 
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1. REVIEW OF THE LITERATURE 

 

The main focus of this literature review are the important aspects of Huntington’s disease and the 

kinome analysis utilized to understand the dysregulated kinase signaling.  

 

1.1 Neurodegenerative disorder with polyglutamine repeats 

        

Huntington’s Disease (HD) is one of nine known neurodegenerative disorders (Table 1.1)       

with a polyglutamine (polyQ) expansion in their respective disease - causing protein (Pennuto et 

al., 2009; Stoyas and La Spada, 2018) (Figure 1.1). HD is a progressive, autosomal dominantly 

inherited neurological disorder characterized by prominent motor, psychiatric, and cognitive 

disturbances resulting from the degeneration of striatal neurons (Haddad and Cummings, 1997). 

The other eight members of the CAG-polyglutamine disease family include spinal and bulbar 

muscular atrophy (SBMA), dentatorubral pallidoluysian atrophy, and six spinocerebellar ataxias 

(SCA 1, 2, 3, 6, 7, and 17) (Budworth and McMurray, 2013). All CAG - polyglutamine diseases 

are dominantly inherited, with the exception of SBMA, which is X-linked. The polyglutamine tract 

is believed to be the cause of the toxic gain of function of proteins that lead to the degeneration 

and death of specific neurons, mentioned in the Table 1.1. In HD striatal degeneration is the main 

cause of the disease process, but other structures such as the cortical and hippocampal neurons are 

also affected by mutant huntingtin (mHtt) (Landles and Bates, 2004). The intriguing aspect of 

polyglutamine disorders is that they all affect a specific subset of neuronal population, the 

mechanisms of which are poorly understood, which complicates studies identifying suitable 

therapeutic options (Cattaneo et al., 2001; Fischbeck, 2001; Thomas, 2006).  

 

1.1.1 CAG repeats in Huntington disease  

 

The timing of onset of HD is determined by length of polyglutamine repeat. In the normal 

population, the Htt repeat size varies from 17-29. The expansion of CAG repeats beyond 39 causes 

the expanded polyQ sequence in the protein (Gusella et al., 1983; Orr and Zoghbi, 2007). The 

defect in HD is the expansion of an unstable DNA segment containing polymorphic trinucleotide 

cytosine-adenine-guanine (CAG) repeats in the coding sequence. One copy of mHtt from either 

parent is sufficient to cause the disease. Repeats between 27-35 are referred to as intermediate  



2 

 

Table 1.1: List of CAG trinucleotide repeat disorders, genes involved, repeat size and tissues 

affected (Permission to use from Stoyas and La Spada, 2018). 

 

Disease Gene Normal 

(repeats) 

Disease 

(repeats) 

Neuropathology 

Huntington’s Disease Htt  6–35 36–250  Medium spiny neurons of 

striatum and cortical 

projection neurons  

Spinal and bulbar 

muscular atrophy 

AR  5-34  37-70  Lower motor neuron in 

spinal cord and bulbar 

region of brainstem  

Dentatorubral 

pallidoluysian atrophy  

Atrophin-1  7-35  49–88  Brainstem, cerebellar and 

deep midbrain structures  

Spinocerebellar ataxia 1 Ataxin-1  6–44  39–83  Atrophy, gliosis and severe 

loss of Purkinje cells in 

cerebellum  

Spinocerebellar ataxia 2 Ataxin-2  13–33  32–77  Purkinje and granule cells 

and gliosis of inferior olive 

and pons 

Spinocerebellar ataxia 3 Ataxin-3  12–40  54–89  Spinocerebellar tract, 

brainstem and spinal cord  

Spinocerebellar ataxia 6 Ataxin-6 4–18  19–33  Cerebellar atrophy, loss of 

Purkinje cells and cerebellar 

granule cells  

Spinocerebellar ataxia 7 Ataxin-7  4–35  37–306  Retinal photoreceptors, 

cerebellar cortex, dentate 

nucleus, inferior olive and 

pontine nuclei  

Spinocerebellar ataxia17 TBP  25–42  43–66  Cortex, striatum and 

cerebellum and Purkinje 

cells  
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alleles, whereas 36-39 is incomplete penetrance and beyond 39 is referred to as complete 

penetrance (Chandra et al., 2014). The repeat size is responsible for pathogenesis and individuals 

with higher repeats show earlier and more severe signs of the disease. Offspring of an HD parent 

have a 50% chance of inheriting the disease and there is an inverse relationship between the age 

of onset and the CAG repeat size (Figure 1.1). Notably a recent study pointed out that an 

uninterrupted sequence of CAG repeats is supposedly the most important factor in predicting the 

age of onset of HD (Genetic Modifiers of Huntington's Disease Consortium. Electronic address 

and Genetic Modifiers of Huntington's Disease, 2019; Wright et al., 2019). 

 

 

 

 

Figure 1.1: The length of CAG repeat is inversely related to the age of onset. 

This is a schematic of the how age of onset is determined by the number of CAG repeats. The 

normal gene contains ≤ 26 CAG repeats (purple). The intermediate allele contains 27-35 repeats 

(blue), but there is incomplete penetrance between 36-39 (yellow). HD is inevitable if the repeat 

size increases beyond 39 (red) (Permission to use from Chandra et al., 2014). 
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1.1.2  Huntington disease: discovery and prevalence  

 

Huntington’s disease was first described by George Huntington an American physician, in 

1872 after studying several affected individuals. As mentioned earlier HD polyQ expansion is 

attributed to a defect in a single gene - huntingtin (Htt) (Bertram and Tanzi, 2005). The median 

life expectancy after the onset of symptoms of the disease is approximately 21.4 years (Foroud et 

al., 1999). Symptoms generally manifest in the fourth or fifth decade of life. Juvenile HD (JHD) 

accounts for 5-10% of all HD cases, and symptoms can occur even before the age of 21 (Quigley, 

2017) (Figure 1.2). The polyQ repeat length is generally more than 60 in JHD, and such individuals 

do not survive more than 10-15 years after the onset of symptoms (Koutsis et al., 2013; Quigley, 

2017). The prevalence of HD is higher in the European population, compared to the East Asian 

population, and affects 5-7 individuals per 100,000 worldwide (Pringsheim et al., 2012) and one 

in approximately 7,000 Canadians (https://www.huntingtonsociety.ca/).  

 

 

 

 

Figure 1.2: Juvenile HD (JHD) accounts for 5-10% of all HD cases. 

Symptoms of juvenile HD occur in the late teens when the repeats size is more than 55. The adult 

and late onset of HD varies upon the CAG repeats (Permission to use from Nopoulos, 2016). 
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The discovery of the huntingtin gene was after more than 100 years of the first 

comprehensive description of adult-onset of the disease. The Huntington’s Disease Collaborative 

Research Group (HDCRG) discovered the HD gene after 10 years of research (MacDonald et al., 

1993). The gene locus was mapped to chromosome 4p16.3 in the early 1980’s, but it was first 

cloned in 1993 (MacDonald et al., 1993). The disease is caused by mutation in the gene, IT15 

(interesting transcript 15), containing 67 exons encoding a 3144 amino acid protein called 

“huntingtin” or “Htt”. The mutation is an expanded trinucleotide repeat region in exon 1 of 

huntingtin (Htt).  

 

1.1.3 Striatum: structure and function  

 

HD is caused due to the degeneration of neurons in the striatum. In spite of the ubiquitous 

presence of Htt in neurons, it is uncertain why the striatal medium spiny neurons are principally 

vulnerable to the mHtt. The basal ganglia is comprised of the striatum, globus pallidus, 

subthalamic nuclei and substantia nigra. The circuitry of the basal ganglia is complex with multiple 

parallel loops that control and modulate cortical output. Striatum is the major receptive component 

of the basal ganglia, containing three nuclei, namely caudate, putamen and nucleus accumbens 

(Figure 1.3). The first to degenerate in HD is the caudate nucleus followed by putamen and then 

the nucleus accumbens in the later stages of the disease. The striatum has inhibitory GABAergic 

(Gamma aminobutyric acid) neurotransmitters. Almost 90% of the striatal neurons are medium 

spiny neurons that express GABA, while about 10% are interneurons. Apart from this, the striatum 

also widely expresses dopamine receptors. Cortico-striatal neurons and thalamo-striatal inputs are 

glutaminergic and afferents from the substantia nigra and the ventral tegmental area are 

dopaminergic (Andre et al., 2010). 

The primary function of the striatum is the regulation of motor movements and the 

organization of motor activity requires multiple synaptic inputs from the cortex, midbrain and 

thalamus. The striatum regulates both motor and non-motor activities such as cognition, language, 

emotion, and motivation. 
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Figure 1.3: Striatum is the major receptive component of the basal ganglia. 

This schematic represents the location of striatum in the human brain. Striatum consists of two 

structures putamen and caudate nucleus.  (Permission to use from Biological Psychology 6e, Book 

-2010)  

 

 

1.1.4 Gain of function vs neurodevelopmental disease 

 

There are two concepts of neuronal degeneration, one the classic concept and second the 

neurodevelopmental concept of degeneration (Figure 1.4). The classic theory of HD is that the 

mHtt results in a gain-of-function and the toxicity is responsible for neuronal cell death. 

Conversely, the loss-of-function of normal Htt in tandem with the increase in mHtt accelerates the 

process. The current perception is that mHtt causes the disease due to accumulation of the toxic 
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protein in the cell, which ultimately leads to degeneration (Bowater and Wells, 2001; La Spada et 

al., 1994; Orr and Zoghbi, 2007). Htt-deficient mice die early during embryonic development, 

while Htt +/- mice exhibit no or few neurological abnormalities therefore, emphasizing the gain-

of-function as the cause of toxicity (Duyao et al., 1995; Nasir et al., 1995). 

 

        

 

 

Figure 1.4: Models of degeneration in HD. 

Schematic of the similarities / differences in classic and developmental concepts leading to 

degeneration in HD. Classic concept of degeneration suggests that normal neuron degenerates in 

the disease process due to the effect of mutant HD gene. Developmental concept is based on 

aberrant development, where the disease process begins with abnormal neuronal development, 

compensation leads to a mutant steady state, and degeneration occurs due to stress caused by 

factors such as maturation, aging, or toxic gene effects (Permission to use from Nopoulos, 2016).  
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Another theory is that the role of Htt in normal neural development is compromised due to 

mHtt, which is in itself a part of the disease process (Kerschbamer and Biagioli, 2015; Wood, 

2018).  The individual is able to deal with the toxic effects of the mHtt while there is sufficient 

normal Htt to balance the molecular changes. Eventually the balance tips in favor of mHtt due to 

maturation and aging processes, and this drives the faulty circuit towards degeneration. The 

developmental model needs further validation by experiments which are able to recapitulate the 

prodromal stage of the disease. Accurate identification of signaling changes in the earliest 

symptomatic stages of HD might lead to better biomarkers or therapeutic targets in treating HD.   

       

1.1.5 Huntingtin protein expression and function  

 

            Htt is ubiquitously expressed but the specific vulnerability of striatal medium spiny 

neurons is unexplained.  Htt is also expressed in various tissues outside the central nervous system 

(CNS) (Carroll et al., 2015). A subset of the neural population is vulnerable to environmental 

changes and toxins, which ultimately promotes the loss of specific neuronal populations. Ring et 

al performed a transcriptomic analysis utilizing the HD NSC model which revealed a dysregulation 

of genes involved in neuronal development and the formation of the dorsal striatum (Ring et al., 

2015), possibly suggesting the specificity of striatal degeneration. Multiple studies have shown 

that normal Htt is required for development and its importance in cell cycle, neuronal survival and 

stability (Schulte and Littleton, 2011). These functions are affected during the disease process as 

depicted in figure 1.5 resulting in altered protein folding, transcriptional dysregulation, aberrant 

interactions affecting the cytoplasmic processes and activation of apoptosis (Dayalu and Albin, 

2015; Harjes and Wanker, 2003; Landles and Bates, 2004; Li and Li, 2004b). It has been shown 

that the Htt-deficient mice are embryonically lethal at day 8.5, whereas heterozygous mice display 

fewer neuronal anomalies therefore indicating its importance during development and survival 

(Duyao et al., 1995; Nasir et al., 1995; Zeitlin et al., 1995). Huntingtin is a large protein that is 

ubiquitously expressed throughout the body, but its function still remains unknown though it has 

more than 200 known interacting partners (Parsons et al., 2014; Schulte et al., 2011; Tourette et 

al., 2014).  
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Figure 1.5: Schematic of a neuron depicting pathways dysregulated in HD. 

Mutant huntingtin protein is involved in altered protein folding, autophagic inhibition, 

transcriptional dysregulation, axonal impairment, aberrant interactions affecting the cytoplasmic 

processes, mitochondrial toxicity and activation of apoptosis. 

      

      

 

 

1.1.6 Structure of huntingtin protein and post-translational modifications on the protein 

 

The Huntington protein is 3,144 amino acids with a mass of 348 kilo-Daltons and is 

expressed ubiquitously in the body - most of which is in the cytoplasm. It is a well conserved 

protein from flies to mammals, though most similarity occurs in mammals (Saudou and Humbert, 

2016). The function of normal Htt in neurons is unknown, although it has been associated regularly 
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with synaptic transmission, neurogenesis, apoptotic cell death, transcription, axonal transport and 

has 3235 interacting partners (Schulte et al., 2011; Szebenyi et al., 2003; Tourette et al., 2014; 

Trushina et al., 2003; Velier et al., 1998). The gene consists of 67 exons and the polyQ tract [(Q(n)] 

begins at the 18th amino acid. In humans, the polyQ domain is followed by two proline rich regions 

[P(n)], whereas in mice, this number is six (Li and Li, 2004b; Saudou and Humbert, 2016) (Figure 

1.6). The Htt protein contains HEAT (huntingtin, elongation factor 3, the PR65/A subunit of 

protein phosphatase 2A and lipid kinase Tor) repeat sequences. Each HEAT repeat is comprised 

of a 50 amino acid sequences and there are 28-36 such repeats in the Htt protein (Li and Li, 2004a). 

The HEAT repeats have a helical structure, which forms super helical structures with hydrophobic 

cores. These repeats are predicted to mediate various inter- and intra-molecular interactions, many 

of which are dissociated by proteolysis (Palidwor et al., 2009). Bioinformatics analysis between 

amino acids 60 and 3,144 reported 16-36 HEAT repeats that are also required for protein-protein 

interactions (Palidwor et al., 2009; Takano and Gusella, 2002; Tartari et al., 2008; Warby et al., 

2008). Notably the domain organization of Htt by cryo-electron microscopy and their data 

indicated three domains, including N, C and a smaller bridge domain (Guo et al., 2018). Proteins 

involved in microtubule dynamics possess HEAT repeats, which indicate that the repeats might 

play an important role in protein-protein interactions (Imarisio et al., 2008). Structural studies have 

reported that Htt is an elongated superhelical solenoid with a diameter of ~200 Å (Colin et al., 

2008; Li and Li, 2004a) The N-terminal region is best studied as it contains the most vulnerable 

polyQ stretch and the rest of the protein is not as well characterized, which includes 66 amino 

acids 69 to 3,144, accounting for 97.8% of the protein (Schulte and Littleton, 2011). Apart from 

HEAT repeats there are four PEST - amino acids proline (P), glutamic acid (E) or aspartic acid 

(D), serine (S) and threonine (T) - domains containing proteolytic site (Ehrnhoefer et al., 2011; 

Warby et al., 2008). Both the wild type (WT) and mHtt contain proteolytic sites, and HD patient’s 

show an increase in the proteolytic activity, which leads to the generation of multiple small N-

terminal fractions containing polyQ repeats (Lecker et al., 2006; Miller et al., 2010). The N-

terminal 17 amino acids are conserved in vertebrates (Tartari et al., 2008). This region consists of 

an amphipathic α-helix which is critical for its maintenance in the endoplasmic reticulum (Atwal 

et al., 2007). The main function for this region is the nuclear export signal (NES), which is also a 

target for multiple post-translational modifications (PTM) affecting the clearance of Htt and its 

subcellular localization (Atwal et al., 2007) (Saudou and Humbert, 2016).  
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Htt undergoes multiple PTMs, including phosphorylation, acetylation, palmitoylation, 

ubiquitination and sumoylation. PTMs influence the aggregation, cellular properties, and toxicity 

of mHtt and therefore may contribute to HD pathogenesis (DeGuire et al., 2018; Gauthier et al., 

2004). The Htt protein has several known phosphorylation sites as highlighted in Figure 1.6. These 

are well known sites for phosphorylation of the Htt protein and most are hypo-phosphorylated in 

the mHtt compared to the WT protein and the reduced phosphorylation has been associated with 

increased toxicity of the mHtt protein (Ehrnhoefer et al., 2011; Ratovitski et al., 2017).  

 

 

 

 

Figure 1.6: Schematic representation of Htt protein and its PTMs. 

The schematic of the Htt protein represents from the N to the C terminus. Phosphorylation sites at 

threonine (T) or serine (S) residues are indicated in yellow. Polyglutamine tract is represented as 

Q(n) and polyproline as P(n). The HEAT domains are represented as blue cylindrical structures 

with PEST domains in between (Permission to use from Ehrnhoefer et al., 2011).  
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1.1.7 Cytoskeleton: structure and function 

 

            The cytoskeleton is a network of protein-like fibers inside the cell, which help in 

maintaining its structure and function. These scaffolding networks help organize other intracellular 

components and enable transport within the cell. There are various components of the 

cytoskeleton, including actin (microfilaments), microtubules (MT) and intermediate filaments 

(IF). They are highly organized and well-coordinated structural features in normal cells. They are 

involved in major functions such as cellular movement, cell division and intracellular transport, 

which involves multiple protein-protein interactions.  

 

1.1.7.1 Actin 

 

            Microfilaments are composed of actin polymers and multiple actin-binding proteins 

(ABP). Actin exists in two forms, monomeric or globular (G-actin) and polymeric or filamentous 

(F-actin), and binds to ATP which upon hydrolysis to ADP leads to the growth of the filament. 

Actin filaments are arranged in double helical polymers with a tropomyosin (Tm) polymer running 

along the major groove in the microfilament (Gunning et al., 2008; Gunning et al., 2015). The 

cellular events that require synchronized turnover and remodeling of actin filaments, such as 

motility, differentiation, division and membrane organization utilize actin microfilaments. These 

actin polymers and Tm interact with ABPs thus, generating a complex that forms the basis of the 

various cellular activities (Gunning et al., 2015).  

 

1.1.7.2 Microtubules 

 

            MTs are composed of α- and β-tubulin heterodimers. Both α- and β-tubulin associate into 

polymers and there exist different isotypes which have tissue- and development-specific 

expression. There are multiple β-tubulin isotypes that are evolutionarily conserved across species, 

but differ predominantly in their carboxy-terminal region. This region binds to multiple 

microtubule associated proteins (MAP) and is predicted to influence the MT activity and stability. 

The main function of the MTs are cellular growth, vesicular transport and mitosis. They are highly 

dynamic structures and their ability to polymerize and depolymerize in a regulated manner allows 
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the proper segregation of chromosomes during mitosis. The assembly and disassembly of MTs 

occurs by GTP hydrolysis only on the β-tubulin subunit, not the entire α / β heterodimer (Akhshi 

et al., 2014; Fife et al., 2014).  

 

1.1.7.3 Intermediate filaments  

 

            IFs can be formed from 40 different protein subunits and are structurally different from the 

well-conserved globular proteins, actin and tubulin. IFs are divided into five different categories, 

including keratin, neurofilament, desmin, laminin and vimentin (Robert et al., 2016). This 

categorization is based on the protein composition and its intracellular localization. IFs can extend 

from around the nucleus across the cytoplasm and be attached to the extracellular matrix (ECM) 

thus, forming an extensive network. This intricate network allows the coordination of 

multifunctional cytoskeletal activities by relaying information from within the cell to the exterior 

(Chang and Goldman, 2004).   

        The major function of the aforementioned cytoskeletal units is to maintain cell structure and 

motility. Altered cellular motility has been recently viewed as a hallmark feature of various 

neurodegenerative disorders. The process of cell motility can be broken down into four steps: 

protrusion, adhesion, contraction and retraction (Figure 1.7) (Fife et al., 2014). Extracellular 

signals such as growth factors and chemokines generate a gradient that polarize the cell movement. 

The integrins, receptor tyrosine kinases (RTK) and cadherins after receiving these signals alter the 

activity of downstream Rho GTPase guanine nucleotide exchange factors (GEFs) which finally 

affect Rho GTPases which are the key players in regulating cytoskeletal dynamics (Jaffe and Hall, 

2005). The extension of the actin filaments towards the extracellular signal is stabilized by the 

adhesions linking actin to the ECM proteins (Hall, 2012). This allows the protrusion and the 

adhesion of the cytoskeletal proteins toward the signal by various protein-protein interactions. The 

contraction allows the disassembly of the entire subset of proteins at the distal end of the cell 

thereby allowing the movement of the cell body forward and at the same time retracting the cell 

body and pushing it in the direction of cell movement (Hall, 2012).  Rho GTPases are a family of 

20 small G proteins regulating the cytoskeletal proteins and thereby influencing the cell cycle, cell 

polarity and cell migration (Jaffe and Hall, 2005). Rho GTPases function as a molecular switch 

where the GDP-bound form is inactive and the GTP-bound form is active (Jaffe and Hall, 2005). 
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The regulation of mammalian GTPases is complex since its inactivation is regulated by 67 GTPase 

proteins and inactivation by 82 GEFs, which act downstream of cell surface receptors (Rossman 

et al., 2005). There are three well studied Rho GTPases, including Rho, Rac and Cdc42, which 

regulate actin assembly. Cdc42 is involved in the regulation of microtubule dynamics (Hall, 2012). 

Rho can recruit ROCK (Rho kinase) family kinases which are responsible for phosphorylating 

multiple cytoskeletal proteins (Hall, 2012; Jaffe and Hall, 2005). These interactions are involved 

in promoting actin stress fibre formation where another player cofilin is involved. Cofilin is 

downstream of the Rho GTPase pathway and along with the actin-related protein 2/3 (ARP2/3) 

complex, plays an important role in the generation of free actin filament ends thus resulting in 

actin filament remodeling by polymerization and depolymerization (Hall, 2012). Cofilin is 

inactivated when phosphorylated by LIM kinase 1 (LIMK1) and reactivated by dephosphorylation 

by a phosphatase Slingshot (SSH1L) (Mouneimne et al., 2006; Soosairajah et al., 2005). LIMK is 

downstream of the Rho GTPase effector proteins and its activity is highly regulated by the 

phosphorylation of the Rho kinases (ROCK1 and ROCK2) (Nakagawa et al., 1996). Cofilin 

activity is tightly regulated and is required for chemotaxis (directed cell movement towards a 

chemoattractant), and for the reorganization of actin filaments, which move toward 

chemoattractant such as growth factors (Mouneimne et al., 2006). Ultimately ROCK signaling 

influences cytoskeletal dynamics by phosphorylating the downstream targets, LIMK (LIMK1 and 

LIMK2), which along with its interaction with cofilin and the phosphatase SSHL (SSHL1 and 

SSHL2), probably determines the cellular response to a stimulus (Mouneimne et al., 2006; 

Soosairajah et al., 2005). 
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Figure 1.7: The cell cytoskeleton. 

The schematic representation of the process of cell motility is broken down into four steps: 

protrusion, adhesion, contraction and retraction (1-4). F-actin is shown in purple (short, branched 

F-actin at the leading edge, and long, unbranched F-actin stress fibres at the rear). Microtubules 

are shown in blue. Cytoskeletal regulatory and associated proteins ROCK, LIMK and cofilin/ADF 

are also shown as blue, red and orange symbols.  (Permission to use from Fife et al., 2014).   
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1.1.7.4 Cytoskeletal abnormalities in Huntington’s Disease    

                

            Neurons have two cytoplasmic extensions, including axons and dendrites and they require 

a specialized cytoskeleton to maintain their complex morphology in order for neural transmission 

to occur through these processes (Figure 1.8). A change in their neural morphology may affect the 

neural function and ultimately induce pathology. In neurons, the dynamic tubulin polymers are 

stabilized before forming axonal and dendritic extensions (Mitchison and Kirschner, 1988). The 

neuronal projections transport cargo bi-directionally along the microtubules, partnering along with 

the kinesins and motor proteins (Goldstein and Yang, 2000; Liot et al., 2013). It is believed that 

mHtt interacts with the motor proteins that carry cargo, such as TrkB-containing vesicles, and 

reduces its interaction with the microtubules, which affects transport (Gauthier et al., 2004; Li et 

al., 1998). A number of studies utilizing HD mouse models (R6/1, R6/2, Q175 and KI140) have 

reported an increased tau phosphorylation involving the kinases that regulate it, including GSK3 

and CamKII (Fernandez-Nogales et al., 2015; Gratuze et al., 2016). GSK-3β is the major kinase 

to phosphorylate tau both in vitro and in vivo and a major microtubule-associated protein (Medina 

et al., 2011). CamKII on the other hand is involved in activating the major phosphatase SSH1L 

which dephosphorylates cofilin thereby activating it (Zhao et al., 2012). As discussed earlier the 

LIMK1, cofilin and SSH1L are involved in actin cytoskeletal reorganization.  The levels of cofilin 

which is an upstream regulator of actin are perturbed in a number of neurodegenerative disorders 

such as AD, PD and Amyotrophic Lateral Sclerosis (ALS) (Eira et al., 2016; Sainath and Gallo, 

2015). There are a number of stressors in the cell that cause actin cytoskeletal dynamic arrest. Rod 

formations are seen in AD and PD and the activated cofilin saturates the actin filaments during 

stress and bundles them into rod-like structures, thereby ceasing actin polymerization and 

depositing these rods in the nucleus and cytoplasm (Minamide et al., 2000; Zhao et al., 2006). This 

process leads to the release of free ATP in the cell and once the stress is released, the rods dissociate 

almost immediately. Additionally, profilin (an actin binding protein), which has an opposite action 

to cofilin, is perturbed in ALS (Henty-Ridilla et al., 2017; Kiaei et al., 2018). Profilin has the 

opposite action to cofilin on actin, and binds to Htt at a proline-rich region adjacent to the expanded 

polyQ tract (Henty-Ridilla et al., 2017; Zhao et al., 2006). Thus, a number of studies have shown 

stress-related actin rod formation in a variety of neurodegenerative disorders, despite that the 

biology of the cofilin-actin rod formation is not well understood. Cofilin gene knockout is 
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Figure 1.8: Schematic of neuronal structure and its cytoskeleton. 

Neurons have a highly regulated cytoskeleton with actin, microtubules and intermediate filaments 

which are localized differently on the dendrites, spine and cell body (A), axon (B, C and D) and 

synapse and growth cone (E). Actin rings are seen across the axon and actin arcs form the structural 

basis of the synaptic end. Actin meshwork is found especially concentrated in the dendrites and 

the synaptic end. Actin trails are concentrated mostly in the axon. Microtubules are predominantly 

in the axon but they are also present in the dendrites and synapse. Intermediate filaments localized 

in the axon (Permission to use from Eira et al., 2016).   
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embryonically lethal although one study suggested that the postnatal neurons in the forebrain 

showed that cofilin was required for the turnover of F-actin at the synapses (Gurniak et al., 2005). 

An increase in calcium levels activate calcineurin (CaN), which dephosphorylates cofilin through 

the activity of the phosphatase, slingshot (SSH1L) (Zhao et al., 2006). Therefore, a normal neuron 

requires proper cofilin functioning, which must be tightly regulated by upstream kinases and 

phosphatases (Bamburg and Bernstein, 2010). Thus among many other roles in the cell, Htt 

appears to be involved in key molecular interactions involving vesicular transport between the 

actin and microtubule cytoskeletons (Caviston and Holzbaur, 2009). 

       

1.2 Phosphorylation mediated cellular signaling  

  

Protein phosphorylation is a significant PTM that regulates the dynamics of a protein allowing 

precise temporal control of its structure, function, and subcellular localization.   

 

1.2.1 Kinases  

 

            Alterations in numerous signal transduction pathways in HD result from aberrant kinase 

signaling. The balance between kinase signaling pathways is important to maintain normal cellular 

processes, such as proliferation, neuronal plasticity, apoptosis, etc. Protein kinases have the ability 

to phosphorylate other proteins and regulate their function. Phosphorylation occurs through the 

addition of a phosphate group (PO4) by a mechanism controlled by kinases. There are 518 human 

protein kinases classified according to the amino acid residue that they phosphorylate. The most 

phosphorylated residues are serine (Ser or S; 86.4%), threonine (Thr or T; 11.8%) and tyrosine 

(Tyr or Y; 1.8%). Once activated, these protein kinases lead to the phosphorylation of other 

proteins. Most of the kinases act on both serine and threonine (serine /threonine kinases; STKs), 

while others act on only tyrosine (tyrosine kinases; TKs). Phosphatases have the opposite function 

of kinases, and remove the phosphate group from the phosphoproteins. They hydrolyze the 

phosphoric acid monoesters into a phosphate group and a molecule with a free hydroxyl group. 

There are about 226 protein phosphatases that regulate phosphorylation events. A number of 

cellular molecules are activated and deactivated by phosphorylation / dephosphorylation events 

due to specific kinases and phosphatases acting on them, respectively. 
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1.2.2 Kinome and phosphoproteome  

 

            Cellular phosphorylation analyses can be divided into i) kinome and ii) phosphoproteome. 

The former focusses on the analysis of the protein kinases mediating phosphorylation, while the 

latter focusses on the targets of those kinases. The kinases responsible for driving the fate of 

phosphoproteomes are central to elucidating various complex cellular events. As discussed in the 

previous section cellular signaling events are largely controlled by phosphorylation / 

dephosphorylation thus play an important role in different cellular processes. Recent advances 

have facilitated studies of the global effects of phosphorylation, as well as studies of specific 

signaling pathways. This has been performed by mass spectrometric methods where after the 

enrichment of phosphorylated peptides/proteins, different methodologies such as ionization and 

fragmentation have been utilized for the mass-analysis of phosphorylated peptides. The 

physiological substrates for protein kinases are proteins and the specificity of the target is dictated 

by the conserved amino acid residues surrounding the phosphorylation site. Such conserved 

peptide sequences have been used in peptide arrays designed to study whole proteins by kinome 

analysis. The Vmax (the maximum rate at which an enzyme can catalyze a reaction) and Km (the 

amount of substrate required for the enzyme to function at one half of its maximal rate) values are 

close to the natural substrates thus providing the ideal platform for studying these proteins. These 

peptides are chemically stable and easily produced commercially. They can be printed on glass 

slides and are cost effective, making them easily available for research studies.  

 

1.3. Kinome profiling 

 

            The early 2000’s marked the completion of the human genome project and a simultaneous 

review published in Science listed the protein kinase complement of the human genome and 

termed it the “Kinome” (Manning et al., 2002).  Protein phosphorylation by protein kinases (PK) 

is the most characterized signaling mechanism in eukaryotic cells. The majority of cellular proteins 

are phosphorylated, making this one of, if not the most important modification in cellular 

processes. As many as one-third of all the proteins are phosphorylated at any given time, which 

makes it a difficult undertaking to enumerate all such proteins. It can be simplified by looking at 

the substrates that each kinase phosphorylates in the human kinome. This can then be extrapolated 

to physiological and diseased states to gain a better understanding to provide therapeutic benefits 
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(Johnson and Hunter, 2005). A comparative analysis of genomes has determined that there are 

considerable differences among eukaryotes. The differences are highlighted by the variance in the 

number of kinases present in their genomes. For example the Arabidopsis thaliana genome 

contains 610 kinases, Drosophila melanogaster has 239 kinases, Saccharomyces cerevisiae has 

115 kinases, and Plasmodium falciparum has 65 kinases (Peppelenbosch, 2012). The human 

kinome constitutes ~518 members (1.7% of  protein coding genes) (Johnson and Hunter, 2005), 

of which the mouse has 510 orthologs, which accounts for ~98% similarity (Caenepeel et al., 

2004).  Exploiting array technology for the development of drug targets for biologically important 

kinases has been utilized in large-scale screening processes. The most challenging aspect is that 

the appropriate kinase substrates have to be recognized and printed on the array, which is based 

on a literature search and examinations of online databases. The specificity of the kinase to 

phosphorylate the substrate produces a dataset that can be mined for unknown biological functions 

and potential drug targets in different diseases (Arsenault et al., 2011; Arsenault et al., 2012a; Guo 

et al., 2014a; Jalal et al., 2009; Sutherland et al., 2013). Kinome analyses via peptide arrays have 

proven effective in understanding signaling events associated with a number of diseases, including 

neurodegenerative disorders such as prion (Arsenault et al., 2012b) and Alzheimer’s disease 

(Hoozemans et al., 2012), cancer (Goel et al., 2018; Labots et al., 2016; Moser et al., 2014; Parikh 

and Peppelenbosch, 2010), infectious diseases (Kindrachuk et al., 2014; Mulongo et al., 2014; 

Robertson et al., 2014; Van Wyk et al., 2016), and inflammation (Arsenault et al., 2013a; 

Arsenault et al., 2013b). 

 

1.3.1 Peptide arrays 

 

            Peptide arrays were first developed in 1984, when they were synthesized on packed 

polyethylene rods  (Geysen et al., 1984). Protein can range from a few amino acids to hundreds of 

amino acids. The very short sequences of about 40-50 amino acids are referred to as peptides. 

Some of the current peptide array technologies are based on the concept of light-directed, spatially 

addressable chemical synthesis which was introduced in 1991 (Fodor et al., 1991). SPOT synthesis 

(Synthetic peptide arrays on membrane supports) was developed in parallel in 1992 with the 

preparation of a series of predefined, chemically synthesized short peptide sequences on absorptive 

surfaces (Frank, 2002). Peptide arrays are an efficient technique with easy to synthesize peptides 



21 

 

that are regularly used to investigate PTMs in vitro. It is a simple, but powerful method to 

investigate PTMs by utilizing their intensity values after staining to study a treatment sample 

compared to a control in a rapid and cost effective manner. 

 

1.3.2 Selection of peptide targets 

 

1.3.2.1 DAPPLE 

 

            DAPPLE (http://saphire.usask.ca/saphire/dapple/) is a web based platform developed for 

phosphorylation site determination to predict the additional mouse phosphorylation events based 

on described phosphorylation events of other species (Trost et al., 2013a) alongside the known 

human and mouse phosphorylation events based on published literature. A simple workflow of 

DAPPLE 2 shows that it predicts sites for different post-translational modifications in the 

proteome of the target organism selected and generates a list of predicted PTMs (Figure 1.9). The 

list for HD peptide array included over 270,000 peptides which were rationally selected and 

shortlisted to 1268 peptides providing an overall coverage of the major signaling pathways 

predicted or directly involved in HD.  

 

http://saphire.usask.ca/saphire/dapple/
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Figure 1.9: DAPPLE pipeline. 

The flowchart shows that DAPPLE 2 predicts sites for post-translational modifications in the 

proteome of the target organism selected (input) and generates a list of predicted PTMs (output). 

The peptides are selected from this list to be printed on the array (Permission to use from Trost et 

al., 2016). 

 

 

 

 

1.3.2.2 Peptide array design 

 

            The array was designed by utilizing these unique peptide sequences, with a biological 

significance based on the literature. Custom peptide synthesis and printing was completed on a 

glass slide, and each array measured approximately 7.6 cm long and 2.5 cm wide as manufactured 

by JPT Peptide Technologies (https://www.jpt.com/) (Figure 1.10). The peptides are typically 15 

https://www.jpt.com/
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amino acids long with the phosphoacceptor residue in the center, flanked by an equal number of 

residues on either side. Peptide array was divided into three grids / blocks of same set of peptides 

and each printed nine times (three in each block), making sure that that there was no margin for 

error and there are enough technical replicates for statistical analysis. Each spot on the array 

contains many copies of the peptide sequence which is determined by the manufacturer. Ideally 

each peptide should have a central phosphoacceptor residue with the conserved sequence on either 

side but in some cases this cannot be possible. This is overcome by either printing shorter peptide  

 

 

 

 

Figure 1.10: Overview of array design. 

(A) Physical presentation of the peptides. Each spot on the array represents a different peptide 

sequence presented within a grid of the total population of peptides (kinase substrates) to be 

considered. Each grid is replicated three times to generate technical replicates of each spot. Dark 

gray spots on the edge of the grid represent control peptides for better visualization. (B) Peptides 

on the array. Each spot on the array represents a population of single peptides (typically 15 amino 

acids long) in which the central position is the phosphoacceptor residue represented here in green 

(Permission to use from Daigle et al., 2014).  
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on the array or by having more residues on one side. Each peptide spot measured about 350µm in 

diameter and was separated by a distance of about 750 µm. The peptide spotting was in a grid 

fashion surrounded by full length proteins and were printed on the periphery to aid in better 

visualization. The exact layout of arrays differ based on the peptides printed on it which can be 

from hundreds to thousands. The design and printing is completed by the commercial providers. 

The laboratory procedure for using these arrays are described in section 3.4. After the scanning the 

spots appear to be like as shown in Figure 1.11 A where the black spots are the one with little or 

no phosphorylation and spots with phosphorylation are green (Figure 1.13 B). The values of these 

emitted light intensities are read by an image scanner and are called “intensity values”. The stain 

binds non-specifically to the background hence the intensity values around the spot are considered 

as background values. The background intensity is subtracted from the foreground intensity (spot 

intensity value) and the resulting value indicates the level of phosphorylation of that particular 

peptide. It is difficult to measure the absolute levels of the phosphorylation with peptide arrays 

hence for any significant biological output from both treatment and control arrays are required.  

The treatment array minus control array intensity values can be used to determine the amount of 

phosphorylation of the peptide under study. Such peptide is termed as a “differentially 

phosphorylated” peptide and indicates whether the peptide is hyper- or hypo-phosphorylated when 

compared to control. The technical replicates mentioned earlier evaluate the random variation in 

the biological experiment. The same peptide is spotted three times in each block therefore there 

are nine in total across the three blocks and are termed as intra-array replicates. The technical 

replicates have three advantages i) phosphorylation measure of each peptide is averaged hence 

reducing random variation ii) peptides with random variation can be identified iii) these technical 

replicates check for the variation in the measurement of phosphorylation across different biological 

samples. Hence the sample size is important for determining the biological significance of a 

particular treatment / disease. The larger the sample size, the more definitive is the peptide array 

output since the variation in the different biological backgrounds due to treatment/ genetic 

background or any other anomaly does not lead to a potential data bias in the clustering pattern. 

The raw intensities obtained from the kinome dataset are normalized before meaningful 

information can be obtained, the details of which are described in the next section. 
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Figure 1.11: Scanned image of a kinome microarray after incubation with cell lysate followed 

by staining.  

(A) The scanned image of a complete array. (B) Black spots contain peptides that underwent little 

or no phosphorylation, green spots represent moderate amounts of phosphorylation.  
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1.3.3 Bioinformatic pipeline 

 

1.3.3.1 Platform for Intelligent, Integrated Kinome Analysis (PIIKA 2) 

 

            PIIKA 2 was designed to identify differentially phosphorylated peptides in the peptide 

arrays (Trost et al., 2013b) (Figure 1.12). It was designed using a software program in the R 

environment. The input files contain the raw intensities from the genepix microarray and the output 

can be represented as t-test values or other visual representations, such as PCA plots, heatmaps, 

etc. The output files contain multiple column subheadings, but P-value and fold change (FC) were 

utilized which are considered to identify significantly differentially phosphorylated peptide (Li et 

al., 2012). A t-test indicates the difference in the mean phosphorylation between the treatment and 

control but does not indicate the directionality / degree of difference (+/-), hence fold change. A 

liberal cut off (P ≤ 0.1/0.2 and FC > 1) is used in kinome analyses to generate a large data set and 

avoid false positives. The P-value used for the cell line data was 0.1 and for the mouse model 0.2 

which was based on the number of peptides printed in the array. The peptide array used for cell 

lines had 298 unique peptides and the mouse study used peptide array with 1268 peptides, hence 

the leniency in the P-value. T-test was performed using the R environment function in PIIKA 2, 

to generate the P-values taking into account the intensity values between the same peptides under 

treatment and control conditions. FC gives the magnitude of differences between the 

phosphorylation in the treatment and control. The pathway analysis software (InnateDB) uses both 

FC and P-value to determine the significant pathways dysregulated in the peptide array. PIIKA 2 

uses the difference (not ratio) between the treatment and control to generate the FC. The 

transformed intensities are converted to FC values by using the formula: 

 

Fold change = 2d     [where, d = average treatment – average control] 

 

A comparative analysis of various normalization methods (normalization by log2 (Log2), 

percentile normalization (PNorm), quantile normalization (QNorm), transformation by variance 

stabilization (vsn) (Huber et al., 2002) was performed for normalizing the dataset thereby not 

altering the data relevance, verifying that vsn transformation is the best in preserving the raw data 

patterns. The raw data after processing by vsn revealed that it had the same distribution pattern as 

the raw data hence retaining the biological significance of the dataset. There are two main purposes  
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Figure 1.12: A general workflow of the software pipeline (PIIKA) for kinome analysis. 

The flow of information and activity starts from the top left and follows the arrows. Rectangles 

with green background represent procedures, and the one with blue background represents 

intermediate results. The differentially phosphorylated peptide list was generated by comparing 

the test to control followed by normalization. This was used for all further bioinformatics analyses   

(Li et al., 2012) (Reprinted with permission from AAAS). 
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of vsn. First, to normalize all measurements on the same scale and second to convert all negative 

intensity values to positive using a complex algorithm. To determine a significant differentially 

phosphorylated peptide, both the FC and the corresponding P-value are considered. This is because 

the FC could be due to a few (or one) significantly (de)phosphorylated peptides and a t-test P-

value is required to confirm the replicate consistency. Finally, the FC and P-value should be used 

based on biological rather than mathematical considerations.  

 

1.3.3.2 InnateDB 

 

            While t-tests determine whether the individual peptides are differentially phosphorylated 

and fold change determines the directionality of the change, pathway analysis determines whether 

the entire pathway is differentially modulated. This was done by another online tool InnateDB. 

InnateDB is equipped to analyze peptide array dataset and once the list of peptides is uploaded 

along with the P-value, FC and uniprot ID, this information is used to generate a list of biological 

pathways that are significantly upregulated or downregulated. InnateDB 

(https://www.innatedb.com/) is a platform that facilitates the analysis of mammalian, murine and 

bovine genes (Breuer et al., 2013). It contains close to 200,000 molecular interactions that are 

experimentally validated, with 3000+ pathway annotations that allow a better understanding of the 

input dataset. In addition to these it also has 18000+ manually-curated interactions. InnateDB can 

be queried for specific pathways or in a high throughput fashion, incorporating multiple genes/ 

protein dataset to perform a more complex analysis. Gene ID’s are accepted from Uniprot, 

Ensembl, Ref Seq, Entrez gene in the InnateDB software. It can be used as a knowledgebase to 

perform pathway analyses, gene ontology analyses, and network analyses, among other search 

fields. All such interactions can be downloaded as visual tools, as well as in text-based formats 

(tab, csv, xls) to aid the user in interpreting their own data (Breuer et al., 2013). The P-values in 

InnateDB are generated using the hypergeometric distribution test which confirms whether a 

pathway is statistically more over-represented in the uploaded dataset than expected by chance 

prior to correction for multiple testing. P-values are automatically corrected using the Benjamini 

and Hochberg or by a conservative Bonferroni correction. The output generated from InnateDB 

are over-represented pathways associated with the P-values from the input data. Since the 

InnateDB software generates output from various databases there are many canonical pathways 

https://www.innatedb.com/
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represented multiple times. The validation of these peptides is completed independently using 

other assays.  

 

1.4. Neural stem cells in studying Huntington’s disease   

 

            Molecular investigations of disease have benefited from tools such as stem cells, which 

can be differentiated into many lineages, including neuronal (Nelson et al., 2010; Takahashi and 

Yamanaka, 2013), and enable drug screening to expedite the development of therapeutics for 

neurodevelopmental, neurodegenerative, and psychiatric disorders (Ardhanareeswaran et al., 

2017). Recently, the ability to generate induced pluripotent stem cells (iPSCs) from fully 

differentiated cells (such as skin fibroblasts) has opened many avenues for the advancement of 

medicine (Takahashi and Yamanaka, 2013). The precision with which fibroblasts can be 

reprogrammed to develop neuronal stem cells (NSCs) that form fully functional neurons has 

tremendous potential for screening potential treatments of neurodegenerative disorders (Ross and 

Akimov, 2014). Importantly, NSCs can be generated from HD patients within virtually all age-

groups, rendering a convenient model to study the age-related pathogenesis of the disease 

(Koyuncu et al., 2018; Ross and Tabrizi, 2011). Such NSCs can also be exploited to infer patient-

specific therapeutic opportunities (Mu et al., 2014; Ross and Akimov, 2014). Examinations of HD 

NSCs has led to observed differences in cellular pathways pertaining to oxidative stress, 

mitochondrial dynamics, transcriptional dysregulation, and gene expression (Consortium, 2012; 

Szlachcic et al., 2015; Zhang et al., 2010). iPSC models have been generated for other polyQ 

disorders and neurological diseases (Kikuchi et al., 2017; Xie et al., 2016; Yang et al., 2016). 

While iPSC models have been used to examine individual or related signaling cascades (Mueller 

et al., 2018; Nekrasov et al., 2016; Szlachcic et al., 2017), here we examine an HD patient-derived 

NSC line for changes in the patterns of multiple signaling cascades simultaneously using a kinome 

technology refined at our University (Arsenault et al., 2011; Baharani et al., 2017; Jalal et al., 

2009). The stem cells provide an opportunity to assess a neurological disease for which it is tough 

to access the tissue compared to the other tissues of the body. The development of the stem cell 

technology has allowed faster and more clinically relevant progress especially in the field of 

neurological diseases.  
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1.5 Mouse models to study Huntington’s disease 

 

To study human disease processes, transgenic mouse models have become a necessity 

(Brouillet et al., 1999; Ferrante, 2009). Neurological disease models should be robust and have 

limited variability in mimicking human diseases. They should possess minimum discrepancies and 

should display similar neural abnormalities as observed in individuals affected with the specific 

neuronal disorder (Beal and Ferrante, 2004; Hersch and Ferrante, 2004).There are a number of 

mouse models used to study HD, and have been grouped in a broader umbrella of genetically 

modified mouse models and chemically induced lesion models. The chemically induced lesion 

models are induced with 3-nitroproprionic acid or quinolonic acid (Ramaswamy et al., 2007). The 

genetically modified mouse models are grouped into three sub-categories based on how they were 

developed. They include N-terminal transgenic animals, full-length transgenic models and knock-

in transgenic mouse models. The N-terminal animals carry the 5´ portion of the human Htt gene 

containing the CAG repeats. The full-length models have the full-length Htt sequence with the 

trinucleotide repeats. The knock-in models have CAG repeats of varying lengths, which are 

directly engineered into the mouse Htt locus. All models are similar in that they contain CAG 

repeats, but show differences in the HD phenotype (Ferrante, 2009; Figiel et al., 2012). The N-

terminal transgenic lines were the first HD mouse models generated and they are the most 

commonly used in HD research. The most studied among them is the R6/2 transgenic mouse 

model. Many preclinical studies have been completed utilizing these lines (Pouladi et al., 2013) 

and it is one of the best characterized transgenic lines available (Mangiarini et al., 1996).  

  

1.5.1 R6/2 mouse model 

 

R6/2 mouse model have a robust phenotype, a shorter life span (3-4 months), and well 

defined neurobehavioral and neuropathological findings hence they are widely used in HD 

research. The R6/2 lines were the first to be generated expressing the mutant human exon Htt 

(Mangiarini et al., 1996). The N-terminal transgenic mice were generated by pronuclear injections, 

and thus, each transgene is integrated randomly at a unique site in the mouse genome. The human 

trinucleotide repeats in these transgenes are unstable, and thus, there is an increase in the number 

of repeats in both germ line and somatic cells in successive generations. Monitoring of the repeat 
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length is critical while maintaining colonies to reduce experimental variation (Cummings et al., 

2012).  

R6/2 mice carry a small section of the 5´ end of human Htt gene, which includes exon 1 

with the CAG trinucleotide repeats. The stock is maintained with a CAG repeat of 120 +/- 5 repeat 

units. The N-terminal lines have a more prominent phenotype than the other mouse models. They 

develop neurological abnormalities more rapidly and show loss of motor coordination, tremors, 

hypokinesis, abnormal gait and premature death (Menalled et al., 2009). The N-terminal mutant 

Htt fragment is sufficient to exhibit HD-like neuropathology in mice. R6/2 mice range in survival 

form 14-21 weeks, depending on the housing conditions (Li et al., 2005; Wood et al., 2010). 

Behavioural studies indicate that R6/2 mice exhibit deteriorating motor performance, reductions 

in body weight, and impaired dystonic movements that worsen with age (Figiel et al., 2012). These 

mice also show a reduce brain weight (around week 4), decreased brain volume and expanded 

ventricles (around week 8.5), which are hallmarks of HD. These mice also exhibit a decrease in 

striatal volume and atrophy of the striatal neurons towards the end stages of disease (Ferrante, 

2009). Htt aggregates increase with age, although they are reported to be present since birth, which 

is not observed in human HD patients. Such observations could be attributed to the presence of the 

truncated gene, which could be responsible for the aggravated phenotype. Similarities exist in the 

dysregulated cellular mechanisms of HD patients and R6/2 mice, including transcriptional 

regulation, proteolysis, apoptosis, mitochondrial function, and vesicular trafficking. R6/2 mice 

have substantial neuropathological similarities with HD patients, but do not have the same 

genetics. Nevertheless these mice have well characterized phenotypes and can be used for survival 

studies and clinical trials generating outcomes in as few as 3 months (Li et al., 2005; Skotte et al., 

2018). R6/2 model exhibits a progressive HD phenotype, which is the closest to the human HD 

symptoms, and therefore, is considered the best model for therapeutic studies. 

 

1.6 Sex differences in neurodegenerative disorders  

 

The potential sex differences in Huntington’s, Parkinson’s and other neurodegenerative 

disorders on the onset of the disease and its progression are poorly understood. Animal models 

provide a great platform to understand the difference between the two sexes in the disease process 

as they allow the circumventing of the problems of standardization, i.e. the variation in the CAG 
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repeats and age matched samples which are difficult to obtain in the human patients. Recently, it 

was shown that these disorders have a bias (Kovtun et al., 2004; Nyarko et al., 2018; Quartey et 

al., 2019; Smith and Dahodwala, 2014; Wooten et al., 2004). The disease susceptibility, 

pathogenesis, and clinical presentation is different in males compared to females (Smith and 

Dahodwala, 2014). Such differences are being attributed to the female sex hormone, estrogen, 

having a protective effect on neurons (Bourque et al., 2009; Siani et al., 2017). The first report to 

comprehensively characterize the behavioral, physiological and neuropathological difference in 

HD mice reported atrophy of DARPP32(+) MSNs only in male transgenic HD rats (Bode et al., 

2008). DARPP32 is expressed in MSNs which also express dopamine D1 receptors. Dopamine is 

a neurotransmitter that controls movement, cognition and emotional functions. The dopamine 

transporter (DAT) membrane receptor is the key regulator of dopamine uptake at the synaptic cleft 

and studies have shown that estrogen has a protective effect in dopaminergic neurons (Cereda et 

al., 2013; Simunovic et al., 2010; van Dyck et al., 1995). Differences in gene expressions between 

male and female brains have also been identified and those changes are anticipated even before 

the effect of the gonadal hormones (Dewing et al., 2003). The male sex-determining region on the 

Y chromosome (SRY) is a transcription factor. In situ hybridization has shown SRY expression in 

the brains of rodents, and subsequent studies revealed that the regions with the highest expressions 

are the cortex, substantia nigra, and medial mammillary bodies (Dewing et al., 2006). SRY exerts 

its influence on the biochemical properties of dopaminergic neurons, which in turn affects motor 

behaviour in male rats (Czech et al., 2012). The loss of SRY in males leads to a significant 

reduction in dopamine function in the surviving neurons hence SRY may be an additional 

mechanism that regulates dopamine in males. Thus, the difference in molecular mechanisms 

between sexes can likely be attributed to the influence of sex chromosome genes (Carruth et al., 

2002; Dewing et al., 2006).  

 

1.6.1 Sex differences in Huntington’s disease  

 

Sex differences have not been well studied in HD with some research directing towards 

severe phenotype in females while the other report the opposite. A report studied the influence of 

sex on HD progression on 1267 patients with HD, wherein women showed slightly more severe 

phenotype and faster rate of progression in women (Zielonka et al., 2013). This study revealed sex 
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differences in the severity of HD, where women exhibited lower motor and functional UHDRS 

(Unified Huntington’s Disease Rating Scale) scores compared to males. UHDRS is an evaluation 

standard used to assess HD based on four clinical performance categories, including motor 

function, cognitive function, behavioral abnormalities, and functional capacity (Huntington, 

1996). Multiple reports also suggested that the age of onset being higher in females than males 

(Roos et al., 1991); however, the progression of disease was milder in women, compared to men 

(Chen et al., 2009; Roos et al., 1991). The loss of body weight has been reported in both males 

and female HD patients, however, the body mass index lower in males despite their higher calorific 

intake.  

The repeats are highly unstable and longer when inherited from an affected father 

(Norremolle et al., 1995). Males predominantly show an expansion of the repeats and the females 

show a contraction (Kovtun et al., 2000). Another study compared 254 affected parent-child pairs 

with HD to determine the frequency of intergenerational CAG changes in the mHtt which reported 

expansions in the polyQ repeats when transmitted through the affected father (Kremer et al., 1995). 

Another study revealed somatic and gonadal mosaicism which indicated towards the mitotic and 

meiotic instability in the polyQ repeats (Telenius et al., 1994). The most neuropathological 

findings in HD are in the brain which exhibited the most somatic mosaicism followed by 

significant mosaicism in the sperm (Telenius et al., 1994). A recent report demonstrated that 

increased age of the father was also associated with a higher frequency of CAG repeat expansions 

in sperm (Wright et al., 2019) which supports previous findings (Chong et al., 1997; Semaka et 

al., 2013).  

Female hormones are being considered as a neuroprotective therapy that delay the onset 

and reduce the severity of HD symptoms (Bode et al., 2008). The overall results of such studies 

indicate that there is a complex sex effect on disease severity and the rate of HD progression 

(Zielonka et al., 2013). There is still a considerable amount of research required to confirm which 

sex is most affected since there is evidence supporting both. This can be addressed if there is an 

inclusion of equal number of females and males in research trials and the dataset compared for 

similarities and differences. The assumption that results from males apply to females could result 

in a bias dataset because it fails to recognize the sex dependent effects in a research study (Beery 

and Zucker, 2011). Thus, such observations should be considered while designing future 

experiments and clinical trials (McCullough et al., 2014).  
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2. HYPOTHESIS AND OBJECTIVES 

 

2.1 Rationale and Hypothesis 

 

            The aberrant kinase signaling in HD has not been well characterized. There are multiple 

pathways that are dysregulated and the alterations might occur due to age, sex and disease 

progression which can be well understood if the differences are recapitulated by a global profiling 

of kinase signaling across all the key developmental time points in both sexes. The use of peptide 

arrays to identify the signaling pathways that are dysregulated in Huntington’s disease will provide 

insight into these pathological mechanisms of the disease as well as rationale targets for therapeutic 

intervention.  

 

         The hypothesis states that multiple processes are dysregulated in HD due to aberrant kinase 

signaling that is modulated by age and sex. The objectives are outlined below. 

 

2.2. Objectives 

 

1. To design a HD specific peptide array for kinome analysis. 

2. To identify potential pathways that are dysregulated in striatal tissue from R6/2 HD mice using 

peptide arrays and pathway analysis. 

3. To validate the differentially phosphorylated peptides that are determined from the 

bioinformatic analysis of the peptide array data. 
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3. MATERIALS AND METHODS 

 

3.1 Reagents and chemicals 

 

            The regents and chemicals used in the experiments are provided in the Table 3.1 below 

along with the names and addresses of the manufacturer / supplier in Table 3.2. 

 

Table 3.1: List of reagents and/or chemicals. The Table lists commercially procured reagents, 

chemicals and other materials to perform the experiments. The names of the supplier and catalogue 

number are also indicated.  

 

Reagents and Chemicals Supplier and Catalogue Number 

  

(Ethylenedinitrilo) tetra acetic acid, Sigma-Aldrich, E9884 

100 bp ladder NEB, N3231S 

1kb ladder NEB, N3232S 

30% Acrylamide/Bis Solution 29:1 Biorad, 1610156 

Acetonitrile  EMD Biosciences, 200-835-2 

Ammonium Persulfate  Sigma-Aldrich, A3678 

Aprotinin Sigma-Aldrich, P2714 

ATP Sigma-Aldrich,  FLAAS-5VL 

BCA protein assay  Thermo Fisher, 23225 

Bovine serum albumin  Sigma-Aldrich,  05470 

Brij35  Sigma-Aldrich,  8.01962 

Cryovials VWR, 89092-262 

DNA Polymerase Thermo Fisher, F530S 

DNeasy Blood & Tissue Kit Qiagen, 69506 

DPBS- No Ca+2, No Mg+2 Life Technologies, 14190 

Ethyl alcohol  Fisher Scientific, S25310 

Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetra 

acetic acid 

Sigma-Aldrich,  E3889 

Glycerol  Sigma-Aldrich,  G5516 

Glycine  Fisher Scientific, S80028 
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Human Neural Progenitor Cells (hNPCs) Axol, ax0016 

Huntington's Disease Human Neural Progenitor Cells  Axol ax0211 

Leupeptin Sigma-Aldrich,  L2884 

Lifter slip Fisher Scientific, 22 035 805 

Magnesium chloride  Fisher Scientific, 232-094-6 

Methanol  EMD Millipore, MX0475 

N,N,N´,N´-tetramethylethylenediamine (TEMED) Sigma-Aldrich, T9281 

Neural Maintenance Medium Kit. Axol, ax0031 

Neural Unlock™ Axol, ax0044 

NewBlot Stripping Buffer for Nitrocellulose membrane Li-COR, P/N 928-40030 

Phenylmethylsulfonylfluoride  Thermo Fisher, 36978 

Phosphatase inhibitor Thermo Fisher, 78420 

Phosphatase inhibitor Thermo Fisher, 78428 

Phosphatase inhibitor cocktail 3 Sigma-Aldrich, P0044 

Phusion DNA Polymerase Thermo Fisher, F530S 

Precision Plus Protein™ Dual Xtra Standards Biorad, 161-0377 

Pre-stained protein ladder Biorad,161-0375 

Pre-stained protein ladder Biorad,161-0377 

PRO-Q, Diamond Phosphoprotein Stain Invitrogen, P33300 

Protease inhibitor Thermo Fisher, 78430 

Protein ladder Biorad, 161-0375 

RIPA Lysis Buffer System Santa Cruz Biotechnology, sc24948 

Sodium acetate  Sigma-Aldrich, S2889 

Sodium chloride Sigma-Aldrich, S9888 

Sodium dodecyl sulfate  Sigma-Aldrich, L3771 

Sodium fluoride Sigma-Aldrich, 201154 

Sodium orthovanadate   EMD Millipore, 567540 

Sodium pyrophosphate  Sigma-Aldrich, S6422 

Sure Bond™ Coating Solution Axol, ax0041  

Sure Boost       Axol, ax0045 

Sure Growth  Axol, ax0047 
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Tris base  Fisher Scientific, BP152-5 

Triton X-100  Fisher Scientific, AC215680000 

Trypsin (Cell culture grade)  Fisher Scientific, SV3003101 

Trypsin with EDTA Life Technologies, 25300-054 

Tween-20  Fisher Scientific, BP337500 

β-Glycerophosphate Cayman, 14405 

  

 

 

Table 3.2: Reagent supplier addresses. This Table lists the names and addresses of all 

reagent/chemical suppliers.   

 

Supplier   Address 

  

Axol Cambridge, United Kingdom 

Bio-Rad   Hercules, California, USA 

Cayman Burlington , Ontario, Canada 

Cell signaling technologies Danvers, Massachusetts, USA 

EMD Millipore Danvers, Massachusetts, USA 

Fisher Scientific Walton, Massachusetts, USA 

Invitrogen Life Technologies Green Island, New York, USA 

LI-COR, Odyssey Lincoln, Newark, USA 

New England Biolabs Ipswich, Massachusetts, USA 

Qiagen Toronto, Ontario, Canada 

Santa Cruz Biotechnologies Santa Monica, California, USA 

Sigma-Aldrich  St. Louis, Missouri, USA 

Thermo Fisher Scientific    Logan, Utah, USA 

VWR Mississauga, Ontario, Canada 
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3.2 Cell culture and tissue harvest 

 

3.2.1 Cell culture harvest 

 

            HD neural stem cells (NSC) with 45 CAG repeats (# ax0021) and iPSC-derived neural 

progenitor control cells (ax0016) were obtained from Axol Biosciences (Cambridge, U.K). Both 

cell lines were cultured according to the vendor’s protocol. Prior to culturing cells, Axol Sure Bond 

coating solution (# ax0041) prepared in 1X PBS (without calcium or magnesium; D-PBS) was 

used to treat uncoated 6-well dishes by incubating in the solution overnight at 37oC. The cells were 

seeded at a density of 10,000-50,000 cells/cm2 in Axol Neural Maintenance Media (# ax0031) 

supplemented with the Axol Sure Boost serum (# ax0045). Following two hours of incubation, the 

media was replaced with neural maintenance media supplemented with the Axol Sure Growth 

serum (# ax0047). Cells were cultured in this media for two days, and thereafter cultured in the 

Neural Maintenance Media alone. For passaging and harvesting cells, the culture dishes were 

rinsed with 1X PBS and cells were detached from the dish using the Axol Neural Unlock solution 

(# ax0044). A total of 10x106 cells were harvested and prepared for either peptide array analysis 

or Western blotting (WB).   

 

3.2.2 Tissue harvest 

 

            The R6/2 HD mouse model expresses a small N-terminal fragment with exon 1 of the 

huntingtin gene (Mangiarini et al., 1996). The fragment contains approximately 120 +/- 5 CAG 

repeats, which generates a progressive (disease) phenotype. The model exhibits many of the 

behavioral and neuropathological features of HD and is well characterized, which makes it a 

perfect candidate for in-depth studies of the HD pathology using kinome analysis. PCR was used 

for genotyping during maintenance of colonies. Brain tissue (whole brain for embryonic and 

striatum for the rest) (Figure 3.4) were harvested, after sacrificing the mice for future experiments.  
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3.2.2.1 Genotyping and PCR  

 

            Animal care facility at VIDO-InterVac housed 20 breeding pairs of R6/2 transgenic mice, 

which were purchased from the Jackson Laboratory (#6494). Multiple breeding pairs were 

established between B6CBAF1/J males and ovary-transplanted hemizygous females (Figure 3.1 

and 3.2). Ninety embryos and 169 pups were used for 518 genotyping reactions to confirm both 

the mutant Htt gene and SRY for sex determination. All newborn pups were genotyped and non-

transgenic littermates were used as wild type controls, while presence of SRY was considered as 

male. DNA was extracted using a Qiagen kit (catalog number 60506). DNA extraction was 

completed using the skull from embryonic time points (E19 and E14) after harvesting the brains. 

I obtained ~2mm tail biopsies for the rest of the time points to extract the DNA. The genotype was 

assessed using PCR and amplifications were performed using Phusion DNA polymerase (2 U/µL), 

and dNTP mix with the following reaction and cycling conditions: 

 

Reactions Components (20 µl reaction):  

 

Phusion DNA Polymerase (0.2uL), 10 mM dNTPs, 10 µM Forward Primer (0.2 µM), 10 µM 

Reverse Primer (0.2 µM), Template DNA (<100 ng), 5X Phusion GC Buffer, DMSO (0.6uL), 50 

mM MgCl2 solution, Nuclease-free water (to 20 µl). Cycling Conditions: 

 

 

1. Initial Denaturation                               98 °C (30 seconds)  

35 cycles of  

2. Denaturation                                         98 °C (15 seconds) 

3. Annealing                                             58 °C  (30 seconds)   

4. Extension                                              72 °C  (30 seconds) 

5. Final extension                                     72 °C for 5 minutes 

6. Hold                                                      4°C 
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Figure 3.1: The ovary-transplanted hemizygous female is recommended for breeding with 

B6CBAF1/J males. 

Shown is an ovary-transplanted female with the left ovary (indicated by the forceps) grafted from 

an HD female and the right cauterized to prevent any nonessential pregnancy (Image courtesy: 

VIDO-InterVac Animal care). 
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Figure 3.2: Shown is the cauterized ovary on the right side (indicated by the forceps) of the 

mouse. 

The embryos in the transplanted ovary on the left are the F1 generation. Such embryos are further 

genotyped and the brains are harvested at different time points (Image courtesy VIDO-InterVac 

Animal care). 
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All PCR primers were purchased from Invitrogen Life Technologies (New York, USA). The 

following primer sequences were used: Forward, 5′-CCG CTC AGG TTC TGC TTT TA-3′; 

Reverse, 5′- TGG AAG GAC TTG AGG GAC TC-3′. The mutant Htt product was ~170 base 

pairs. The forward primer annealed upstream of the CAG repeat region and the reverse primer 

annealed in the transgene; therefore, indicating the presence or absence of the transgene. PCRs to 

determine the sex of pups were also performed under the same reaction conditions. The SRY 

primers were: Forward 5′-TTG TCT AGA GAG CAT GGA GGG CCA TGT CAA-3′; Reverse 5′-

CCA CTC CTC TGT GAC ACT TTA GCC CTC CGA-3′. SRY primers amplified and a product 

of ~ 273 base pair indicated a male sex, since they amplified a region of the Y-chromosome. The 

PCR products were separated by 1.5% agarose gel and imaged (Figure 3.3). 

 

 

 

 

Figure 3.3: Representative genotyping for HD-positive mice (lanes 1-8) and sex-

determination (lanes 9-16). 

PCR products were generated for various samples (lanes 1-5 and 9-13), for positive control 

reactions from an ovary (lanes 7 and 14) to genotype HD-positive mice and tail snips of a male 

mouse (lane 15) for sex determination. No template controls (lane 8 and 16) were also 

incorporated. A striatum (lane 6) sample from another mouse species was used as a negative 

control. The PCR product size for HD genotypes was ~170 bp and sex determination was ~ 273 

bp.  ST=Striatum; NT=No template; OV=Ovary; F=Female, M=Male, + = presence of mHtt, - 

=absence of mHtt. 

 

 

3.2.2.2 R6/2 developmental time points for tissue harvest   

 

            Age-matched R6/2 breeding pairs were purchased from Jackson Laboratories 

(https://www.jax.org/) and housed in the animal care facility of the Vaccine and Infectious Disease 

Organization - International Vaccine Center (VIDO-InterVac) at the University of Saskatchewan. 

https://www.jax.org/
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Animals were maintained with ad libitum access to food and water. The rooms were kept at a 

constant temperature (19°C-22°C) and humidity (40–50%) with a 12:12 h light/dark cycle. The 

breeding scheme included ovarian transplanted hemizygous females with the B6CBAF1/J males. 

R6/2 mice developed a progressive behavioral and neurological phenotype by 4-6 weeks of age, 

which mimics the onset of HD in humans. Both the HD and healthy control (HC) mice were 

grouped into sets of males and females. The different time points for the peptide array analysis 

were embryonic days 9 (E9) and 14 (E14), at birth (P0), and weeks 3 (3w), 4 (4w), 5 (5w), 7 (7w) 

and 10 (10w) (Figure 3.4). The methodology for processing the peptide arrays is described in 

section 3.4. At embryonic time points, whole brains from both HD and HC littermate controls of 

both sexes were dissected and cryopreserved. The striatal tissues were dissected from the brains 

of mice at P0 and weeks 3, 4, 5, 7, 10, and frozen at -80oC until further analysis (Figure 3.5). 

 

 

 

 

Figure 3.4: Timeline for peptide array analysis.  

The different time points for the peptide arrays were embryonic days 9 (E9) and 14 (E14), at birth 

(P0), and weeks 3 (3w), 4 (4w), 5 (5w), 7 (7w) and 10 (10w). 
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            Tissues were harvested based on the key developmental time points which were divided 

into eight groups (E9, E14, P0, 3w, 4w, 5w, 7w, and 10w). The time points were chosen based on 

the neural development in the mouse. Embryonic day 9 is the peak of neurogenesis (Darlington et 

al., 1999; Finlay and Darlington, 1995). Embryonic day 14 defines the beginning of the 

development of striatum, caudate and putamen (Fentress et al., 1981). These neurons are the first 

ones to be affected by mHtt leading to the motor abnormalities. The striatum is involved in 

cognition, motor functions, planning and decision making; hence, the degeneration of the striatal 

neurons affects these actions. Neural development was complete at birth, except for the eyes, 

which open after birth. The mHtt appeared in the cortex at 3.5 weeks and the striatum at 4 weeks 

 

 

 

 

Figure 3.5:  Schematic mouse brain depicting the anatomical location of the striatum. 

Shown is the side and the dorsal views of mouse brains. The location of the striatum is also 

shown in the figure whose neurons are primarily affected in HD. The striatal tissue is located 

underneath the cortex (Permission to use from Masini D et al., 2018). 

(https://openarchive.ki.se/xmlui/handle/10616/46182).  

 

 

https://openarchive.ki.se/xmlui/handle/10616/46182
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(Mangiarini et al., 1996). The 3- and 4-week time points were chosen to include the changes 

appearing in the brain just before the appearance of mHtt. At 5 weeks, the mice showed motor 

impairments (Mangiarini et al., 1996). The loss of body weight was prominent around 7 weeks 

where the HD mice weighed about 60-70% less than their control siblings (Mangiarini et al., 1996). 

The age of onset of HD symptoms is reported to aggravate between 9 and 11 weeks and the end 

point is between 10-13 weeks (Beal and Ferrante, 2004; Mangiarini et al., 1996) . Therefore, the 

inclusion of 10 weeks was the last time point. Overall the selection of time points fell into two 

categories 50% understanding the initial stages of disease progression (E9-3w) and the rest 50% 

to recapitulating the signaling in the course of disease progression (4w-10w). Mice were 

euthanized by cervical dislocation and the brains were removed followed by the dissection of the 

striatum. Whole brains were harvested for embryonic time points (Figure 3.6). All tissues were 

collected in Eppendorf tubes, snap frozen on dry ice and stored at -80oC for peptide array or 

Western blot analyses the details of which are discussed in section 3.4 and 3.5 respectively.  
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Figure 3.6: The panel shows the brain tissue harvested from different time points which were 

studied. 

The top row shows the 9-day and 14-day embryos followed by a P0 brain. The rest of the panel 

comprises representative images indicating degeneration in the brain from 3 weeks to 10 weeks in 

both males and females. The first left column are “negative female” (-F) murine brains, i.e., healthy 

control (HC) females without mHtt. This is followed by “positive female” (+F) brain, i.e., with 

mHtt (HD). The following two columns are “negative male” (-M) followed by the extreme right 

column the “positive male” (+M). (Image courtesy VIDO – InterVac Animal care). 
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3.3 Analysis of neuronal morphology by Neurolucida 360 

 

            Huntington’s disease (HD) and healthy control (HC) neural stem cells (NSCs) were 

cultured in 6-well tissue culture dishes, as described earlier in section 3.2.1. Phase-contrast images 

of both cell lines were acquired at 20x magnification using the Olympus CKX41 light microscope. 

The acquired images were analyzed using Neurolucida 360 software (MBF Biosciences, USA) 

(https://www.mbfbioscience.com/neurolucida360) (Dickstein et al., 2016). Quantitative 

evaluation of HD and HC NSCs morphology was performed, as described previously (Dickstein 

et al., 2016), to determine neurite outgrowth, number of soma, and soma size.  An average of six 

HC and HD fields were analyzed. Each image corresponds to a field from one well of a 6 well 

plate and the data are presented as the mean ± SEM.    

 

3.4 Peptide array technology 

 

            The peptide array technology was used to assess the global kinase profile in both the NSCs 

and the murine tissue. The array used for the cellular kinome profiling was a previously designed 

298 peptide array and I designed the murine array which consists of 1268 peptides. The synthesis, 

spotting and general methodology are described below. 

 

3.4.1. Peptide synthesis and spotting 

 

            The customized peptide microarrays described previously (Jalal et al., 2009) were obtained 

from JPT peptide technologies GmbH (Germany). DAPPLE 2 was used to generate a list of 

270,000 peptides from which a list of 1268 peptides were selected to print on the array. The 

peptides list with the peptide name, uniprot ID, target phosphosite and peptide sequence.  These 

peptides were printed on a modified glass slide in replicates of 9, each measuring ~350 μm with a 

spot concentration of 100 fmol/mm2. The peptides and the corresponding phospho-sites are listed 

in the (Supplementary Table S1) (Figure 3.7). Only the murine proteins (corresponding peptides) 

which have a human homolog were selected. The selection was completed by an in depth analysis 

of the published literature and utilizing web based online databases such as Phosphosite plus 

(Hornbeck et al., 2012) (www.phosphosite.org), for phosphorylation events. 

https://www.mbfbioscience.com/neurolucida360
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Figure 3.7: Screenshot of the user interface of the DAPPLE2 web server. 

The target organism and is uploaded and the PTM selected using a dropdown menu. The results 

are emailed to the user after the selection is complete and submitted.  
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3.4.2 Processing peptide array 

 

            Briefly, 107 cells, either HD or HC NSCs, were harvested and pelleted by centrifugation at 

7000xg for 10 minutes at 4oC. Murine whole brain (embryonic) and striatal tissue were weighed 

and ice cold kinome lysis buffer was added and allowed to soak for 10 minutes. A hand held 

homogenizer was used for disruption of the cell pellets and tissue. Cells were lysed in freshly 

prepared kinome lysis buffer [20 mM Tris pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 

1% Triton, 2.5 mM sodium pyrophosphate, 1 mM beta-glycerophosphate, 1 mM Na3VO4, 1 mM 

NaF, 1 μg/ml Leupeptin, 1 μg/ml Aprotinin, 1 mM phenylmethylsulphonyl fluoride] and the crude 

lysates were centrifuged at 12000xg for 10 minutes (30 minutes for tissues) at 4oC. The supernatant 

or clarified lysates were transferred to fresh microcentrifuge tubes. Total protein concentration in 

the lysates was determined using the BCA protein assay (Pierce BCA protein assay kit, Thermo 

Fisher Scientific) and normalized using the appropriate volume of lysis buffer. Lysates were 

diluted to achieve a final protein concentration of ~1.5mg/ml and 80 μl of the clarified lysate was 

mixed with 10 μl of activation mix [50 % Glycerol, 50 μM ATP, 60 mM MgCl2 0.05 % Brij35, 

0.25 mg/ml BSA] in a separate microcentrifuge tube and incubated on ice for 10 minutes. The 

mixture was then applied on the peptide arrays. After incubation at 37oC for two hours in a 

humidified chamber, arrays were washed with 1X PBST (1% Triton in 1X PBS) followed by 

staining with a phosphoprotein solution (Pro-Q Diamond Phosphoprotein Stain, Invitrogen) for an 

hour in the dark at room temperature. The arrays were then washed by gentle shaking for 10 min 

in a de-staining solution comprised of 20% acetonitrile and 50 mM sodium acetate, pH 4.0. The 

de-staining process was repeated three times. A final wash was performed with ddH2O and the 

arrays were air-dried (Figure 3.8).  

 

3.4.3 Signal detection and bioinformatics analyses 

 

            The processed arrays were then scanned using a GENEPIX professional 4200A microarray 

scanner at 532 to 560 nm with a 580 nm filter. The signal intensity corresponding to each 

phosphorylated peptide on the array was determined using the Genepix software, and the raw data 

were analyzed using the PIIKA 2 (Platform for Intelligent, Integrated Kinome Analysis) online 

tool (http://saphire.usask.ca/saphire/piika/index.html) (Maattanen et al., 2013b). 

http://saphire.usask.ca/saphire/piika/index.html
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Figure 3.8: Kinome analysis with peptide arrays. 

(A) Samples can represent cell lines, isolated cell types (like peripheral blood mononuclear cells) 

or tissues. (B) Cellular lysates are incubated on the array in the presence of ATP. (C) Arrays are 

either commercially purchased or generated through selection of peptides from online databases 

or phosphorylation site prediction software such as DAPPLE 2. (D) The signal from 

phosphostained or radio-labelled arrays are detected and quantified. (E) The output of the scanned 

arrays is analyzed by using software platforms such as PIIKA 2 or other approaches. (F) Results 

from kinome analysis are depicted in different formats such as heatmaps and principal component 

analysis (PCA) plots. (G) Biological events suggested through kinome analysis are typically 

validated through independent approaches such as functional assays or phosphorylation specific 

antibodies. (H) Finally, results from the validation can be used for various applications (Baharani 

et al., 2017).  
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3.4.3.1 Platform for Intelligent, Integrated Kinome Analysis (PIIKA 2) 

 

The array was printed with technical replicates and the analysis was completed using 

PIIKA 2 software (Maattanen et al., 2013b). This pipeline is specifically designed for the data 

collected from peptide arrays (Figure 3.9). The pipeline successfully handles the negative values, 

and without distorting the raw values, generates statistically significant outputs. The foreground 

and background mean values of each array were uploaded onto PIIKA 2. These values were 

utilized to perform statistical analyses and generate output files consisting of heatmaps, PCA plots, 

etc. After analyzing the outputs, I decided on the different validation strategies to be incorporated 

to determine the differential phosphorylation status of the peptides in the test sample (HD) versus 

the controls.  
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Figure 3.9: Screenshot of the user interface of the PIIKA 2 web server.  

It involves five steps which includes uploading the file, the parameters for the analysis and the 

tests to be performed. The results are emailed to the user after the selection is complete and 

submitted.  
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3.4.3.2 InnateDB  

 

            Next, step was to perform functional gene enrichment analyses using the InnateDB online 

tool to map the dysregulated phosphorylated targets to cognate signaling pathways. The details of 

the online web tool are described earlier in section 1.3.3.2. InnateDB mapped these targets to 

various canonical signaling pathways and a P ≤ 0.05 was used as a cut off for this analysis. Using 

phosphosite-specific information derived from PIIKA 2, InnateDB further classified these 

pathways as either upregulated or downregulated. Consequently, a list of the potentially up and 

down regulated pathways were shortlisted using the P-values for both NSC and R6/2 dataset 

(Figure 3.10).  

 

 
 

Figure 3.10: Screenshot of the user interface of the InnateDB web server. 

The selection to perform pathway analysis is followed by uploading the file and the results can be 

downloaded.  



54 

 

3.5 SDS-PAGE  

 

            The independent validation of the significantly differentiated peptides; both in NSCs and 

murine study; based on the bioinformatics pipeline was performed by SDS-PAGE and Western 

blotting discussed in the following sections. Cell lysates (NSC) were prepared by first aspirating 

the media from the culture plates followed by gently rinsing the culture plates once with 1X PBS. 

The cells were then harvested using Axol neural unlock. This was followed by centrifuging to 

generate a pellet which was lysed in a freshly prepared RIPA lysis buffer (Table 3.4). The murine 

tissue (R6/2) samples were suspended in RIPA lysis buffer and sonicated with continuous 40 mA 

pulses for 3s five times on ice. Sonicated samples were centrifuged at 12,000 × g at 4°C for 30 

min and supernatant was collected for Western blot analysis. Protein samples were resolved via 

sodium dodecyl sulphate (SDS) Polyacrylamide gel electrophoresis (PAGE). SDS-PAGE was 

performed using the Mini-Protein 4 gel electrophoresis system (#165800FC, Bio-Rad, USA). 

Polyacrylamide gels (10%) with a 1.5 mm thickness were cast using the appropriate glass plates 

provided with the gel electrophoresis pack. The resolving gel comprised 10% acrylamide, 0.8% 

bis-acrylamide, 0.4% SDS, 375 mM Tris HCl pH 8.8, 0.16% (w/v) APS, 0.1% TEMED and H2O. 

The stacking gel comprised 4% acrylamide, 0.8% bis-acrylamide, 0.4% SDS, 125mM Tris HCL 

pH 6.8, 0.24% (w/v) APS, 0.1% (w/v) TEMED and H2O. The protein samples were boiled at 

100°C for 5 minutes prior to loading onto 10-well gels. The gels were run in 1x SDS running buffer 

at a constant voltage of 100 volts until the bromophenol blue dye front passed through the gel. 

 

3.5.1 Western Blotting 

 

            Gels were removed carefully from the glass plates after the electrophoresis. The stacking 

gels were discarded and the resolving gels were overlaid on a standard extra thick pre-cut filter 

paper (# 84783, Thermo Scientific) soaked in transfer buffer. Nitrocellulose membranes were cut 

to the size of the gel and soaked in transfer buffer then overlaid on the gels. This was covered with 

another pre-soaked standard extra thick filter paper and the entire assembly was placed in a gel 

holder cassette. The gel holder cassette was placed in the Western blotting electro blotting 

apparatus (Bio-Rad). This was filled with Western blotting 1x transfer buffer, pre cooled at 4°C. 
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Once the circuit was complete by attaching the lid, the protein transfer was run for 1.5 hours at 

100 volts at 4°C.  

 After the protein transfer was complete, the nitrocellulose membrane was removed from 

the cassette and placed in another container with 5% skim milk on a rocking platform and 

incubated for 40 minutes at room temperature. After blocking, the membrane was rinsed in 1x PBS 

to remove the residual skim milk followed by the addition of primary antibody buffer (Table 3.4). 

Primary antibodies were prepared at appropriate dilutions (listed below) and the membranes were 

soaked in the antibody buffer for overnight incubation at 4°C on a rocker. The membranes were 

washed with 1x PBST buffer 3x for 5 minutes each and then incubated with the appropriate 

secondary antibody (LICOR goat anti mouse/ goat anti rabbit, as mentioned below). Secondary 

antibodies were diluted in secondary antibody buffer (Table 3.4) at a concentration of 0.0001 

µg/mL and left at room temperature on a rocker for 1.5 hours. The membranes were washed 3x 

with 1x PBST (Table 3.3) for 10 minutes each and used for analysis on the LI-COR Odyssey 

infrared scanning instrument (LI-COR, USA). Image StudioTM Lite software (LI-COR, USA) 

linked to the LI-COR instrument was used to acquire the image at the appropriate laser intensities. 

The images acquired were transformed to grey scale and exported in the .jpeg and .tiff format for 

later use. The analysis was completed using the intensities estimated by the Image StudioTM Lite 

software. The expression of tubulin was obtained from the same blot as the primary antibody. The 

ratio of the both phospho and total protein over tubulin was used for normalizing. This was 

followed by a ratio of phospho over total protein to obtain a relative phosphorylation value for that 

particular protein and the comparative analysis was completed using t-test.  

 

3.5.2 Primary and secondary antibodies 

 

            Primary antibodies listed in Table 3.4 were purchased from Abcam, Cell Signaling 

Technologies (Danvers, USA), Thermo Fisher Scientific (Massachusetts, USA), Cedarlane 

(Ontario, Canada), and Sigma-Aldrich (Massachusetts, USA). Secondary antibodies for Western 

blotting, including IR Dye-680RD IgG (#926-68071), IR Dye-800CW IgG (#926-32211) and IR 

Dye-800CW IgG, (#926-32210) were purchased from Li-COR Odyssey (Nebraska, United 

States).   
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Table 3.3: List of stock solutions of chemicals/reagents. Shown in in this Table is a list of stock 

solutions of specific chemicals/reagents and their composition. 

 

 

 

 

 

 

 

 

 

 

 

Buffer/ Media Composition 

1x PBS (Phosphate 

buffered saline) 

137 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4, 1.46 mM KH2PO4, 

pH 7.4. 

 

1x PBST 1x PBS, 0.1% Tween-20 (v/v) 
 

Blocking buffer 5% Skim milk in 1x PBS buffer (5 g Skim milk in 100 mL PBS 

buffer) 

 

Primary antibody buffer  0.1% Tween-20, 5% BSA in 1x PBS 

 

Secondary antibody buffer 0.1% Tween-20, 5% BSA in 1x PBS 

 

Western blotting Transfer 

buffer 

25 mM Tris, 192 mM glycine, pH 8.3, 20% methanol. 

1X SDS PAGE Running 

buffer 

25 mM Tris, 192 mM glycine, 0.1% SDS, pH 8.3. 

 

RIPA lysis buffer 50 mM Tris-HCl, 150 mM NaCl, 0.1% SDS, 1% Triton X-100 and 

0.5% sodium deoxycholate. Buffer supplemented with commercial 

protease and phosphatase inhibitor cocktails  

 

Peptide Array Buffer 20 mM Tris pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 

1% Triton, 2.5 mM sodium pyrophosphate, 1 mM beta-

glycerophosphate, 1 mM Na3VO4, 1 mM NaF, 1 μg/ml Leupeptin, 

1 μg/ml Aprotinin, 1 mM phenylmethylsulphonyl fluoride 

 

Refer to Table 3.1 for commercial source information 
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Table 3.4: List of primary antibodies used. Shown in this Table are the names, and working 

concentrations/dilutions of primary antibodies used in Western blotting. 

  

Primary Antibody  Working Concentration / Dilution 

  

Anti PAK1 + PAK2 + PAK3 (CST 2604) 1:1000 

Anti-AKT (CST 2938S) 1:1000 

Anti-Cdk2 (ab 32147) 100 µl at 0.128 mg/ml / 1:1000 

Anti-Cofilin (CST 3313S) 1:1000 

Anti-LIMK1 Abcam (ab 95186) 100 µl at 0.2 mg/ml / 1:1000 

Anti-MAKPAPK2 (CST 9329S) 1:1000 

Anti-p38 (ab170099) 100 µl at 0.273 - 0.288 mg/ml / 1:1000 

Anti-Profilin 1 (CST 3237) 1:1000 

Anti-PTEN Abcam (ab 31392) 100 µg at 1 mg/ml / 1:1000 

Anti-ROCK2 (CST 8236) 1:1000 

Anti-Slingshot (Cedarlane SK6410) 1:500 

Anti-TAB1 (ab 76412) 1:1000 

Anti-ULK1 (CST 6888) 1:1000 

Phospho AKT1 (CST 9018S) 1:500 

Phospho Cdk2 (ab 194868) 100 µl at 1.14 - 2.34 mg/ml / 1:500 

Phospho Cofilin, (CST 5175S) 1:500 

Phospho LIMK1 (ab 38508) 100 µg at 1 mg/ml / 1:500 

Phospho p38 (ab 60999) 100 µg at 1 mg/ml / 1:500 

Phospho PAK (ab 2477) 100 µg at 1.94 mg/ml / 1:1000 

Phospho Profilin 1 (ab 215752) 1:1000 

Phospho PTEN (ab 131107) 1:1000 

Phospho ROCK2 (ab 228008) 100 µl at 0.13 mg/ml / 1:1000 

Phospho TAB1 (Thermo PA5-12851) 1:500 

Phospho ULK1(CST 8054S) 1:500 

α-Tubulin  (ab4074) 1 µg/ml  / 1:20,000 

β-actin (sc 4778) 0.2 μg/mL / 1:20,000 
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3.6 NetworKIN 

 

            The validation of the significantly differentiated peptides was completed by Western 

blotting using commercial antibodies. This was used to validate a single pathway proposed to be 

dysregulated in the disease. There were many other peptides in the NSC and murine output that 

could be validated but instead I took a high throughput approach. This allowed to summarize the 

results utilizing an online tool (NetworKIIN) that predicts the upstream kinases that regulate the 

significantly phosphorylated peptides on the array. 

          NetworKIN (Version 3.0) platform was used to identify candidate kinases upstream of the 

phosphosites identified in our kinome analyses (Figure 3.11). The NetworKIN tool predicts the 

kinase substrate relationship (Linding et al., 2008). The tool integrates information on various 

kinase-specific and phospho-binding domain-specific motifs derived from the NetPhorest database 

and uses STRING to improve the prediction of cellular kinase-substrate relationships (Linding et 

al., 2008) (Miller et al., 2008).   

          Significantly dysregulated (hyper-phosphorylated or hypo- phosphorylated phosphosites 

were used to predict upstream kinases using the NetworKIN tool 

(http://networkin.info/index.shtml) (Version3.0) (Linding et al., 2008). The original list was 

divided into two separate list and then uploaded individually on the NetworKIN online tool as 

hyper and hypo phosphorylated peptides. The resulting predicted annotations were filtered using 

a NetworKIN confidence score cut-off of 3.0 for the cell lines dataset and a NetworKIN score-

difference cut-off of 4.0 for the mouse dataset. Since the mouse dataset comprised of 1268 unique 

peptides and the cell line 298 a higher cut off was used for it. The score-difference defined the 

maximum difference between the best prediction and the second-best prediction.  The results can 

be downloaded in an excel format from the web. The identified kinases for both, hyper- and hypo-

phosphorylated phosphosites were plotted on a mammalian kinase-dendrogram, for visual 

representation, generated using the KinMapbeta (Eid et al., 2017).   

 

http://networkin.info/index.shtml
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Figure 3.11: Screenshot of the user interface of the NetworKIN web server. 

The input files are uploaded and the score-difference cut-off is defined. The results can be 

downloaded after submitting the files.  
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3.7 KinMAP 

 

            The predicted kinases based on the NetworKIN online tool were mapped on a “kinome 

tree”, the details of which are described here. KinMap (http://kinhub.org/kinmap/) is a web-based 

tool to map kinases based on the kinome data. The software is built on the availability of a dataset 

that links them to the upstream kinases (Figure 3.12). The knowledge of the structural, 

biochemical, functional and disease association of a kinase is utilized to predict the upstream 

kinases. This platform facilitates a visual representation of the predicted kinases and represents 

such data on a kinome tree. The sophisticated kinome tree annotations also allow a comparison of 

the kinases between sexes, disease progression states, etc.; thus, providing more options for 

therapeutic interventions. KinMap supports multiple input and output formats and can recognizes 

alternate kinase names thus making it extremely user-friendly. The names of the kinases can be 

manually inputted or uploaded on the web server. There are different symbols which can be color 

coded and used to represent the kinase. The size of the symbols can indicate their significance. 

These high quality pictures can be downloaded after submitting the data in different image formats.  

 

Eight different families of enzymes (Figure 3.13) can be represented on the kinome tree, including: 

 

1. AGC - Containing PKA, PKG, PKC families 

2. CK - Cell/Casein Kinase  

3. STE - Homologs of yeast Sterile 7, Sterile 11, Sterile 20 kinases  

4. TKL - Tyrosine kinase–like - TKL 

5. TK - Tyrosine kinase  

6. CMGC- Containing CDK, MAPK, GSK3, CLK families  

7. CAMK - Calcium/calmodulin dependent protein kinase - CAMK 

8. APK - Atypical protein Kinases  

 

 

http://kinhub.org/kinmap/
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Figure 3.12: Screenshot of the user interface of the KinMap web server. 

The input file can be uploaded manually or imported from an excel format and after submission 

the kinases are represented on the kinome tree. The annotated image of the human kinome tree can 

be downloaded in different formats (PNG and SVG) for use.  
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Figure 3.13: Graphic representation of the kinome tree with all families. 

[Containing PKA, PKG, PKC families 2 (AGC), Cell/Casein Kinase (CK), Homologs of yeast 

Sterile 7, Sterile 11, Sterile 20 kinases (STE), Tyrosine kinase–like (TKL), Tyrosine kinase (TK), 

Containing CDK, MAPK, GSK3, CLK families (CMGC), Calcium/calmodulin dependent protein 

kinase (CAMK), Atypical protein Kinases (APK)]. 
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4. RESULTS 

 

            The results discussed in this section have been generated by a mix of both experimental 

and bioinformatics analyses. For ease of explanation, Figure 4.1 outlines the different 

bioinformatics tools that were used to generate and validate the experimental data. The blue 

(input), light green (output) and dark green represent the bioinformatics tools used for the analysis 

of the experimental data. The red indicates the peptide array experiments using cell / tissue lysates, 

followed by validation using Western blotting.  

 

4.1 Human neural stem cells 

 

            A previously designed peptide array comprising 298 unique peptides that represented well-

characterized signaling proteins implicated in cell survival, proliferation, motility, and immune 

response-related pathways was used for kinome analysis (Arsenault et al., 2012a). This array was 

used as a platform to screen for potential signaling differences in NSCs derived from an HD 

patient. As a biological control, HC NSCs were utilized. To ensure reproducibility and statistical 

rigor, arrays were designed to include a total of nine replicates of each unique peptide (Jalal et al., 

2009; Li et al., 2012).  Overall, our analyses led to the identification of a total of 128 peptides that 

demonstrated significant differences (P < 0.1) in their levels of phosphorylation between the HD 

and HC NSCs. Fifty-two of these differentially phosphorylated peptides were hyper-

phosphorylated in HD compared to HC, while 76 were found to be hypo-phosphorylated. A 

peptide was selected for further analysis if its P-value was ≤0.1 with a fold change of ± > 1 (Li et 

al., 2012; Maattanen et al., 2013a; Maattanen et al., 2013b). This liberal threshold allowed to 

reduce the possibility of losing potential phosphorylated events while performing pathway 

analysis. Finally, the priority of kinome analysis is to identify biological events that are 

subsequently validated through independent approaches. This increases the likelihood of 

identifying kinases that are dysregulated based on significantly differentially phosphorylated 

peptides in the HD NSCs. The list of up- and down-regulated peptides along with their fold 

changes and P-values based on PIIKA 2 output is provided in Supplementary Table S2. 
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Figure 4.1: Experimental outline.  

The flowchart outlines the general pipeline for the peptide array analysis, up to the validation step. 

The PIIKA outputs are divided into two where one follows the validation experiments (left) and 

the other follows the bioinformatics pipeline (right) used to predict the upstream kinases that are 

dysregulated in the disease process. Blue and green represents the online software tools utilized 

for the experiments. Red indicates the experiments performed to generate the data followed by 

validation. PTM here refers to phosphorylation events. 
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            The next step was the functional gene enrichment analyses using the InnateDB tool to map 

the dysregulated phosphorylated targets to cognate signaling pathways. InnateDB mapped these 

targets to 24 canonical signaling pathways (P ≤ 0.05). Using phosphosite-specific information 

derived from PIIKA 2, InnateDB further classified these pathways as either upregulated or 

downregulated (Breuer et al., 2013). Consequently, four pathways as potentially upregulated and 

20 pathways as potentially downregulated were identified (Table 4.1 and 4.2). The InnateDB 

output is presented in five columns for simplicity, as shown in the Tables below, which represents 

the pathway name followed by ID and the database that provided the information under the column 

source name which is followed by P-value and finally gene names involved in the pathway. 

InnateDB integrates information from a variety of external resources (PID, NID, KEGG etc.) 

thereby, supplementing its own curated interactions (Breuer et al., 2013). Such factors make it 

necessary to broaden the search and carefully compare the outputs of both PIIKA 2 and InnateDB 

to identify common peptides that were significantly differentially phosphorylated for further 

validation by Western blotting (Table 4.3).  

            A number of pathways were listed in the output from InnateDB such as p53 mediated 

signaling, caspase cascade etc. The peptides dysregulated in the cytoskeletal pathway were the 

most prominent based on PIIKA 2, InnateDB and Neurolucida results, discussed later. The 

peptides selected for validation by Western blotting were LIMK1 and cofilin which are shown in 

the next section. 
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Table 4.1: List of up regulated pathways in NSCs along with the P-values (<0.05) based on 

InnateDB pathway analysis.  

 

Pathway Name Pathway ID Source Name  P-value Gene Symbols 

Il12 and STAT4 

dependent signaling 

pathway in Th1 

development 

4054 PID 

BIOCARTA 

0.01 MAPK14, STAT4  

p53 pathway 15289 PID NCI 0.03 AKT1, CDK2, 

MAPK14, MDM2, 

PPP2CA, TP53  

p53 signaling 

pathway 

597 KEGG 0.05 BAX, CASP3, 

CDK1, CDK2, 

MDM2, PTEN, 

TP53   

IL2 15918 NETPATH 0.05 AKT1, BCL2, 

CDK2, CREB1, 

EIF4EBP1, FYN, 

JAK1, MAPK14, 

MKNK1, NFKB1, 

PIK3R1, PIK3R2, 

PTK2B, RELA, 

RPS6KB1, 

STAM2, STAT3, 

STAT4   

 

 

 

 

Table 4.2: List of down regulated pathways in NSCs along with the P-values based on 

InnateDB pathway analysis.  

 

Pathway Name Pathway ID Source Name  P-value Gene Symbols 

Caspase Cascade in 

Apoptosis 

14995 PID NCI 0.01 ACTA1, AKT1, 

BAX, BCL2, 

CASP3, LIMK1, 

RIPK1, XIAP 

Posttranslational 

regulation of 

adherens junction 

15876 PID NCI 0.02 CASP3, CTNNB1, 

EGFR, FYN   
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stability and 

disassembly 

LPA receptor 

mediated events 

15008 PID NCI 0.02 AKT1, CASP3, 

EGFR, NFKB1, 

PIK3R1, PTK2B, 

RELA  

Apoptotic factor-

mediated response 

18658 REACTOME 0.03 CASP3, XIAP   

Caspase cascade in 

apoptosis 

4166 PID 

BIOCARTA 

0.03 CASP3, XIAP   

Integrin signaling 

pathway 

4024 PID 

BIOCARTA 

0.03 ACTA1, FYN   

M-calpain and 

friends in cell 

motility 

4086 PID 

BIOCARTA 

0.03 ACTA1, EGFR   

Nephrin/Neph1 

signaling in the 

kidney podocyte 

14899 PID NCI 0.03 AKT1, FYN   

Phagosome 10394 KEGG 0.03 EEA1, NCF1  

SMAC binds to 

IAPs  

13396 REACTOME 0.03 CASP3, XIAP  

SMAC-mediated 

apoptotic response 

17242 REACTOME 0.03 CASP3, XIAP  

SMAC-mediated 

dissociation of IAP: 

caspase complexes  

13395 REACTOME 0.03 CASP3 , XIAP   

Sema3A PAK 

dependent Axon 

repulsion 

13910 REACTOME 0.03 FYN,  LIMK1   

Syndecan-3-

mediated signaling 

events 

15336 PID NCI 0.03 EGFR, FYN   

Thromboxane A2 

receptor signaling 

14941 PID NCI 0.03 AKT1,  EGFR  

Viral myocarditis 8123 KEGG 0.03 CASP3, FYN  

Follicle stimulating 

hormone 

15929 NETPATH 0.03 AKT1, CREB1, 

EGFR, EIF4EBP1,  

FYN,  MAPK14, 

MDM2, RELA   
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Fc gamma R-

mediated 

phagocytosis 

4359 KEGG 0.03 AKT1, CDC42, 

LIMK1, NCF1, 

PIK3R1, PIK3R2, 

PLCG2, RPS6KB1  

Alpha6Beta4Integrin 15905 NETPATH 0.06 AKT1, CASP3, 

EGFR, EIF4EBP1,  

FYN , MAPK14, 

PIK3R1, PIK3R2, 

SMAD3  

Trefoil factors 

initiate mucosal 

healing 

4063 PID 

BIOCARTA 

0.06 AKT1, CASP3, 

CHUK, CTNNB1, 

EGFR,  IKBKB , 

PDPK1, PIK3R1, 

RELA   

 

 

4.1.1 Validation of peptide array targets 

 

            The most prominent pathway that appeared to be dysregulated was the cytoskeleton 

represented by LIMK1 and cofilin on the peptide array. LIMK1 is the kinase that phosphorylates 

cofilin and phosphatase Slingshot dephosphorylates it. All the peptides were validated by Western 

blotting as shown below. It is more suitable to measure phosphorylation vs. the total expression of 

a protein, the ratio (relative phosphorylation) which was used to represent the difference between 

HC and HD (Bass et al., 2017).  

 

 

Table 4.3: List of peptides validated by Western blotting. Shown in this table are the names of 

the peptide followed by their P-values and fold change obtained from kinome analysis. The 

primary antibodies used were against the phosphosites, mentioned in the table.   

 

Name ID Target P-value Fold change      

Cofilin 1  P23528 S3 0.050 -1.71 

LIMK1  P53667 T508 0.019 -1.56 
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4.1.1.1 Cytoskeletal Dynamics – LIMK1, Cofilin, SSH1L  

            LIMK1-T508 and cofilin-S3 were hypo-phosphorylated in the HD NSCs, thereby 

suggesting a third regulator, the phosphatase Slingshot (SSH1L) - in the actin cytoskeletal 

dynamics in HD NSCs (Figure 4.2A). The regulation of actin microfilaments found in neurons and 

their specific concentrations in the synaptic terminals, dendritic spines, and growth cones (Figure 

1.8) (Fifkova and Delay, 1982) makes this trio (LIMK1-cofilin-SSH1L) an important regulator for 

the maintenance of the actin cytoskeleton (Figure 4.2B). Essential aspects of synaptic plasticity, 

neuronal morphology, and motility in the cell cycle in response to extracellular signals have all 

been associated with dynamic remodeling of actin monomers (dos Remedios et al., 2003). Cofilin 

is inactivated by LIM kinase (LIMK)-mediated phosphorylation, which inhibits its interactions 

with actin filaments and actin monomers (Dawe et al., 2003; Yang et al., 1998) . Its reactivation 

occurs through dephosphorylation by SSH1L-S978 (Niwa et al., 2002). Cofilin is directly involved 

in actin dynamics and its hyper-phosphorylation leads to disintegration of the cytoskeletal structure 

of actin filaments (Wioland et al., 2017).  

            The results obtained from the NSCs cannot be considered confirmatory since they are from 

a single sample. The results suggest that the hypo-phosphorylation of LIMK1 upstream of cofilin 

did not correlate with its function as a kinase phosphorylating cofilin. Another upstream regulator 

of cofilin is a SSH1L, which is a cofilin-S3-specific phosphatase that drives the negative feedback 

inhibition of LIMK1-mediated cofilin-S3 phosphorylation (Yang et al., 1998). Here, both LIMK1 

and SSH1L show reduced phosphorylation suggesting that they are in an inactive and active state 

respectively. Cofilin is hyperphosphorylated indicating that the kinase is active or the phosphatase 

is inactive. These results indicated a more complex mechanism for the contributions of SSH1L-

LIMK1 in the regulation of cofilin. A previous study established that SSH1L and LIMK1 form a 

complex that leads to the dephosphorylation of LIMK1 and inhibition of its kinase activity 

(Soosairajah et al., 2005). Furthermore, there might be crosstalk between the proteins of signaling 

cascades as both LIMK and Slingshot have isoforms. Profilin also affects the actin polymerization 

and depolymerization due to its interactions with cofilin (Minamide et al., 2000; Wioland et al., 

2017). These results might not exactly corroborate the biology however they suggest that there is 

dysregulation in the phosphorylation status of the cytoskeletal proteins thus affecting actin 

dynamics. Further validation using different biological samples from patients might be able to 

resolve the output and provide significance to the values.  
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Figure 4.2A: Western blot analysis of phosphoproteins indicated the activation of 

cytoskeletal signalling pathways. 

Representative blots along with the ratio of the phospho (p) to total (t) (relative phosphorylation) 

cofilin-S3, LIMK1-T508 and SSH1L-S978 in this study. Quantification of Western blot band 

intensities of the selected phosphorylated proteins and their respective total proteins were 

compared to β‐tubulin. Values are from a single sample. 
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Figure 4.2B: Schematic of actin polymerization and depolymerization. 

The kinase LIMK phosphorylates cofilin rendering it inactive leading to actin polymerization. The 

phosphatase slingshot activates cofilin by removing the phosphate. Both LIMK and Slingshot have 

upstream regulators shown here in dashed arrows which ultimately lead to their activation / 

deactivation.  

 

 

 



72 

 

4.1.2 NetworKIN 

 

            After validating the peptide array targets for cytoskeletal pathway by Western blotting, I 

set out to determine the upstream kinases that regulated these significantly differentially 

phosphorylated peptides. To do this I used a bioinformatics online tool, NetworKIN 

(http://networkin.info/index.shtml), which allows systematic matching of kinases to specific 

motifs. This greatly enhances the motif predictions and exploring cellular phosphorylation 

networks (Linding et al., 2008). NetworKIN allows 60-80% prediction capability for in silico 

analyses, thus, increasing the probability of an accurate identification of a kinase responsible for a 

particular phosphorylation event (Linding et al., 2008). NetworKIN analyses of significant 

upregulated peptides with a score of >3 resulted in 21 candidate kinases (Supplementary Table 

S3). The score-difference defined the maximum difference between the best prediction and the 

second-best prediction. These kinases are predicted to play a significant role in the progression of 

the disease process and can be explored as therapeutic targets. Kinases targeting multiple phospho 

sites were CK2α (3 phosphosites, NetworKIN score range: 10.59 - 35.64), GSK3β (3 phosphosites, 

NetworKIN score range: 6.17 – 9.20), GSK3α (2 phosphosites, NetworKIN score range: 3.73 – 

6.08), IKKα (2 phosphosites, NetworKIN score range: 17.18 – 17.33), JAK2 (2 phosphosites, 

NetworKIN score range: 3.41 – 8.07), MAP2K6 (2 phosphosites, NetworKIN score: 16.27), 

MAPK11 (2 phosphosites, NetworKIN score range: 8.71 – 13.04), MAPK8 (2 phosphosites, 

NetworKIN score range: 7.90 – 9.54), PKAα (2 phosphosites, NetworKIN score: 5.88), PKAβ (2 

phosphosites, NetworKIN score range: 8.64 – 8.65), PKAγ (2 phosphosites, NetworKIN score 

range: 8.64 – 8.65), Tyk2 (2 phosphosites, NetworKIN score range: 7.88 – 8.0). Similarly, the 

NetworKIN analyses of downregulated peptides with a score of >3 corresponded to 21 candidate 

kinases. Kinases with multiple phospho sites were PDHK1 (6 phosphosites, NetworKIN score 

range: 3.17 – 60.25), MAPK1 (4 phosphosites, NetworKIN score range: 5.97 – 31.24), PKBα 

(AKT1) (3 phosphosites, NetworKIN score range: 5.08 – 15.59), HIPK2 (3 phosphosites, 

NetworKIN score range: 3.30 – 4.27), Kit (2 phosphosites, NetworKIN score range: 29.90 – 

30.11), MAPK11 (2 phosphosites, NetworKIN score: 5.82), MAPK3 (2 phosphosites, NetworKIN 

score range: 7.62 – 14.74), TRKA (2 phosphosites, NetworKIN score range: 24.44 – 24.35). Based 

on the analyses by NetworKIN, I sought to determine whether the WB analyses for one of the 

http://networkin.info/index.shtml
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predicted kinases, GSK3β, and its upstream kinase, MK2, shows a difference in their 

phosphorylation status using phospho-specific antibodies.  

 

4.1.2.1 GSK3β and MK2 

 

            The analysis of the hyper phosphorylated peptide by kinome analyses and investigation by 

the NetworKIN platform predicted GSK3β as one of the upstream kinases dysregulated in HD 

which is implicated in cytoskeletal changes (Figure 4.3A). An upstream regulator of GSK3β is 

MK2, which has been implicated in the microtubule dynamics (Yuan et al., 2010) was also 

investigated by WB (Figure 4.3B). Glycogen synthase kinase-3 is a serine/threonine protein kinase 

that is highly expressed in the brain. Phosphorylation of GSK3β at S9 renders it inactive (Beurel 

et al., 2015) and its abnormal phosphorylation of the microtubule-binding protein, tau, is suspected 

as a primary event in the formation of the neurofibrillary tangles in Alzheimer's disease brains 

(Mandelkow et al., 1992). It is interesting to note similar dysfunctionalities are observed in the 

HD NSCs, a neurodegenerative disorder. Kobayashi et al. showed that the activation of LIMK1 

by MK2 induces cell migration (Kobayashi et al., 2006). When phosphorylated at S9, GSK3β is 

enzymatically inactive and more likely to be degraded, whereas the phosphorylation of MK2 at 

T222 and T334 (by stress-activated kinases such as p38α) induces MK2 enzymatic activity (Yuan 

et al., 2010) (Figure 4.5B). The WB results indicated that the expression level of phosphorylated 

GSK3β (S9) and MK2 (T222-p1 and T334-p2) were concurrently increased, suggesting the 

inactivation of GSK3β which ultimately could contribute to the dysregulation of microtubule 

dynamics. The biological signaling can be confirmed with an increase in the sample size. The 

results depicted in Figure 4.3A are and not absolute but suggestive of a biological function, as they 

represent a single biological sample and cannot be represented in a statistically-significant format. 
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Figure 4.3A: Western blot analysis of phosphoproteins confirmed the activation of specific 

intracellular signalling pathways revealed by NetworKIN and its upstream kinase. 

Representative blots along with the ratio of the phospho (p) to total (t) GSK3β-S9 as an output of 

in silico analysis based on the peptide array dataset. Western blot analysis of MK2 upstream of 

GSK3β with the ratio of the phospho (p) to total (t) MK2 (p1-T222, p2-T334). Quantification of 

Western blot band intensities of the selected phosphorylated kinases and their respective total 

proteins were compared to β‐tubulin. Values are from a single sample. 
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Figure 4.3B: Schematic representing the microtubule stability.  

Phosphorylation of GSK3β at S9 renders it inactive and its abnormal phosphorylation of the 

microtubule-binding protein. It is regulated by the upstream kinase MK2 which is a downstream 

effector of the ERK signaling shown as dashed arrow.  
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4.1.3 KinMap 

 

            A dendrogram of the human kinome was constructed using KinMap (Eid et al., 2017). It 

highlighted the candidate kinases predicted to target the significantly differentially phosphorylated 

peptides on the array. The identified kinases for both, hyper- and hypo-phosphorylated 

phosphosites were uploaded on NetworKIN (Linding et al., 2008), which predicted the kinases 

phosphorylating those peptides. The candidate kinases identified by NetworKIN analysis were 

selected based on a cut-off score of 10 and represented on the mammalian kinase-dendrogram, using 

the KinMapbeta online tool. The NSCs were obtained from a female patient, and hence, a circle was 

used to represent the dataset. The upregulated kinases were represented in red and downregulated 

in green. This is a simple visualization of a compound profiling dataset, which allowed us to 

answer complex questions pertaining to the involvement of the kinases in the disease. The in-depth 

analysis of these outputs also enables the identification of new avenues for kinases in drug 

development projects. 

        The dendrogram shows a wide distribution of the predicted kinases across different families, 

but the largest node size is seen on Atypical Protein Kinases (APK), whose functions are largely 

unknown (Manning et al., 2002). The node size is proportional to the number of phosphosite 

targets of the kinases. In this study, two prominent APKs were predicted (black arrows, Figure 

4.4), including ATM (Serine/threonine protein kinase ATM) (green) and PDHK1 (Pyruvate 

dehydrogenase (acetyl-transferring)] kinase isozyme 1) (red). Both play an important role by being 

activated during stress and apoptosis. ATM activates during DNA damage specifically checkpoint 

signaling upon double strand breaks (DSBs), whereas PDHK1 during mitochondrial dysfunction  

and protects the cells against apoptosis in response to hypoxia and oxidative stress (Barone et al., 

2009; Kato et al., 2007; Lu et al., 2014; Vallee et al., 2018).  
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Figure 4.4: Dendrogram of the human kinome generated using KinMap predicts the kinases 

involved HD NSCs. 

Dendrogram of the human kinome constructed using KinMap (Eid et al., 2017), highlighting the 

candidate kinases predicted to target the upregulated and downregulated phosphosites in HD 

NSCs. Candidate kinases were identified by NetworKIN (Linding et al., 2007) analysis.  Node 

size is proportional to the number of the phosphosites targeted by the kinase.  All major kinase 

families are annotated in the dendrogram and include: TK (Tyrosine Kinases), TKL (Tyrosine 

Kinase-Like), STE (Sterile kinases; homologs of the yeast STE7, STE11 and STE20 kinases), CK1 

(Casein Kinase 1), AGC (comprising Protein kinase A/ PKA, PKG and PKC kinase sub-families), 

CAMK (Calcium/Calmodulin-dependent kinases) and CMGC (comprising cyclin-dependent 

kinase (CDK), mitogen-activated protein kinase (MAPK), glycogen synthase kinase (GSK) and 

CDC-like kinase (CLK) and APK (Atypical Protein Kinases). 
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4.1.4 Neurolucida 360 

 

            Results from our kinome and WB analyses suggested that cofilin, LIMK1 and SSH1L were 

altered in HD NSCs (Figure 4.2). A correlation between LIMK inactivation and altered 

cytoskeletal dynamics has been observed (DiProspero et al., 2004; Narayanan et al., 2016), which 

affects the neurite morphology (Sainath and Gallo, 2015). Actin microfilaments have specific 

locations in the neurons and are particularly concentrated at the synaptic terminals, dendritic spines 

and growth cones (Gordon-Weeks, 1987; Matus et al., 1982) (Figure 1.8). Neurons are polarized 

cells, and thus, rely on a strong cytoskeletal network to maintain the typical neuronal morphology 

that allows the proper functioning of the neuron and neuronal plasticity. Abnormal signal 

transduction could impact the cytoskeleton negatively and affect actin microtubule dynamics. 

Therefore, to determine whether dysregulated cofilin, LIMK1 and SSH1L in HD-derived NSCs 

could lead to altered neurite outgrowth an artificial reconstruction of the neuronal structure was 

completed. Neurolucida 360 platform (Dickstein et al., 2016), accurately traced and reconstructed 

intricate neuronal structures and quantitatively assessed the neuronal soma and neurite length 

associated with HD and normal NSCs. With this automatic neuron construction tool, one could 

completely reconstruct neurons and its complex network of dendrites, axons, etc., and using the 

detection algorithm, analyze the length of these extensions and the number of soma (cell bodies). 

This facilitated comparisons of the disease conditions to the control, providing a visual, numerical 

and analytical assessment of the disease progression. The results from six fields demonstrated a 

significant difference in neurite length between the HD and HC NSCs (Figure 4.5). The average 

neurite length of HD NSCs was found to be up to 25% shorter than the average neurite length of 

HC NSCs (P < 0.002). No significant difference was observed in the density and soma size between 

the corresponding NSCs, thus suggesting that about the same number of somas resulted in a sparser 

network of neurite branching in HD, compared to HC NSCs. Collectively, the data suggests that 

abnormal functioning of LIMK1, cofilin and SSH1L in HD-derived NSCs potentially leads to 

perturbed cytoskeletal dynamics in those cells and that this could predispose to poor neurite 

outgrowth in HD pathogenesis and eventually, to a loss of synaptic integrity. 
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Figure 4.5: Neurolucida tracings of neurons in the HC and HD NSCs 

 (A) Representative image of HC and HD NSCs by averaging six fields. The indicated cell lines 

were cultured to approximately 80% confluence and phase-contrast images of the cells were 

acquired at 20x magnification using a light microscope. (B) Reconstruction of the neurite 

extensions were generated using Neurolucida 360 and the representative overlay indicating the 

soma and neurite extensions are shown here. (C) Reconstruction of the soma and cell body with 

the scale bar measuring 100μm. (D) Reconstruction was used for quantitative analyses of the total 

neurite length of six HC and HD images. (E) Quantification of the neuronal morphology in HD 

and HC NSCs. (F) Results from the analysis of mean soma lengths in both HD and HC NSCs. Bar 

graph shows mean ± standard deviation , **P < 0.005, n = 6 experiments, unpaired t-test. HC = 

Healthy control, HD = Huntington disease. 
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4.1.5 Discussion  

            

            Herein, NSCs and R6/2 HD mice were used as a model to study the signaling aberrations 

underlying HD pathogenesis. Specifically, kinome analysis was applied to NSCs derived from the 

fibroblasts of a female HD patient with a clinically-diagnosed symptomatic age of onset of 48 

years. This phosphorylation (peptide array) platform and kinome analysis represents a cost-

effective and powerful high-throughput approach to probe for cognate and disease-specific 

kinases. Several models, including immortalized neuronal cell lines and transgenic mouse models, 

have been used to study HD pathology (Cisbani and Cicchetti, 2012; Ferrante, 2009). These 

models have provided critical information regarding HD pathogenesis, and are somewhat able to 

recapitulate the underlying molecular characteristics displayed in the HD patient brain and are an 

invaluable resource to allow for modelling disease pathologies.  

            Several recent studies have reported the dysregulation of cytoskeletal dynamics in 

neurodegenerative disorders, although the molecular mechanisms by which they occur are not 

always apparent (Goldberg, 2003; Guo et al., 2014b; Heng et al., 2010; Niwa et al., 2002). LIM 

kinases are known to play a role in cytoskeletal dynamics (Briz and Baudry, 2014; Endo et al., 

2007). The LIMK family includes LIMK1, which is highly expressed in the brain, and LIMK2, 

which is ubiquitously expressed throughout the body (Proschel et al., 1995; Takahashi et al., 

1998). These kinases are downstream effectors of Rho-GTPases and regulate the actin 

cytoskeleton architecture (Proschel et al., 1995). Upregulation of LIMK1 increases axonal growth 

while its downregulation causes the opposite effect (Heng et al., 2010; Koch et al., 2014). The 

phosphorylation of LIMK1-T508 increases its activity and is associated with enhanced LIMK1-

dependent regulation of actin cytoskeletal dynamics (Cuberos et al., 2015; Petrilli et al., 2014). 

LIMK1 is known to directly phosphorylate cofilin on S3, which inactivates cofilin and prevents 

its binding to actin (Yang et al., 1998). In contrast, Slingshot phosphatase-1 also targets S3, and 

promotes cofilin (re)activation (Romarowski et al., 2015). Loss of cofilin function due to 

phosphorylation at S3 impairs monomeric actin-turnover (G-actin) in the cytoplasm, leading to 

morphological deficits, as demonstrated in Figure 4.2B (Munsie et al., 2012). The impairment of 

G-actin affects profilin that balances the F/G actin ratio which ultimately affects the actin 

polymerization (Posey et al., 2018). 
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            This study revealed hypo-phosphorylation of LIMK1 T508 in HD NSCs, but an increase 

in cofilin S3 phosphorylation. Hypo-phosphorylation of SSH1L was at S978, reduces its 

phosphatase activity and suggested the existence of a complex interplay of LIMK1-cofilin-SSH1L 

pathway. Such phosphorylation also likely contributes to the loss of actin integrity in HD as 

observed in other neurodegenerative diseases, including Alzheimer disease (Bamburg and 

Bernstein, 2016; Barone et al., 2014). It is well established that the calcium levels in HD brains 

are elevated and contribute to cellular toxicity and death (Cheng et al., 2003; Raymond, 2017; 

Wang et al., 2005). Therefore, it is possible neuronal actin cytoskeletal dynamics and organization 

may be dependent on Ca2+ calcineurin - induced SSH1L activation and cofilin deactivation (Wang 

et al., 2005). Another mechanism for dysregulation of SSH1L is the ROS- (Reactive oxygen 

species) dependent activation of the SSH1L-cofilin pathway which stimulates the SSH1L-

dependent formation of cofilin-actin rods; therefore, affecting the actin dynamics (Kim et al., 

2009). All living cells generate ROS, which at a moderate concentration, play important 

physiological roles, but at high levels generate oxidative stress to which the central nervous system 

(CNS) is particularly vulnerable. Neurodegenerative disorders (NDD) are late-onset and prone to 

oxidative stress. Misfolded proteins accumulate as a result of stress and these proteins are 

vulnerable to modification by the carbonyl products of oxidative stress (Kim et al., 2015; Liu et 

al., 2017).  

  Overall, the neuronal tracings, kinome analysis and bioinformatics prediction suggest, 

among other things, differences in microtubule assembly (Figures 4.2-4.5) and the findings present 

evidence that cofilin dysregulation via SSH1L/LIMK1 inactivation is a potential molecular 

hallmark of HD pathology. NetworKIN predicted GSK3β, ATM and PDHK1 as one of the major 

upstream kinases, potentially activated in HD NSCs. These results suggest a complex interplay 

between the cytoskeletal proteins and its upstream kinases. The sample size was one hence it 

cannot be definitively suggested whether stress or DNA damage causes the dysregulated kinase 

signaling in HD though it is obvious that the phosphorylation of the key cytoskeletal proteins is 

affected.  
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4.2 R6/2 Huntington mouse studies 

 

            Alteration in the kinase signaling has been verified in various cellular and mouse models 

over the years in HD. R6/2 is a progressive mouse model of the disease, and hence, subtle changes 

in the disease process can be well documented. The onset of HD pathology in humans is generally 

triggered in their mid-40’s, although it is known that the patients are born with the defective gene. 

This clearly suggests that the fate of HD patients is sealed by birth. How signaling is altered in the 

early stages of life is not clearly understood and leads to the question of whether these pathological 

defects affect neural development. This study focused on answering some of these questions by 

comparing global kinase signaling of HD and HC across major neural developmental time points 

using R6/2 mice. This was accomplished using whole brains for the embryonic time points. To 

understand the signaling defects in the other significant developmental milestones, striatal tissue 

was selected for the analysis which is the most affected in HD. These time points captured the 

various physiological changes in the disease process to study the biochemical changes due to 

(de)phosphorylation by the kinases, and the causes thereof.   

 

4.2.1 Validation of peptide array targets 

 

            As discussed previously, I designed a custom 1268 peptide array (Supplementary Table 

S4) that represented signaling proteins implicated in cell-survival, proliferation, neural-

development, cytoskeleton, energy metabolism, transcription and immune-related pathways. This 

array was used as the platform to screen for potential signaling differences in the neural tissue 

derived from age and sex matched R6/2 murine model of HD. Based on the peptide array and 

pathway analysis results there were five pathways that appeared to be significantly affected across 

the eight time points. They were i) Cytoskeletal dynamics; ii) Calcium signaling; iii) Transcription; 

iv) Cell cycle regulation; and v) Energy Metabolism. I selected significant peptides involved in 

cytoskeletal dynamics to validate by Western blotting as this pathway was also significantly 

affected in the human NSCs. This allowed a better understanding of the defective kinase signaling 

(kinome analysis) across significant developmental time points that lead to the disease symptoms 

in the R6/2 mouse model. 
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4.2.1.1 Cytoskeletal dynamics 

 

            The priority of kinome analysis is to identify targets that are validated by independent 

approaches, which in this case was Western blotting. In both cases the direct measurement is the 

extent of phosphorylation in the peptide / protein (array / WB). The distinction is that this study is 

attempting to capture the phosphorylation status of a peptide in vitro (array), and compare it to the 

phosphorylated protein in vivo (cell/tissue).  

As discussed previously, the peptide was selected from the PIIKA 2 output for further 

analysis with a P <0.2 and a fold change of > ±1 (Goel et al., 2018; Maattanen et al., 2013a; 

Maattanen et al., 2013b) (Supplementary Table S5). This liberal threshold allowed us to avoid 

false positives while performing pathway analysis. As described earlier, the InnateDB tool was 

used to map the dysregulated phosphorylated targets to multiple cognate signaling pathways. 

Using phosphosite-specific information derived from PIIKA 2, these pathways were classified as 

upregulated or downregulated (i.e., positive fold change as up and negative as downregulated). 

This dataset was uploaded for pathway analysis to the InnateDB online tool and consequently this 

analysis identified different signaling pathways that were dysregulated across the different time 

points in the disease process (Supplementary Tables S6 and S7). In this case I had to verify that 

the significantly phosphorylated peptides selected were based on their differential phosphorylation 

status across time points, which meant that a peptide should have a significant change in its 

phosphorylation across at least half of the time points (4 out of 8). Overall, this analyses led to the 

identification of cytoskeletal signaling as the major dysregulated pathway in HD R6/2 neural 

tissues. Figure 4.6 shows the peptides that were validated by Western blot analysis, while Table 

4.4 shows the fold changes and P-values that were derived from the PIIKA 2 output.  
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Figure 4.6: Molecular signaling involved in cytoskeletal organization. 

This map illustrates the Rho kinase signaling pathway, the key effectors, and its downstream 

targets that ultimately affect actin polymerization. The molecules represented in pink and grey are 

kinases while profilin and cofilin have no such activity. Activation of ROCK and PAK lead to the 

phosphorylation and activation of LIMK thus allowing the phosphorylation of cofilin which leads 

to its deactivation. It’s reactivated by the phosphatase SSH1L shown here in green. SSH1L is 

modified by multiple upstream regulators such as PI3K, ROS, calcium etc. Profilin (orange) and 

cofilin (yellow) are involved in maintaining the balance between F and G actin which regulates 

actin polymerization.  * Represents the peptides that were selected for validation based on their 

significant differential phosphorylation in the peptide array. ROCK1=Rho associated protein 

kinase 1, PAK=p21 activated kinase, LIMK1=Lim domain kinase, SSH1L=slingshot phosphatase, 

ROS=Reactive oxygen species. G=globular, F=Filamentous, Ca+2 =Calcium, ROS=Reactive 

oxygen species.  
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Table 4.4: List of peptides selected for validation based on PIIKA 2 output with fold changes 

and P-values for every time point and both sexes [male (M) and female (F)]. The bold represent 

the time points with significant P-values. E = embryonic, P0 = at birth, w = week. 

 

Name ID Target Time point Fold change P-value 

ROCK2 P70336 S1366  E9_F   1.41  0.02 

       E9_M   1.04  0.41 

       E14_F - 1.09  0.31 

       E14_M   1.31  0.08 

       P0_F   1.16  0.10 

       P0_M   1.07  0.35 

       3w_F   1.33  0.10 

       3w_M - 1.09  0.32 

       4w_F - 1.26  0.07 

       4w_M - 2.26  0.01 

       5w_F   1.62  0.01 

       5w_M - 1.03  0.45 

       7w_F - 1.03  0.44 

       7w_M - 1.07  0.37 

       10w_F - 1.20  0.21 

      10w_M - 1.09  0.32 

            

PAK1 O88643 T423  E9_F - 1.23  0.23 

       E9_M   1.14  0.35 

       E14_F   1.26  0.07 

       E14_M   1.01  0.48 

       P0_F - 1.20  0.15 

       P0_M - 1.03  0.46 

       3w_F   1.60  0.04 

       3w_M - 1.04  0.42 

       4w_F   1.20  0.16 
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       4w_M - 1.31  0.05 

       5w_F   1.03  0.46 

       5w_M   1.13  0.31 

       7w_F   1.09  0.36 

       7w_M - 1.17  0.23 

       10w_F - 1.17  0.23 

       10w_M   1.14  0.30 

            

Profilin1 P62962 S138  E9_F - 3.49  0.01 

       E9_M   1.48  0.20 

       E14_F   2.70  0.01 

       E14_M   1.69  0.02 

       P0_F - 1.24  0.25 

       P0_M - 1.73  0.08 

       3w_F   2.61  0.02 

       3w_M - 1.32  0.28 

       4w_F   3.03  0.01 

       4w_M   1.36  0.18 

       5w_F   1.94  0.02 

       5w_M - 2.39  0.01 

       7w_F - 1.16  0.32 

       7w_M - 3.01  0.01 

       10w_F - 1.11  0.30 

       10w_M   1.48  0.03 

            

AKT1 P31750 S473  E9_F   1.64  0.09 

       E9_M - 3.62  0.01 

       E14_F   2.04  0.01 

       E14_M   1.05  0.41 

       P0_F - 1.81  0.01 
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       P0_M   1.03  0.46 

       3w_F - 1.34  0.13 

       3w_M - 1.12  0.31 

       4w_F - 1.69  0.03 

       4w_M - 1.04  0.44 

       5w_F - 1.31  0.26 

       5w_M   1.82  0.02 

       7w_F - 1.04  0.45 

       7w_M - 1.41  0.15 
 

     10w_F   1.25  0.20 

       10w_M - 1.49  0.02 
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4.2.1.1.1 Rho-associated protein kinase (ROCK2)  

 

             ROCK 2 is critical for maintaining the spine morphology and regulating neuronal actin, 

which ultimately modulates synaptic function. Dendritic spines are specialized structures required 

for normal synaptic physiology and have been shown to be altered in the HD state (Chelly and 

Mandel, 2001; Zhou et al., 2009). Two mammalian ROCK homologs have been identified, 

including ROCK1 (also called Rho-kinase β) and ROCK2 (also known as ROKα) (Nakagawa et 

al., 1996). The expression of ROCK2 is higher in the brain compared to ROCK1. ROCK2 

knockout mice have a normal gross brain anatomy, but show changes in synaptic transmission 

(Zhou et al., 2009). The actin cytoskeleton is altered in these mice thus making ROCK2 essential 

for the normal morphology and functioning of the synapses (Zhou et al., 2009). It is known that 

ROCK2 can directly phosphorylate and activate LIM kinases, which in turn phosphorylate and 

inactivates cofilin thus affecting actin depolymerization (Maekawa et al., 1999) (Figure 4.6). The 

phosphorylation of ROCK2 S1366 is conserved in vertebrates and is required for the activation of 

the enzyme (Chuang et al., 2012). It is phosphorylated upon DNA damage, probably by ATM or 

ATR cellular kinases that are well-characterized in the DNA-damage response (Cara et al., 2016).  

            Representative Western blots for both sexes at different developmental time points are 

shown below with phospho-ROCK2 (160kD) represented in Figure 4.7A and total-ROCK2 in 

Figure 4.7B. Assessments of the relative phosphorylation confirmed that phosphorylation of 

ROCK2 S1366 was significantly decreased in lysates derived from the whole brains of female HD 

mice at E9 and striatum at 10w.  However, the relative phosphorylation of ROCK2 at S1366 in 

E14 females was significantly increased in HD. The other time points did not show any significant 

difference in the relative phosphorylation status of ROCK2 (Figure 4.7C), although the peptide 

array results indicated otherwise (Table 4.4).  
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Figure 4.7A: Western blot analysis of phospho-ROCK protein levels. 

Representative blots for phospho-ROCK (160kD) across eight time points and both sexes. The 

same membranes were also blotted for α-tubulin as a loading control (50kD). C = Control mouse, 

H = HD mouse, E = embryonic, P0 = at birth, w = week. 
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Figure 4.7B: Western blot analysis of total-ROCK protein levels. 

Representative blots for total-ROCK (160kD) across eight time points and both sexes. The same 

membranes were also blotted for α-tubulin as a loading control (50kD). C = Control mouse, H = 

HD mouse, E = embryonic, P0 = at birth, w = week.  
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Figure 4.7C: Quantification of phospho-ROCK2 ratio in brain samples of HD versus healthy 

control (HC) mice. 

Shown here are bar-graphs representing the densitometry data of phospho-ROCK2 expression 

derived from Western blotting experiments using brain tissue lysates from HD and healthy control 

(HC) mice. The densitometric data were quantified as the ratio of the expression of phospho-

ROCK2 (S1366) to total-ROCK2. Protein levels of both phospho-ROCK2 and total-ROCK2 were 

normalized to α-tubulin expression. Bar graph shows mean ± standard deviation, *P < 0.05, **P < 

0.005, n = 3 experiments, unpaired t-test. HC = Healthy control, HD = Huntington disease. E = 

embryonic, P0 = at birth, w = week.  

 

 

 

 

 

4.2.1.1.2 p21 activated kinase (PAK) 

 

            The PAK family consists of group I PAKs, including PAK1, PAK2 and PAK3 that are 

activated by GTP bound, RAC/CDC42. The second, more recently discovered group II PAKs 

include PAK4, PAK5 (also known as PAK7) and PAK6. The expression of PAK1 and PAK3 is 

very high in the brain while PAK2 expression is ubiquitous (Fuchsova et al., 2016; Kichina et al., 

2010; Kim et al., 2016). PAK1 has been shown to increase the aggregation of mHtt, thereby, 

modulating its toxicity (Luo et al., 2008). The inhibition of PAK1 is also protective in HD (Ma et 

al., 2012). When activated, PAK1 is a known regulator of the actin cytoskeleton and dendritic 

spine morphology (Kichina et al., 2010; Luo et al., 2008). Its role in the loss of dendritic spines 

and cognitive deficits in AD have been well established (Ma et al., 2012). PAK1 regulates the 

actin cytoskeleton through LIMK1, which ultimately regulates cofilin (Kichina et al., 2010; Zhou 

et al., 2009) . It has been suggested that ROCK2 is mainly important for basal cofilin regulation, 

whereas PAK1 is specifically important for activity-dependent cofilin regulation (Asrar et al., 

2009) (Figure 4.6). Apart from cytoskeletal dynamics, PAK1 has other roles in cell motility, the 

cell cycle, cell survival and death (Kichina et al., 2010; Parvathy et al., 2016). PAK1 T423 is a 

conserved site in its activation loop, which is activated by kinases (3-phospho-inositide dependent 

kinase-1 (PDK1)) and deactivated by phosphatases (Serine-threonine phosphatase PP2A). 

Autophosphorylation of T423 (T402 for PAK 2 and T421 for PAK 3) is required for the activation 

of PAK.  

            An equal amount of protein was analyzed by Western blotting using phosphospecific 
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antibodies and normalized to total protein levels. Representative Western blots for both sexes are 

shown below with phospho-PAK1 represented in Figure 4.8A and total PAK in Figure 4.8B. 

Assessments of the relative phosphorylation confirmed that phosphorylation of PAK1-T423 was 

significantly decreased in the lysates derived from the whole brains of HD mice at E9 and E14 in 

both sexes. The 3w time point shows the opposite results for both sexes. Females show an increase 

and males show a decrease in the protein levels of PAK, revealing a sex difference. There was an 

increase in the relative expression of PAK in 4w males and 10w males however, the comparative 

analysis of males and females at birth, 5w and 7w did not show any significant differences 

compared to the peptide array results (Table 4.4). That data was also confirmed by the WB results, 

as shown in the graphs below (Figure 4.8C). 
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Figure 4.8A: Western blot analysis of phospho-PAK protein levels. 

Representative blots for phospho-PAK (65kD) across eight time points and both sexes. The same 

membranes were also blotted for α-tubulin as a loading control (50kD). C = Control mouse, H = 

HD mouse, E = embryonic, P0 = at birth, w = week.  
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Figure 4.8B: Western blot analysis of total-PAK1/2/3 protein levels. 

Representative blots for total-PAK1/3 (68kD) and total-PAK2 (61kD) across eight time points and 

both sexes normalized to α-tubulin (50kD). C = Control mouse, H = HD mouse, E = embryonic, 

P0 = at birth, w = week. 
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Figure 4.8C: Quantification of phospho-PAK ratio in brain samples of HD versus healthy 

control (HC) mice. 

Shown here are bar-graphs representing densitometry data of phospho-PAK expression derived 

from Western blotting experiments using brain tissue lysates of HD and healthy control (HC) mice. 

The densitometric data were quantified as the ratio of the expression of phospho-PAK (T423) to 

total PAK. Protein levels of both phospho-PAK and total PAK were normalized to α-tubulin 

expression. Bar graph shows mean ± standard deviation, *P < 0.05, **P < 0.005, ***P < 0.001, n 

= 3 experiments, unpaired t-test. HC = Healthy control, HD = Huntington disease, E = embryonic, 

P0 = at birth, w = week. 

 

 

 

 

4.2.1.1.3 LIMK1 

 

            The LIM kinase family of serine/threonine kinases includes LIMK1 and LIMK2 that play 

a key role in actin and microtubule dynamics (Cuberos et al., 2015; Dong et al., 2012; Meng et 

al., 2002). Both kinases are related, with the former being highly expressed in the brain and the 

latter being ubiquitously expressed. The LIM kinases are activated by Rho kinase (ROCK) and 

PAK1 and 4, which leads to the modulation of cofilin (Ohashi et al., 2000). These upstream kinases 

phosphorylate LIMK1 T508 within the activation loop which is the site of its activation 

(Narayanan et al., 2016; Ohashi et al., 2000). The role of LIMK in microtubule dynamics in neural 

networks has not been studied well due to the complexities of the nervous system (Cuberos et al., 

2015). The transient overexpression of LIMK1 accelerates axon formation in mice and a prolonged 

overexpression of LIMK1 leads to axon retraction (Dong et al., 2012).  

            Representative Western blots for both sexes are shown below with phospho-LIMK1 

represented in Figure 4.9A and total LIMK1 in Figure 4.9B. The antibodies did not detect any 

expression at E9 for both phospho and total protein. Assessments of the relative phosphorylation 

confirmed that LIMK1 T508 was significantly decreased in lysates derived from the striatum of 

female HD mice at 3w. The relative phosphorylation in 4w female and male HD mice exhibited a 

significant decrease. Males at 7w showed a significant reduction in the expression of LIMK1 

compared to females with HD, indicating a sex difference. At 10w, both sexes showed a significant 

reduction in the relative phosphorylation of LIMK1. No significant changes were observed in the 

relative phosphorylation at the earlier time points or at 5w (Figure 4.9C).  
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Figure 4.9A: Western blot analysis of phospho-LIMK protein levels. 

Representative blots for phospho-LIMK1 (73kD) across seven time points and both sexes. The 

same membranes were also blotted for α-tubulin as a loading control (50kD). C = Control mouse, 

H = HD mouse, E = embryonic, P0 = at birth, w = week. 
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Figure 4.9B: Western blot analysis of total-LIMK protein levels. 

Representative blots for total-LIMK1 (73kD) across seven time points and both sexes. The same 

membranes were also blotted for α-tubulin as a loading control (50kD). C = Control mouse, H = 

HD mouse, E = embryonic, P0 = at birth, w = week. 



100 

 

 



101 

 

Figure 4.9C: Quantification of phospho-LIMK1 ratio in brain samples of HD versus healthy 

control mice. 

Shown here are bar-graphs representing the densitometry data of phospho-LIMK1 expression 

derived from Western blotting experiments using brain tissue lysates of HD and healthy control 

(HC) mice. The densitometric data were quantified as the ratio of the expression of phospho-

LIMK1 to total-LIMK1. Protein levels of both phospho-LIMK1 and total-LIMK1 were normalized 

to α-tubulin expression. Bar graph shows mean ± standard deviation, *P < 0.05, **P < 0.005, ***P 

< 0.001, n = 3 experiments, unpaired t-test. HC = Healthy control, HD = Huntington disease, E = 

embryonic, P0 = at birth, w = week. 

 

 

 

 

4.2.1.1.4 Cofilin 

 

            Cofilin plays an important role in actin dynamics by modulating actin polymerization and 

depolymerization. Apart from the severing activity it also induces dendritic nucleation and 

debranching. Cofilin is found in various compartments of the cells, including the cytoplasm and 

nucleoplasm, and forms stable heteropolymers with F‑actin in the nucleus (Wioland et al., 2017). 

Cofilin that is not phosphorylated at S3 is involved in the reversible interactions with F and G-

actin. These interactions are involved in the regulation of cofilin after activation or its positioning 

in the cellular compartment (Bamburg and Bernstein, 2016; Munsie and Truant, 2012). The 

phosphorylation of cofilin at S3 leads to its deactivation leading to depolymerizing actin filaments. 

Conversely, the dephosphorylation of cofilin allows its binding to actin thereby promoting its 

polymerization. Slingshot (SSH) is the major phosphatase responsible for dephosphorylating 

cofilin at S3. The regulation of LIMK and SSH affects the phosphorylation of cofilin at S3 and 

ultimately its interaction with actin. Protein kinase D (PKD) inactivates SSH1L, a member of the 

SSH family, and activates LIMK1; therefore, inhibiting cofilin dephosphorylation. Notably 

calcineurin triggers cofilin dephosphorylation through the activation of SSH1L, whereas 

Ca2+/calmodulin dependent protein kinase II (CaMKII) negatively regulates SSH1L (Wang et al., 

2005). This indicated that calcineurin and CaMKII act as molecular switches controlling Ca2+-

dependent cofilin activation (Figure 4.6).  

            Representative Western blots for both sexes are shown below with phospho-cofilin 

represented in Figure 4.10A and total cofilin in Figure 4.10B. Assessments of the relative 
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phosphorylation confirmed that cofilin S3 was significantly increased in the lysates derived from 

the whole brains of females, and decreased in male HD mice at E9 thus, indicating a sex difference. 

The phosphorylation of cofilin in females indicates that the depolymerization of actin and the 

reduced phosphorylation in males leads to actin polymerization. At E14, there was an increase in 

the relative phosphorylation in whole brain samples from females with HD. At 3w both the male 

and female striatal samples exhibited increases in the relative phosphorylation of cofilin. At 4w 

the cofilin levels decreased in the female HD striatum. Both the male and female relative 

expression levels of cofilin were reduced at 5w. At 7w only females and at 10w only males showed 

a reduction in the relative phosphorylation of cofilin, suggesting a sex difference in disease 

progression. There was no change observed at birth, as shown in the Figure 4.10C.  
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Figure 4.10A: Western blot analysis of phospho-cofilin protein levels. 

Representative blots for phospho-cofilin (19kD) across eight time points and both sexes. The same 

membranes were also blotted for α-tubulin as a loading control (50kD). C = Control mouse, H = 

HD mouse, E = embryonic, P0 = at birth, w = week. 
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Figure 4.10B: Western blot analysis of total-cofilin protein levels. 

Representative blots for total-cofilin (19kD) across eight time points and both sexes. The same 

membranes were also blotted for α-tubulin as a loading control (50kD). C = Control mouse, H = 

HD mouse, E = embryonic, P0 = at birth, w = week. 
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Figure 4.10C: Quantification of phospho-cofilin ratio in brain samples of HD versus healthy 

control mice. 

Shown here are bar-graphs representing densitometry data of phospho-cofilin expression derived 

from Western blotting experiments using brain tissue lysates of HD and healthy control (HC) mice. 

The densitometric data were quantified as the ratio of the expression of phospho-cofilin to total 

cofilin. Protein levels of both phospho-cofilin and total cofilin were normalized to α-tubulin 

expression. Bar graph shows mean ± standard deviation, *P < 0.05, **P < 0.005, n = 3 experiments, 

unpaired t-test. HC = Healthy control, HD = Huntington disease, E = embryonic, P0 = at birth, w 

= week. 

 

 

 

 

4.2.1.1.5 Slingshot 

 

            The Slingshot (SSH) family of protein phosphatases include three members, namely SSH1, 

SSH2 and SSH3. The regulation of cofilin is controlled by LIMKs and SSH phosphatases through 

phosphorylation (inactivation) and dephosphorylation (activation) at S3, respectively. The 

regulation between phospho-cofilin and cofilin level determines actin polymerization in growth 

cone motility, neurite outgrowth and axon guidance (Ohta et al., 2003). One study showed that 

SSH1 is activated by ROS, which subsequently activated the cofilin proteins that form cofilin rods 

and cause neurite atrophy (Kim et al., 2009) (Figure 4.6). Calcium mediates the activation of SSH 

via the activation of calcineurin (Wang et al., 2005). Phosphorylation of SSH1 at S978 increases 

its phosphatase activity.  

        Representative Western blots for both sexes are shown below with phospho-SSH1L 

represented in Figure 4.11A and total SSH1L in Figure 4.11B. The expression of phospho and 

total-SSH1L were not detected at E9. Assessment of the relative phosphorylation confirmed that 

SSH1L at S978 was significantly decreased in the lysates derived from the whole brain of female 

HD mice at E14 and correspond to the increase in cofilin phosphorylation. The relative 

phosphorylation at birth in males was significantly decreased in HD striatum samples.  At 3w, both 

sexes had increased expression of SSH1L compared to control samples. At 5w there is a significant 

increase in the expression of SSH1L in male. The analysis showed that the rest of the striatal 

samples did not exhibit a significant difference in the relative phosphorylation status of SSH1L 

(Figure 4.11C).  
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Figure 4.11A: Western blot analysis of phospho-SSH1L protein levels. 

Representative blots for phospho-SSH1L (150kD) across eight time points and both sexes. The 

same membranes were also blotted for α-tubulin as a loading control (50kD). No expression was 

observed at E9. C = Control mouse, H = HD mouse, E = embryonic, P0 = at birth, w = week. 

Arrow indicates the band that was used for quantification.  
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Figure 4.11B: Western blot analysis of total-SSH1L protein levels. 

Representative blots for total-SSH1L (150kD) across eight time points and both sexes. The same 

membranes were also blotted for α-tubulin as a loading control (50kD). No expression was 

observed at E9. C = Control mouse, H = HD mouse, E = embryonic, P0 = at birth, w = week.  
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Figure 4.11C: Quantification of phospho-SSH1L ratio in brain samples of HD versus healthy 

control mice. 

Shown here are bar-graphs representing densitometry data of phospho-SSH1L expression derived 

from Western blotting experiments using brain tissue lysates of HD and healthy control (HC) mice. 

The densitometric data were quantified as the ratio of the expression of phospho-SSH1L to total 

SSH1L. Protein levels of both phospho-SSH1L and total SSH1L were normalized to α-tubulin 

expression. Bar graph shows mean ratio ± SD, *P < 0.05, **P < 0.005, ***P < 0.001, n = 3 

experiments, unpaired t-test. HC = Healthy control, HD = Huntington disease, E = embryonic, P0 

= at birth, w = week. 

 

 

 

 

4.2.1.1.6 Profilin-1  

 

            Profilin is an actin binding protein with four isoforms with tissue-specific expressions 

(Burnett et al., 2008). Profilin 1 is expressed in all tissues, profilin 2 is specifically expressed in 

the brain, and profilins 3 / 4 are expressed in the testis.  Profilin 1 binds to Htt protein causing a 

progressive loss of mHtt seen in the cortex of HD patients by reducing its aggregation (Burnett et 

al., 2008; Posey et al., 2018). The loss of profilin further leads to the imbalance in the F/G actin 

ratio, which ultimately affects actin polymerization (Burnett et al., 2008). ROCK1 phosphorylates 

profilin 1 at S138 and reduces its affinity for G-actin (Narayanan et al., 2016). This prevents the 

interaction of profilin 1 with Htt; thus, preventing the inhibition of mHtt aggregation (Burnett et 

al., 2008; Shao et al., 2008).  

            Representative Western blots for both sexes are shown below with phospho-profilin 1 

represented in Figure 4.12A and total profilin in Figure 4.12B. Assessments of relative 

phosphorylation confirmed that profilin S138 was significantly decreased in the lysates derived 

from the whole brains of female HD mice at E9, which was similar to the peptide array output 

(Table 4.4).  Phosphorylation increases were observed in the HD brains of both sexes at E14, again 

agreeing with the direction observed in the peptide array outputs. At 3w, the shift was observed in 

both sexes showed a significant increase in HD samples. At 7w, a difference was observed between 

male and females where only the male HD mice showed a significant difference between HD and 

HC. At 10w, both the female and male HD lysates exhibited a reduction in the expression of 

profilin 1. There were no significant changes in expression observed in the 4 and 5w samples, as 

shown in Figure 4.15C. 
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Figure 4.12A: Western blot analysis of phospho-profilin protein levels. 

Representative blots for phospho-profilin (15kD) across eight time points and both sexes. The 

same membranes were also blotted for α-tubulin as a loading control (50kD). C = Control mouse, 

H = HD mouse, E = embryonic, P0 = at birth, w = week. 
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Figure 4.12B: Western blot analysis of total-profilin protein levels. 

Representative blots for total-profilin (15kD) across eight time points and both sexes. The same 

membranes were also blotted for α-tubulin as a loading control (50kD). C = Control mouse, H = 

HD mouse, E = embryonic, P0 = at birth, w = week. 
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Figure 4.12C: Quantification of phospho-profilin 1 ratio in brain samples of HD versus 

healthy control mice. 

Shown are bar-graphs representing densitometry data of phospho-profilin 1 expression derived 

from Western blotting experiments using brain tissue lysates of HD and healthy control (HC) mice. 

The densitometric data were quantified as the ratio of the expression of phospho-profilin 1 to total-

profilin. Protein levels of both phospho-profilin 1 and total-profilin were normalized to α-tubulin 

expression. Quantitative data were compared between groups using t-tests (males-M and females-

F). Bar graph shows mean ± standard deviation, *P < 0.05, **P < 0.005, ***P < 0.001, n = 3 

experiments, unpaired t-test. HC = Healthy control, HD = Huntington disease, E = embryonic, P0 

= at birth, w = week. 

 

 

 

 

4.2.1.1.7 AKT1 

 

            AKT is a Serine/Threonine kinase whose activation occurs downstream of PI3K, and has 

many multifunctional key nodes downstream. AKT has three isoforms named AKT 1, 2 and 3 and 

is considered a master regulator for a number of biological processes such as proliferation, cell 

survival, growth, and neurogenesis (Colin et al., 2005; Lievens et al., 2008; Maddika et al., 2008; 

Sugiyama et al., 2019). PI3K activation leads to the phosphorylation of two key residues on AKT1, 

including T308 in the activation loop, and S473 in a C-terminal hydrophobic motif (Manning and 

Toker, 2017). The phosphorylation of both residues are required to attain maximum functionality 

by the kinase. PP2A and PTEN are major phosphatases that directly inactivate AKT (Phadngam 

et al., 2016). The appearance of this particular isoform in the significantly differentiated peptide 

array dataset was recognized as important and appropriate for validation.  

            Representative Western blots for both sexes are shown below with phospho-AKT1 

represented in Figure 4.13A and total AKT1 in Figure 4.13B. Assessments of the relative 

phosphorylation confirmed that phospho-AKT1 S473 was significantly increased in the lysates 

derived from the whole brain of both sexes HD mice at E9. The relative phosphorylation at birth 

was also significantly increased in females and males. At 3w, there was an increase in the relative 

phosphorylation of AKT1 in females and at 5w there was a decrease in the relative phosphorylation 

in males. Those findings were opposite to the results obtained by the peptide array (Table 4.4). At 

10w phosphorylation was increased in males. The results from the later time points suggest a sex 

difference. E14, 4w and 7w did not show any significant changes in AKT1 phosphorylation, as 

seen in the Figure 4.13C. 
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Figure 4.13A:  Western blot analysis of phospho-AKT1 protein levels. 

Representative blots for phospho-AKT1 (60kD) across eight time points and both sexes. The same 

membranes were also blotted for α-tubulin as a loading control (50kD). C = Control mouse, H = 

HD mouse, E = embryonic, P0 = at birth, w = week. Arrow indicates the band that was used for 

quantification. 
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Figure 4.13B: Western blot analysis of total-AKT1 protein levels. 

Representative blots for total-AKT1 (60kD) across eight time points and both sexes normalized to 

α-tubulin (50kD). C = Control mouse, H = HD mouse, E = embryonic, P0 = at birth, w = week. 
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Figure 4.13C: Quantification of phospho-AKT1 ratio in brain samples of HD versus healthy 

control mice. 

Shown here are bar-graphs representing densitometry data of phospho-AKT1 expression derived 

from Western blotting experiments using brain tissue lysates from HD and healthy control (HC) 

mice. The densitometric data were quantified as the ratio of the expression of phospho-AKT1 to 

total AKT1. Protein levels of both phospho-AKT1 and total AKT1 were normalized to α-tubulin 

expression. Quantitative data were compared between groups using t-tests (males-M and females-

F). Bar graph shows mean ± standard deviation, *P < 0.05, **P < 0.005, ***P < 0.001, n = 3 

experiments, unpaired t-test. HC = Healthy control, HD = Huntington disease, E = embryonic, P0 

= at birth, w = week. 

 

 

 

 

            Analysis of the effects of the peptides involved in cytoskeletal signaling suggests that the 

phosphorylation of the upstream kinases, ROCK2 and PAK1, were dysregulated at the embryonic 

stage of development. The phosphorylation of the kinase and phosphatase upstream of actin 

(LIMK1, SSH1L) along with cofilin and profilin were found to be dysregulated around the same 

time as mHtt appeared in the brain, or at later stages of disease. These are tabulated for a 

comprehensive summary and the ease of visualization in Table 4.4. Therefor it can be suggested 

that there is evidence of both neurodevelopmental changes, as well as sex specific differences in 

the progression of the disease which is observed as the dysregulated kinase signaling. 

 

 

Table 4.14: Summary of the significantly hyper- (pink) and hypo- (green) phosphorylated 

proteins based on Western blot results. 

 

 
 

 

 

E9 E14 P0 3w 4w 5w 7w 10w

F M F M F M F M F M F M F M F M

ROCK2

PAK

LIMK1

Cofilin

SSH1L

Profilin

AKT1
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4.2.2 NetworKIN 

 

            Western blot analyses was used in an attempt to independently validate the peptide array 

data following which I decided to identify the upstream kinases responsible for phosphorylating 

these targets, by using online tools. NetworKIN platform was used to predict candidate kinases 

upstream of the phosphosites determined from peptide array analyses utilizing neural tissue from 

HD mice. Significantly hyper-phosphorylated or hypo-phosphorylated phosphosites from the 

peptide array were used to predict upstream kinases for all the time points and both sexes using 

NetworKIN. The resulting predicted annotations were filtered using a NetworKIN confidence 

score cut-off of 3.0 and a NetworKIN score-difference cut-off of 4.0. (Linding et al., 2008). The 

score-difference defines the maximum difference between the best prediction and the second-best 

prediction. The identified kinases for hyper- and hypo-phosphorylated phosphosites were plotted 

on a mammalian kinase-dendrogram generated using KinMapbeta. A cut-off score of 30 was used 

for the NetworKIN output which generated a list of predicted kinases that were represented on the 

dendrogram as shown in Figure 3.13.  

 

4.2.3 KinMap 

 

            As mentioned earlier, a NetworKIN cut off score was used to short list the kinases to be 

represented on a dendrogram (or kinome tree) generated by KinMap. The kinome tree allows the 

visualization of the different kinases from a complex dataset (Eid et al., 2017) to gain a better 

understanding of the biology from high throughput data. The kinases were represented on the 

kinome tree in the form of a circle or square. A circle was used to represent the female dataset and 

squares for males. The candidate kinases predicted to target the upregulated phosphosites are 

represented in red and downregulated phosphosites are represented in green. The color blue was 

used for upregulated phosphosites observed in only one sex with and yellow for downregulated 

phosphosites observed in only one sex. The size of the circles or squares is determined by the 

NetworKIN score, with a higher score having a larger representation on the dendrogram i.e. 

regulating more peptides on the array. Manning et al. used the underlying sequences to divide 

nearly 540 kinases into eight typical and 13 atypical groups (Manning et al., 2002) as listed earlier.  

            After shortlisting the kinases with the NetworKIN a cut-off score of 30 these kinases were 
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then uploaded on the KinMap online tool used to generate dendrograms, visually representing the 

kinases. Based on the peptide array results KinMap represented the predicted kinases that were 

predicted to be dysregulated in HD mice (Supplementary Figures 1.1-1.8). Panel A shows the 

kinases dysregulated in females and the panel B represents males. The dendrograms show subtle 

differences in the predicted kinases, and indicate towards sex and developmental differences 

within the disease process. The difference in the upstream predicted kinases is represented in the 

dendrograms in the appendix and supplementary table S8 highlights them. These results emphasize 

the importance of cytoskeletal system dynamics and upstream kinases regulating the disease 

process. PAKs and GSKs are involved in cytoskeletal dynamics and are upstream of actin and 

microtubules, respectively. The roles of Ephrins on the other hand have been well studied in neural 

development, cytoskeletal dynamics, axon guidance and synaptogenesis (Boyd et al., 2014; Huot, 

2004; Xu and Henkemeyer, 2012). Another prominent family of kinases predicted were the 

CaMKs, of which one example is Ca2+/calmodulin-dependent protein kinase II (CaMKII), which 

negatively regulates SSH1L activity, and thus, plays an important role in actin cytoskeletal 

reorganization (Zhao et al., 2012). Ca2+-induced cofilin dephosphorylation is mediated by 

calcineurin-dependent activation of SSH1L, cofilin and LIMK1 (Zhao et al., 2012). ATM, which 

is an upstream predicted kinase in NSCs was also one of the upstream kinases identified in the 

murine dataset. A study has showed that small-molecule inhibitors targeting ATM ameliorates 

mHtt toxicity in cells and animal models (Cara et al., 2016; Lu et al., 2014). Overall, the findings 

indicate a dysregulated cytoskeleton, developmental variance and sex differences in the disease 

progression, which needs further investigation.  

 

4.2.4 Discussion      
 

 

            Decades ago, neurodegeneration was not well understood since the life expectancy of 

individuals was not as long as it is currently. The 2000’s showed an increase in better 

understanding of the disease process and finding some treatments for neurodegenerative disorders. 

The auto phosphorylation of ROCK2 at S1366 does not affect its kinase activity, but could be a 

contributor to protein subcellular localization. ROCK 2 has multiple downstream targets that affect 

the regulation of cell shape, motility, survival and apoptosis (Koch et al., 2018; Koch et al., 2014; 

Yan et al., 2019). One of the most important effects of activated ROCK is the regulation of the 
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actin cytoskeleton through the phosphorylation of LIMK1 and LIMK2. LIMK phosphorylates 

cofilin, which depolymerizes or severs the actin filament. This arrests neurite outgrowth and leads 

to an abundance of stable actin filaments. Notably, knockdown of ROCK2 prevents apoptosis and 

increases AKT activity (Koch et al., 2014). Several studies have also shown an increase in ROCK2 

and its downstream targets, including LIMK1 and cofilin in patients with neurodegenerative 

disorders such as ALS and AD (Chuang et al., 2012; Koch et al., 2018; Koch et al., 2014; 

Narayanan et al., 2016). Another regulator of the actin cytoskeleton and dendritic spine 

morphogenesis is the RAC/CDC42-activated kinase, PAK1. PAK1 interacts with Htt and enhances 

the aggregation of mHtt, thus inducing toxicity, while inhibition of PAK1 protects against HD 

symptoms (Ma et al., 2012). Studies have shown that PAK1 co-localizes with mHtt aggregates in 

cell lines and in human HD brains, thus, suggesting that it plays a key role in the expansion of the 

polyQ tract that leads to the aggregation of mHtt (Luo et al., 2008; Ma et al., 2012). Notably, there 

is a progressive loss of profilin in presymptomatic HD gene carriers (Burnett et al., 2008). A study 

reported that the overexpression of profilin abolished mHtt toxicity in cells; thus, extending the 

life span of Drosophila (Posey et al., 2018). Profilin can promote actin polymerization or sequester 

G-actin, therefore, causing different effects under different conditions. The relative levels of F 

(polymerized) and G actin (monomeric) are affected in HD following the induction of mHtt, but 

no changes are observed with WT Htt (Posey et al., 2018).  It is interesting to note that profilin 

was a significantly phosphorylated peptide in the kinome analysis. Its interactions with cofilin 

makes it a major player in the dysregulation of cytoskeletal regulation in R6/2 HD mice. As 

depicted by the results LIMK1 cofilin and SSH1L play a major role in actin dynamics in HD. 

Phosphorylation of cofilin causes its deactivation and the process is reversed by the phosphatase 

SSH1L. Both PAK and ROCK2 regulate LIMK1, which ultimately affects the actin cytoskeleton, 

axonal transport, and synaptic disruption. SSH1L is involved in Ca+2-mediated cofilin 

dephosphorylation mediated by calcineurin, which is the major phosphatase in this study which 

could have a major role in the disease process.   

            Age related neurodegenerative disorders showed an increase in the DNA damage and 

dysregulation of energetic mechanism which leads to cell death. Recently both ATM (DNA 

damage) and PDHK1 (energy metabolism) have been shown to be dysregulated in HD (Lu et al., 

2014; Vallee et al., 2018) and they appeared as the predicted upstream kinases in this dataset. It 

has been shown that mHtt causes an aberrant increase in the ATM signaling in HD and ATM 
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inhibitors appear to be neuroprotective though the mechanisms of the increase are yet to be 

understood (Lu et al., 2014). The brain uses 70% of the energy produced hence ATP is the primary 

determinant of neuronal viability. The inactivation of PDHK1 in HD is due to an increase in the 

WNT/β-catenin signaling (Vallee et al., 2018). The kinome profiling predicted by in silico analysis 

that these two kinases are important in the disease process. Hence the regulation of aerobic 

glycolysis and reduction of ATM signaling should be further studied as they might be useful 

therapeutic targets for HD. 

            Finally, the peptide array analyses revealed that a number of phosphorylated peptides could 

not be validated. This is a drawback of peptide array analysis and needs to be addressed. 

Furthermore, it has been noted that 50-70% of the information from the peptide arrays is lost due 

to technical reasons during data normalization (Scholma et al., 2016). Therefore, the use of quasi-

stringent t-testing (P < 0.1/0.2) in the analyses allowed  to reduce the bias due to stringent statistical 

thresholds (Kindrachuk et al., 2012; Napper et al., 2015; Scholma et al., 2016). These adjustments 

are required to get a much larger dataset supported by bioinformatics analysis to generate 

significant biologically relevant result. In conclusion these peptide arrays offer an effective high 

throughput platform to profile global kinase phosphorylation patterns.  
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5. GENERAL DISCUSSION  

 

5.1 Cytoskeletal dynamics dysregulated in HD NSCs and R6/2 mice 

 

            Kinome profiling has been successfully used to study neurodegenerative disorders 

(Hoozemans et al., 2012; Meng et al., 2016; Rosenberger et al., 2016) and cytoskeletal dynamics 

have been previously characterized to be dysregulated in neurodegenerative diseases such as 

Alzheimer’s disease (Eira et al., 2016; Majumder et al., 2017). The objective of this study was to 

determine the involvement of protein kinases in HD pathogenesis and this study uses kinome 

profiling to identify the pathways dysregulated in NSCs and R6/2 HD mice. The analysis of both 

the stem cells and murine tissues determined that the cytoskeletal dynamics as one of the major 

pathways dysregulated. This was followed by in silico analyses of the phosphosites which 

uncovered upstream kinases such as ATM and GSK3β which have been previously identified as a 

therapeutic target for HD (Fernandez-Nogales et al., 2015; Lu et al., 2014). ATM is a DNA 

damage sensor, and it has been shown that the DNA damage in HD is caused by dysfunction of 

the mutant huntingtin protein in DNA repair followed by an increase in ROS leading to oxidative 

stress (Maiuri et al., 2017). GSK3β on the other hand is reduced in HD brain and plays an important 

role in reducing ubiquitination-proteosomal degradation and suppressing polyQ protein 

aggregation (Lee et al., 2016). These results could help in identifying therapeutic targtes to treat 

HD by regulating these kinases. This study allowed us to uncover the different phosphoryation 

status of the key players in the cytoskeltal dynamics - ROCK2, PAK1, Profilin, AKT1, LIMK1, 

Cofilin and SSH1L. In general most of the peptides had the same directionality (hyper- or hypo-

phosphorylated) in Westerns as in peptide arrays in most of the developmental stages but. In a few 

developmental time points it was reversed and the complexity of the signaling is represented in 

the Table 5.1 with shades of pink being hyper and green as hypophosphorylated.  
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Table 5.1 Comparative summary of the significantly hyper- (pink) and hypo- (green) 

phosphorylated proteins based on peptide array and Western blot results of R6/2 mouse 

model. The darker shades of pink and green are the results which show opposite trends in kinome 

vs Western and are statistically significant. NE = no expression at specified time point. * indicates 

the significant P-values, P≤0.05 (Western blotting) and P≤0.2 (Kinome analysis).  

 

 

 

 

 

 

 

E9 E14 P0 3w 4w 5w 7w 10w

F M F M F M F M F M F M F M F M

ROCK2 Kinome * * * * * * * *

Western * * *

PAK Kinome * * * * * * * *

Western * * * * * * * *

Profilin Kinome * * * * * * * * * * * * * *

Western * * * * * * * *

AKT1 Kinome * * * * * * * * * *

Western * * * * * * *

LIMK1 Western NE NE * * * * * *

Cofilin Western * * * * * * * * * *

SSH1L Western NE NE * * * * *
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            Signaling does not always occur in a linear fashion but via cascades with one protein 

catalyzing the phosphorylation of a second protein. The number of proteins receiving a signal can 

multiply very rapidly in each step of the cascade thus amplifying the signal. Some of these cascades 

have proteins which are involved in multiple pathways and may lead to the compensatory output 

in one pathway and exaggerated in the other. The native phosphorylation events occurring at the 

cellular levels require a relevant biological stimuli or the absence of it for a more appropriate 

representation of physiological kinase activities. In the past a number of low throughput techniques 

have been used to study a disease process. They analyzed one or few molecules at a time. While 

such techniques are useful and informative they are time consuming and cannot recapitulate these 

complex signaling changes. They are not conducive to understanding the intricate biological 

interactions and cannot generate global patterns of signaling. The disadvantage of high throughput 

studies is that some of these datasets generate complex patterns which might need an increase in 

sample size to reduce inconsistent findings or further analysis of the dataset using computational 

algorithms to derive meaningful data.            

            The phosphorylation profiles of the protein samples were compared as percentage value. 

The hyper- and hypo phosphorylated peptides list was generated using the P-value cut off and a 

percentage was obtained using the total number of peptide printed on the array. The results were 

depicted separately for both male and females and a combined value as shown in Table 5.2. An 

important difference observed was between the two sexes at 4w and 7w which developmentally 

correlated with the appearance of mHtt in the striatum and decreased body weight respectively. 

The hyperphosphorylated peptides in females at 4w is ~40% and hypophosphorylated ~27% and 

the values are reversed in males in the same time point. Similarly at 7w hyperphosphorylated 

peptides in females were ~45% and hypophosphorylated~22% and the values reversed on males. 

This is indicative of potential sex differences in the development of the disease considering the 

time points being developmentally significant though further investigation is required for a 

definitive conclusion.  
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Table 5.2: The percentage of peptides significantly (de) phosphorylated in the mouse and 

NSCs. A P-value cut off was used to generate a list of hypo-and hypo phosphorylated peptides and 

a percentage value derived using the total number of peptide printed on the array. The percentage 

value higher in the hyper- or hypophosphorylated results is highlighted in bold.  

 

HD mice (p≤0.2) 
    

      

Time points Sex Hyper-

phosphorylated 

Total Hypo-

phosphorylated 

Total 

      

E9 F 24.6% 51.8% 44.2% 87.1%  
M 27.2% 

 
42.9% 

 

      

E14 F 35.7% 72.2% 33.5% 62.9%  
M 36.5% 

 
29.4% 

 

      

P0 F 28.5% 52.3% 33.8% 69.7%  
M 23.8% 

 
35.9% 

 

      

3w F 40.7% 74.5% 21.3% 52.8%  
M 33.8% 

 
31.5% 

 

      

4w F 38.9% 66.7% 26.3% 70.9%  
M 27.8% 

 
44.6% 

 

      

5w F 34.9% 70.0% 29.4% 62.1%  
M 35.1% 

 
32.7% 

 

      

7w F 44.9% 67.1% 21.5% 66.3%  
M 22.2% 

 
44.8% 

 

      

10w F 32.7% 63.2% 26.6% 57.1%  
M 30.5% 

 
30.5% 

 

      

HD Stem cells (p≤0.1) 
    

      

NSCs F 16.4% 
 

25.2% 
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            Huntington Disease mouse models and other studies provided evidence that sex may 

account for the variability in the disease. The scientific evidence that estrogen is neuroprotective 

in HD is limited and there are conflicting information available. Some studies suggest female sex 

is detrimental while others have shown it being neuroprotective (Foroud et al., 1999; Zielonka et 

al., 2013). The levels of neurotrophic factors (GDNF, BDNF) increases in the striatum upon an 

increase in the estrogen levels (Campos et al., 2012). Estrogen also decreases the production of 

ROS by increasing the expression of scavengers like superoxide dismutase, glutathione peroxidase 

etc. (Wang et al., 2001). Estrogen also protects the mitochondrial membrane potential thereby 

preventing ATP depletion and suppresses the free radical production (Simpkins et al., 2010). These 

studies can open avenues for targeted therapy but specific mechanisms of neuroprotection need to 

be well understood. While the results of this global analysis using peptide array definitely indicate 

towards differences in the sexes.  

            MAPK/ERK and PI3K/AKT pathways are downstream targets of 17β-estradiol an estrogen 

steroid hormone which exerts neuroprotective effect from ROS, glutamate and misfolded protein 

toxicity in the neurons (Figure 5.1) (Smith and Dahodwala, 2014). The signal cascades are broadly 

involved in cell survival and are affected due to a decrease in the ratio of Bcl-2 (pro-survival): 

BAD (pro-apoptotic) proteins in neurodegenerative disorders. Activation of MAPK/ERK leads to 

the inhibition of pro-apoptotic proteins such as BAD and GSK3β (Bourque et al., 2009). Both ERα 

and ERβ receptors localize in the mouse striatum which is the most affected tissue in HD (Kuppers 

and Beyer, 1999). GSK3β phosphorylates tau which leads to microtubule dysfunction (Figure 

4.3B) followed by disruption in protein trafficking which ultimately leads to the formation of 

neurofibrillary tangles and finally cell death (Goodenough et al., 2005). Microtubule dynamics can 

be affected if GSK3β is inhibited by estrogen via PI3K/AKT which may affected the cytoskeletal 

signaling as shown in Figure 5.1. The coordination of the actin-microtubule dynamics is required 

to maintain the neuronal structure and function. These cytoskeletal filaments provide cells with 

mechanical stability and organization which is lost in neurodegenerative disorders. A larger cohort 

of animals with equal distribution of both sexes is required to draw definitive conclusions along 

with further elucidation of mechanisms underlying estrogens role in HD. In summary, sex steroid 

hormones and the sex chromosomes might play a vital role in the development of the HD through 

their effects in the basal ganglia networks. A better understanding of the differences in these 

pathways is integral for the development of biomarkers and new therapies for HD.  
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Figure 5.1: Schematic representation of neuroprotective mechanisms of ER signaling. 

Binding of estrogen receptors (ER) by estradiol activates signal cascades that ultimately decrease 

apoptosis of neurons. GSK3β inhibited by estrogen via the PI3K/AKT pathway results in the 

inhibition of apoptosis (Permission to use from Smith and Dahodwala, 2014).  

 

5.2 Limitations of kinome analysis 

 

            Protein phosphorylation is estimated to influence about 30% of the proteome, regulating 

fundamental cellular processes such as cell proliferation, migration, survival, apoptosis etc. All 

these processes are mediated by 525 protein kinases. Kinome analysis allows the measurement of 

intracellular signaling events underlying a disease process. Each kinase has a characteristic 

recognition pattern which catalyzes a specific residue only if the surrounding sequences match the 

pattern. This is a caveat with the kinome analysis since a phosphorylatable amino acid may either 



129 

 

be exposed or buried in an intact protein in a conformational context. Kinase have a substrate 

specificity in vivo in a temporal and spatial context. Protein interaction domains exist within the 

kinase which allow the kinase to recognize specific proteins to bind and phosphorylate. This may 

further be triggered upon signaling cues such as stimulation with specific ligands that activate 

upstream receptors. Peptide arrays do not accurately recapitulate these cellular aspects.  

            In the present study commercially available antibodies against specific kinases / 

phosphatases and downstream targets were used to independently validate the peptide array results. 

Other experimental approaches may be used towards further validating and characterizing this 

dataset such as in vitro kinase and phosphatase assays where the appropriate kinase/phosphatase 

may be immunoprecipitated from the HD mouse brain or NSCs and assessed for activation. 

Another challenge with kinome analysis is that it examines just one side of the biological process. 

Protein kinases and phosphatases often act in tandem to perform the phosphorylation and de-

phosphorylation process. The peptide arrays just provide information pertaining to only kinases 

which may be incomplete without the analysis of the phosphatase activity. Adding to this is the 

fact that the buffer used for kinome analysis may not be able to provide the maximal activity of 

each and every kinase. The fact that the peptides printed on the array are manually selected renders 

a level of bias along with the aforementioned constraints therefore adding to the potential 

limitations of kinome analysis.  

            

5.3 Proteome vs kinome: dysregulation in cytoskeletal dynamics  

 

            It is interesting to compare my kinome data with the proteomic analysis from post-mortem 

patient samples. Systematic quantitative proteomics assessing global changes in HD implicated 

Rho proteins, actin cytoskeleton signaling and mitochondrial dysfunction signaling as the most 

altered in HD (Ratovitski et al., 2016). This study utilized the HD human brain tissues to perform 

quantitative proteomics which directly addresses the changes in protein abundances that occur in 

the disease state (Ratovitski et al., 2016). The mass-spectrometrically (MS) identified proteins 

were verified using Western blotting which showed protein expression changes in actin 

cytoskeleton. Their proteomic analysis indicated that changes in the HD brain are consistent with 

the dysfunction of actin cytoskeleton remodeling as shown in the Figure 5.2. It is interesting to 

note that they did not study the rodent samples but despite the difference in the species there was 
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a consistent pathway dysregulated in post-mortem human samples and in my study using R6/2 HD 

mice. Another study focusing on the changes in the striatal proteome of YAC128Q mice used 

liquid chromatography coupled in-line with tandem mass spectrometry (LC-MS/MS) 

(Wegrzynowicz et al., 2012). They identified proteins related to energy metabolism or cellular 

transport/cytoskeleton as most prominent among others. The striatal lysates were used to analyze 

by immunoblotting with antibodies the protein identified in the analyses (Wegrzynowicz et al., 

2012). This along with the previous work clearly implicates dysregulated cytoskeletal dynamics 

in HD and in a number of other neurodegenerative disorders as enlisted in Table 5.1.  

 

 

 

Figure 5.2: Quantitative proteomic analysis shows actin cytoskeleton pathway is enriched in 

HD relative to control. 

Ingenuity pathway analysis (IPA) generated figure based on the MS output from brain tissue 

samples from twelve post mortem patients (Permission to use from Ratovitski et al., 2016). 
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Table 5.1: Main cytoskeletal defects observed in neurodegenerative disorders. 

Cytoskeleton dysfunction Molecular dysregulation Neurodegenerative disorder 

Altered microtubule 

dynamics and axonal 

transport defects 

Decreased α-tubulin acetylation 

AD (Zhang et al., 2014) 

HD (Dompierre et al., 2007) 

CMT (d'Ydewalle et al., 

2011) 

Tau hyper-phosphorylation 
AD (Alonso et al., 

1996, Alonso et al., 1997) 

Increased βIII tubulin levels PD (Cartelli et al., 2013) 

GSK3β hyperactivation AD (Flaherty et al., 2000) 

Mutations in SOD1 ALS (Strom et al., 2008) 

MT severing 

Increased tubulin 

polyglutamylation/recruitment of MT 

severing enzymes 

AD (Zempel et al., 2013) 

Axonal transport defects 

(microtubule 

independent) 

Mutations in molecular motors 
ALS (Munch et al., 2004) 

CMT (Zhao et al., 2001) 

Increased kinesin phosphorylation by 

GSK3β 

AD (Morfini et al., 

2002, Pigino et al., 2003) 

Mutated Huntingtin HD (Trushina et al., 2004) 

Protein aggregation 

AD (Coleman, 

2011, Goldstein, 2012) 

PD (Coleman, 

2011, Goldstein, 2012) 

HD (Coleman, 

2011, Goldstein, 2012) 

Actin cytoskeleton 

dysregulation 

Cofilin-actin rods 

(cofilin hyper-dephosphorylation) 

AD (Minamide et al., 2000) 

HD (Munsie and Truant, 

2012) 

Hirano bodies AD (Schmidt et al., 1989) 

Cofilin inactivation PD (Bellani et al., 2014) 

Profilin1 mutations ALS (Wu et al., 2012) 

Dysregulation of Rho GTPases 

PD (Zhou et al., 2011) 

CMT (Delague et al., 

2007, Stendel et al., 2007) 

HD (Tourette et al., 2014) 

AD (Mendoza-Naranjo et al., 

2007, Petratos et al., 2008) 

(Eira et al., 2016) 

https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib1500
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib0280
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib0235
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib0235
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib0025
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib0025
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib0030
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib0125
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib0340
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib1235
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib1470
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib0895
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib1505
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib0890
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib0890
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib1015
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib1330
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib0200
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib0200
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib0405
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib0200
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib0200
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib0405
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib0200
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib0200
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib0405
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib0880
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib0900
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib0900
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib1135
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib0060
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib1430
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib1525
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib0260
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib0260
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib1225
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib1315
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib0865
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib0865
https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0301008215300800?via%3Dihub#bib1005


132 

 

6. CONCLUSIONS 

 

            In summary, the peptide array platform provided a means to comprehensively study the 

rapid changes in the kinome of NSCs and R6/2 mice, to investigate the pathways dysregulated in 

the disease. The most significant pathway dysregulated in kinome analysis was cytoskeletal 

signaling.  It is evident that this data is purely correlative, but it does offer intriguing insight into 

disease progression, at least preliminarily, and implicates the activation of apoptotic pathways, 

calcium signaling and ROS generation as causative or adaptive mechanisms in the dysregulated 

cytoskeletal dynamics. Profilin balances the F/G actin ratio which ultimately affects the actin 

polymerization and its activation leads to the leads to the aggregation of mHtt. Overall these results 

indicate that the LIMK1-cofilin-SSH1L dynamics are affected in HD, and that they most likely 

underlie a reduction in neurite outgrowth (Figure 6.1). This was corroborated by the Neurolucida 

360 analysis shown earlier, where there is a 25% reduction in the neurite length in HD compared 

to controls (Figure 4.5). Any alterations in cellular cytoskeletal dynamics would clearly have an 

impact on cellular morphology, transport and synaptic integrity, which would contribute to a 

degenerative phenotype and neuronal cell death. Thus, the data provides therapeutic targets for 

treating the disease phenotype. Overall, this temporal study furthered knowledge of the 

dysregulation of cytoskeletal abnormalities in HD across key developmental time points, and 

opened avenues for further research in discovering targets for therapeutic intervention.    

 

 

Figure 6.1: Schematic representation of cytoskeletal signaling resulting in neurite reduction 

in HD. 

LIMK1-Cofilin-SSH1L dynamics are affected in HD, and they most likely underlie the reduction 

in neurite outgrowth by affecting the actin polymerization. 
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7. FUTURE DIRECTIONS 

           

7.1 Kinome analysis of other neural tissues 

 

          Striatum is the most affected tissue in HD, and based on the kinome analysis, it would be 

interesting to assess the differential phosphorylation status of the same peptides in other neural 

tissues, including the cortex, hippocampus and cerebellum. Multiple studies have shown that both 

the striatum and cortex are the most affected tissue subtypes in HD. Most of such research has 

focused on specific time points, sexes, or large-scale studies that provide data that are relevant to 

the particular stage of disease, sex, or tissue type. If the key developmental stages in a progressive 

disease such as HD are missing, the data obtained will be incomplete for the development of 

therapeutic strategies. Moreover, variations in the number of polyQ repeats affects the onset of 

disease; thus, complicating the understanding of the disease process and the identification of 

possible differences between the two sexes. All such factors must also be addressed by future 

studies. Different neural tissues have different functions, and thus, the combined kinome dataset 

of all tissues will allow us to better understand the development of disease and disentangle the 

cross-talk between signaling mechanisms affected at various stages of disease.  

 

7.2 Stem cells 

 

            A common approach to investigating the human disease to find therapeutic targets is by 

performing preliminary experiments using animal models. Rodents are cost effective and an easy 

option though they are not the perfect model to recapitulate all aspects of human diseases. 

Nonetheless these models cover a wide range of symptoms of the neurodegenerative condition and 

allow a better understanding of the disease. Brain pathologies alter the expression of a number of 

genes and as the different cell types have specific function these molecular changes contribute to 

cognitive decline and behavioral deficits. The molecular mechanisms in a murine model will 

definitely be different when compared to a human. The R6/2 transgenic mice contain the exon 1 

of the human HD gene with the polyQ repeats. They do not have the genetic background of a 

human, a reason for why a number of clinical trials have failed.  

            As discussed previously, the complexity in understanding HD is due to a number of 
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reasons. i) The different polyQ repeats affects the onset of disease; ii) possible differences in both 

sexes; and iii) the interplay between the different neural tissues. Personalized medicine is the future 

of medical practice and HD is ideal candidate.  This is so since the repeat size varies among the 

patients and the disease is more aggressive when inherited from the father as discussed earlier. 

Since the discovery of the HD gene 25 years ago, the first massive clinical trial to study the effect 

of a mHtt-lowering drug (RG6042) are about to begin at specific centers around the globe 

(Mullard, 2019). However, it remains important to understand the subtleties in the disease that 

cause differences between patients. Patient derived NSCs could play a large role in understanding 

such subtle differences and facilitate the development of therapeutic strategies (Yamanaka and 

Blau, 2010). This observational study provided data from the NSCs of one female HD patient with 

a specific number of polyQ repeats, but a higher number of such patient lines would advance the 

development of therapeutics and promote an understanding of the complexities. The inclusion of 

a larger number of patient derived stem cell lines will also enhance patient specific data, which 

will ultimately assist in dose response and reduced animal trials to achieve the desired results.  

 

7.3 Therapeutic strategies  

 

            A recent study showed that intranasal administration of mesenchymal stem cells at four 

weeks ameliorated the HD phenotype in R6/2 HD mice (Yu-Taeger et al., 2019). They used a non-

invasive surgical procedure and utilized the regenerative properties of multipotent mesenchymal 

stem cells (MSCs) and their ability to migrate to degenerating central nervous system (Yu-Taeger 

et al., 2019).  

            This thesis indicates a dysregulated cytoskeletal dynamics and potential for therapeutic 

intervention. Based on the results of the kinome analysis cofilin / profilin or LIMK1/SSH1L 

combined therapeutic strategy could be exploited at E14. If cofilin / profilin inhibitors or LIMK1 

activator and SSH1L inhibitor is given to a R6/2 mouse as a combination therapeutic it might result 

in the formation of proper synaptic connections. This might be able to regulate the kinase signaling 

in HD due to the mutant protein therefore delaying the appearance of symptoms. This along with 

reducing the accumulation of mutant protein later in life might be beneficial, ameliorating the 

disease phenotype. Such a trial in a well-established mouse model such as R6/2 can be exploited 

followed by immunostaining for mHtt and synaptic markers, verifying these results. 
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APPENDIX 

 

Supplementary Table 1: List of peptides from a previously designed peptide array with peptides 

their uniprot ID and phosphosites. This array was used to study signaling changes in the NSCs. 

 

Supplementary Table 2:  PIIKA 2 output from the peptide array experiment for NSCs. Columns 

represents the name, uniprot ID, target phosphosite followed by their respective P-value and fold 

change.  

 

Supplementary Table 3: InnateDB output for the peptide array analysis of NSCs. The first sheet 

represents the output for upregulated peptides (up) and the second sheet downregulated peptides 

(down). 

 

Supplementary Table 4: List of peptides for the customized peptide array to study the kinase 

signaling in R6/2 neural tissue. The name of the peptide is followed by it uniprot ID and target 

phosphosite.  

 

Supplementary Table 5: PIIKA 2 output from the peptide array experiment for murine neural 

tissue. Columns represents the name, uniprot ID, target phosphosite followed by their respective 

P-value and fold change. Each time point and sex is represented in a separate sheet. 

 

Supplementary Table 6: InnateDB output for the peptide array analysis of murine neural tissues. 

The excel sheet represents the output for upregulated peptides. Each time point and sex is 

represented in a separate sheet. 

 

Supplementary Table 7: InnateDB output for the peptide array analysis of murine neural tissues. 

The excel sheet represents the output for downregulated peptides. Each time point and sex is 

represented in a separate sheet. 

 

Supplementary Table 8: List of predicted kinases identified by NetworKIN. Shown in this Table 

are the predicted kinases for upregulated and downregulated peptides. They are further divided 

based on sex and the eight time points of the study. The predicted kinases are ranked based on the 

NetworKIN score. Bold represents the kinases specific to a sex. 
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Supplementary Figure 1.1. Identification of candidate kinases predicted to target the 

upregulated and downregulated phosphosites in the striatal tissue of R6/2 HD mice at 

embryonic day 9:  Dendrogram of the human kinome constructed using KinMap (Eid et al., 2017), 

highlighting the candidate kinases predicted to target the upregulated and downregulated 

phosphosites in the whole brain of females (A) and males (B) at embryonic day 9 (E9). Candidate 

kinases were identified by NetworKIN (Linding et al., 2007) analysis. Red=upregulated, 

Green=downregulated, Blue=upregulated in either M/F, Yellow= downregulated in either M/F. 
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Supplementary Figure 1.2. Identification of candidate kinases predicted to target the 

upregulated and downregulated phosphosites in the striatal tissue of R6/2 HD mice at 

embryonic day 14:  Dendrogram of the human kinome constructed using KinMap (Eid et al., 

2017), highlighting the candidate kinases predicted to target the upregulated and downregulated 

phosphosites in the whole brain of females (A) and males (B) at embryonic day 14 (E14). 

Candidate kinases were identified by NetworKIN (Linding et al., 2007) analysis. 

Red=upregulated, Green=downregulated, Blue=upregulated in either M/F, Yellow= 

downregulated in either M/F. 
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Supplementary Figure 1.3. Identification of candidate kinases predicted to target the 

upregulated and downregulated phosphosites in the striatal tissue of newborn R6/2 HD mice: 

Dendrogram of the human kinome constructed using KinMap (Eid et al., 2017), highlighting the 

candidate kinases predicted to target the upregulated and downregulated phosphosites in the 

striatal tissue of females (A) and males (B) at birth (P0). Candidate kinases were identified by 

NetworKIN (Linding et al., 2007) analysis. Red=upregulated, Green=downregulated, 

Blue=upregulated in either M/F, Yellow= downregulated in either M/F. 
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Supplementary Figure 1.4. Identification of candidate kinases predicted to target the 

upregulated and downregulated phosphosites in the striatal tissue of 3-week-old R6/2 HD 

mice:  Dendrogram of the human kinome constructed using KinMap (Eid et al., 2017), 

highlighting the candidate kinases predicted to target the upregulated and downregulated 

phosphosites in the striatal tissue of females (A) and males (B) at week 3 (3w). Candidate kinases 

were identified by NetworKIN (Linding et al., 2007) analysis. Red=upregulated, 

Green=downregulated, Blue=upregulated in either M/F, Yellow= downregulated in either M/F. 
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Supplementary Figure 1.5 Identification of candidate kinases predicted to target the 

upregulated and downregulated phosphosites in the striatal tissue of 4-week-old R6/2 HD 

mice:  Dendrogram of the human kinome constructed using KinMap (Eid et al., 2017), 

highlighting the candidate kinases predicted to target the upregulated and downregulated 

phosphosites in the striatal tissue of females (A) and males (B) at week 4 (4w). Candidate kinases 

were identified by NetworKIN (Linding et al., 2007) analysis. Red=upregulated, 

Green=downregulated, Blue=upregulated in either M/F, Yellow= downregulated in either M/F. 
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Supplementary Figure 1.6 Identification of candidate kinases predicted to target the 

upregulated and downregulated phosphosites in the striatal tissue of 5-week-old R6/2 HD 

mice:  Dendrogram of the human kinome constructed using KinMap (Eid et al., 2017), 

highlighting the candidate kinases predicted to target the upregulated and downregulated 

phosphosites in the striatal tissue of females (A) and males (B) at week 5 (5w). Candidate kinases 

were identified by NetworKIN (Linding et al., 2007) analysis. Red=upregulated, 

Green=downregulated, Blue=upregulated in either M/F, Yellow= downregulated in either M/F. 
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Supplementary Figure 1.7 Identification of candidate kinases predicted to target the 

upregulated and downregulated phosphosites in the striatal tissue of 7-week-old R6/2 HD 

mice:  Dendrogram of the human kinome constructed using KinMap (Eid et al., 2017), 

highlighting the candidate kinases predicted to target the upregulated and downregulated 

phosphosites in the striatal tissue of females (A) and males (B) at week 7 (7w). Candidate kinases 

were identified by NetworKIN (Linding et al., 2007) analysis. Red=upregulated, 

Green=downregulated, Blue=upregulated in either M/F, Yellow= downregulated in either M/F. 
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Supplementary Figure 1.8 Identification of candidate kinases predicted to target the 

upregulated and downregulated phosphosites in the striatal tissue of 10-week-old R6/2 HD 

mice:  Dendrogram of the human kinome constructed using KinMap (Eid et al., 2017), 

highlighting the candidate kinases predicted to target the upregulated and downregulated 

phosphosites in the striatal tissue of females (A) and males (B) at week 10 (10w). Candidate 

kinases were identified by NetworKIN (Linding et al., 2007) analysis. Red=upregulated, 

Green=downregulated, Blue=upregulated in either M/F, Yellow= downregulated in either M/F. 

 

 

 

 

 

 

 

 

 


