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a b s t r a c t

Males compete pre- and post-mating to fertilize the maximum number of eggs. In polyandry, sperm
competition occurs when sperm from two or more males compete to fertilize eggs from a female. Here
we review how sperm competition from hatchery origin fish can cause loss of genetic variability in fish
populations kept in captivity and in wild populations. In fish hatchery practices, sperm competition
occurs in mass spawners that release gametes in tanks, and in artificial fertilizations when pooled semen
is used. In mass spawnings sperm competition is difficult to tease apart from pre-mating competition
and other post-mating selective mechanisms, whereas, studies focused on the use of pooled semen in
different fish species have shown a clear relationship between sperm motility parameters and prece-
dence in fertilization. In both situations, sperm competition will result in a loss of genetic variability that
accumulates over generations, but hatchery protocols can be adjusted to mitigate it. Another source of
concern regarding sperm competition for hatchery produced fish is the spatial and temporal overlap in
spawning with wild individuals, either via aquaculture escapees or purposeful stocking programs. This
may result in sperm competition between hatchery origin and wild males and impact natural pop-
ulations. Our review suggests that in order to give every adult selected as broodstock an equal oppor-
tunity to produce offspring in captivity, mass spawning and the use of pooled semen should be limited.

© 2019 Elsevier Inc. All rights reserved.
1. Introduction - sperm competition in fish

In polyandrous species females gain fitness from mating with
multiple males [1,2]. Polyandry is achieved either by multiple
mating events or a single mating event where more than one male
provides sperm to receptive eggs. Pre-mating competition occurs
among males via direct contests or by alternative reproductive
tactics (ARTs) [3,4]. Sperm competition is a post-mating event in
which sperm from several males compete to fertilize the eggs [5]. It
is a central part of sexual selection theory [6], which concerns an
individual's traits that are important for their reproductive success
[7,8]. Females can intervene in post-mating competition through
cryptic female choice and bias sperm competition success [9,10].
This occurs via different mechanisms including direct sperm-egg
interactions based on the major histocompatibility complex [11]
. Beir~ao).
or ovarian fluid influences on spermatozoa swimming [12,13],
which is the focus of another review in this same issue [14].

The evolutionary biologist Geoff Parker suggested [5,15] that a
male's optimal sperm competition strategy depends on the strategy
adopted by his competitors. These models or sperm competition
games, as Parker termed them, predict the optimal amount of en-
ergy, size and number of sperm to invest in an ejaculate, and when
to mate singly or multiply with the same female. The magnitude of
sperm competition can be thought of as either its risk or intensity.
Risk of sperm competition refers to the probability of the ejaculate
of a male competing for the same eggs with the ejaculate of another
male, whereas intensity refers to the number of competingmales in
the sperm competition [16]. In practice, there are two different
means to measure sperm competition, by visual observations at
spawning sites to identify mating behavior, or by use of molecular
tools to measure paternity of progeny [17].

Sperm competition occurs in both internal and external fertil-
izers. In internal fertilizers it arises when more than one male in-
seminates a female within a single fertile period, leading to sperm
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competition inside her reproduction tract. In contrast, for external
fertilizers sperm competition occurs in the aquatic environment,
outside the female's reproductive tract, and she has less control
over which males release sperm near her receptive eggs. External
fertilization is by far the most common reproductive strategy in
fishes (see Supplementary Table 1) and is the subject of this review.
In external fertilizing fishes, fertilization occurs rapidly [18], sper-
matozoa swimming longevity is short, and sperm competition
generally takes place over a scale of seconds or minutes. Knowledge
regarding sperm competition for hatchery origin fish is very scat-
tered. We have compiled information for the most important
farmed species (see Supplementary Tables 1 and 2). In this workwe
review how sperm competition in hatchery produced fish can be
responsible for the loss of genetic variability under two scenarios.
The first is when the fish are propagated in captivity and the second
scenario when hatchery origin fish compete in nature with wild
origin fish.

Most studies dealing with sperm competition in external
fertilizing fishes use the terms pre- and post-copulatory competi-
tion to refer to sexual competition before and after the gametes
release [12,13,19]. Copulation implies the union of sex organs,
which is not common among fishes, thus in this reviewwe chose to
use pre- and post-mating competition to refer to the sexual
competition before and after gamete release, as is also found in
some literature [11].

1.1. Alternative reproductive tactics (ARTs) and sperm competition

In species with ARTs, dramatically different reproduction traits
are tailored to increase the fertilization success of individual males.
These traits result in changing the odds of fertilization in either pre-
or post-mating competition. A trade-off between different traits is
expected [20] as increasing the likelihood of fertilization success by
investment in one trait reduces allocation to alternative traits. The
two most common ARTs in fishes are guarding or territorial tactic
(dominant males) and sneaking or satellite tactic (subordinate
males). Conflicts between males with different ARTs are common
[21]. Through guarding, bigger dominant males protect and defend
the spawning female or a spawning location against neighboring
males using aggressive behaviors like biting and chasing. As a
result, dominantmales get an advantage in pre-mating competition
since they ejaculate closer and more in synchrony with the
spawning female. By chasing away other males from the spawning
site the bigger dominant males experience lower sperm competi-
tion. On the other hand, smaller subordinate males experience
higher sperm competition. As a result of the pre-mating competi-
tion, subordinate males ejaculate after the dominant male, in less
proximity to the eggs and always in the presence of other male
sperm [19]. Subordinate males seem to compensate for these dis-
advantages by investing more in ejaculates [4,22,23]. Parker's
sperm competition models predict that across species, males will
invest less in ejaculates if there is a low probability that his sperm
will compete with those of other males. On the contrary, if the
probability of sperm competition is high, males should invest more
in ejaculate quality [16]. Thus, a trade-off forms between pre- and
post-mating competition [24,25].

1.2. Factors predicting the outcome of sperm competition in
external fertilizers

Disfavored mating roles such as greater distance to eggs during
spawning or less synchrony in the timing of sperm and egg release,
sperm quantity, and sperm quality are the main factors predicting
the outcome of sperm competition [24]. Studies on brook trout
Salvelinus fontinalis [26] and Atlantic cod Gadus morhua [27] have
shown that males that ejaculate closer to eggs have a competitive
advantage in the sperm race to achieve fertilization. Most external
fertilizers have a short fertilization window and the timing be-
tween sperm release and egg release (synchrony) affects the
probability of sperm-egg encounters. Early ejaculates might
become too dilute, and there is a risk that spermatozoa use all their
energy before eggs are released [28,29]. On the other hand, late
ejaculates face risk that the eggs are already fertilized by a com-
petitor's sperm. Late release of spermwill normally be related with
sneaker behavior of subordinate males, which compensate the
delay by release of faster spermatozoa and higher concentrations of
spermatozoa in their semen [22,30]. For example, a 2 s delay in
sperm release under sperm competition decreases fertilization
success by 40% in Atlantic salmon Salmo salar [30]. This makes
sense since up to 80% of the eggs can be fertilized within the first 5 s
in salmonids [31]. In Japanese medaka Oryzias latipes paternity of
sneaker males drops from 41 to 20% if they spawn out of synchrony
with the female and dominant male [32].

Of the swimming spermatozoa present, faster spermatozoa
enter the egg micropyle quicker than slower spermatozoa. The
importance of spermatozoa velocity under sperm competition has
been well documented, e.g. in salmonids [22,33,34] and in walleye
Sander vitreus [35]. Increasing spermatozoa number increases the
possibility of sperm-egg encounters, and Parker and colleagues [25]
predicted in their theoretical models a positive correlation between
sperm numbers and paternity. However, empirical studies are
ambiguous in how the total number of motile spermatozoa e a
factor of percentage of motile spermatozoa and total number of
spermatozoa e affects fertilization success. Positive associations
(Atlantic halibut Hippoglossus hippoglossus [36], yellowtail flounder
Pleuronectes ferrugineus [37], rainbow trout Oncorhynchus mykiss
[33], bluegill Lepomis macrochirus [4], and African catfish Clarias
gariepinus [38]) as well as no associations (G. morhua [39], S. vitreus
[35], S. salar [34]) are reported, suggesting the importance of total
number of motile spermatozoa varies among species and between
males with different ARTs [22].

2. Methods for bibliography search

To review sperm competition in hatcheries two strategies were
adopted simultaneously in August 2018: (i) keyword search, and (ii)
looking at citing and cited references using Web of Science. The
following strings were used “Aquaculture” and “Fish” together with
different context qualifiers (“paternal effects” or “sperm competi-
tion” or “fertilization pote*” or “parental contribution” or “fertil-
ization success” or “reproductive success” or “mass spawning” or
“male potency” or “pooled”). The two strategies resulted in the
identification of close to 150 relevant sources. To study sperm
competition between hatchery and wild fish a search on theWeb of
Science performed in September 2018 resulted in 394 sources un-
der the strings “sperm competition” and “fish”, however the
addition of a context qualifier (using “stocking” or “stocked” or
“culture*” or “farm*” or “aquaculture*” or “hatcher*” or “escap*” or
“ranch*” or “propagate*“) reduced identified sources to 35. Ab-
stracts of each of thesewere examined and few are directly relevant
to the topic. None have been conducted in a way as to separate
outcomes of sperm competition from confounding variables such
as pre-mating competition or offspring survival. Undoubtedly, for
both sections, some important sources were missed, but the exer-
cise indicates this information is difficult to ascertain due to the
varied terminology used by different authors.

3. Sperm competition in hatcheries

Most hatcheries use protocols to try and to maintain the genetic
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diversity of broodstock and to stabilize the effective population size
and minimize inbreeding [40]. Nonetheless, a significant decrease
in genetic variability within fish populations reared in captivity has
been a recognized problem since the early 1980s [41,42]. This
decrease was later linked to culture conditions and hatchery
practices, including the use of pooled semen [43,44], that reduces
the effective size of the hatchery population [45,46]. Since then,
sperm competition has been pointed out as one of the causes for
loss of genetic variability in aquaculture [45,47]. Sperm competi-
tion in hatcheries can occur under two distinct scenarios: naturally
in mass spawning tanks [48] where the fertilization environment
pseudo-resembles the natural environment, or it can be artificially
induced by using pooled semen for in vitro fertilization [47] under a
totally artificial fertilization environment. When semen is pooled,
sperm competition is induced both for species that have naturally
evolved under intense sperm competition as S. salar [34], and for
species that have evolved in the absence of sperm competition as
the wolffishes Anarhichas sp. [49]. If fish produced in hatcheries are
used for domesticated broodstock or for stocking natural pop-
ulations, over several generations poor hatchery practices will lead
to a loss of genetic variability. This loss will accumulate over time,
and eventually together with inbreeding and genetic drift, produce
artificial selection for certain unintended life history traits [42,50].

In this section we review the impact of sperm competition in
hatcheries for commercial production and for wild population
enhancement. We define wild fish as those who were naturally
spawned by their parents and grew to sexual maturation in nature.
We define hatchery fish as thosewhowere fertilized under artificial
conditions. The range of propagation goals and techniques used in
fish reproduction creates huge variations in the magnitude in
which these terms separate the two groups. For example, some
hatchery fish will have descended from generations of lifelong
purposeful artificial selection in captivity, while others will be from
wild parents and themselves be exposed to brief periods of human
intervention. Stock enhancement programs can be developed with
different goals: as a conservation measure for supportive breeding
of species with declining populations in conservation hatcheries
[51], for reintroduction programs when the species has been
extirpated, and to sustain fisheries (sea-ranching). These breeding
programs for release in the wild are designed to maintain the wild
population's genetic diversity [52] as the hatchery produced fish
will likely breed with wild conspecifics (see section 4.1). However,
individuals produced in hatcheries are subject to unnatural selec-
tive pressures, e.g. lack of mate choice, and experience very
different spawning conditions than individuals in the wild, that can
alter the population genetic structure [53]. Because fish are quite
fecund, few individuals can produce many offspring, and reduction
in the effective population size can occur over only a few genera-
tions [54]. As an example, a program to supplement the spring
Chinook salmon Oncorhynchus tshawytscha in the Yakima River,
USA, resulted in a disproportional increase of precocious males in
natural populations [55].

3.1. Sperm competition in mass spawners

Most breeding programs prefer artificial fertilization in vitro,
however this is difficult in certain species. As a result, mass
spawning is the method used in some cases such as gilthead
seabream Sparus aurata and barramundi Lates calcarifer, including
for selective breeding programs [56,57]. Natural spawning has
different advantages as it allows for active mate choice which may
reduce intragenomic conflicts due to interactions between
maternal and paternal haplotypes [10,58,59], natural synchroni-
zation in gamete release [60], and the gene pool of multiple in-
dividuals to be represented with greater heterogeneity in the
offspring and, thus, preserves natural genetic variability [61].
Nonetheless, the genetic variability of offspring derived from nat-
ural spawning may be compromised by reproductive dominance of
somemales or due to the absence of spawning of some females and
males [60].

When communal or mass spawns are the preferred method for
egg production, all individuals may not contribute to the next
generation and often some dominance exists [62,63]. As a result,
paternity frequencies are highly skewed among males and,
depending on the species, the proportion of males contributing to
the different spawns is variable [57,64e66]. The overall result is a
reduction in the effective population size and some level of
inbreeding in every generation [62,63]. As an example, in a
L. calcarifer broodstock with 21 males, one male alone contributed
to 16% of hatched larvae [67]. Nevertheless, some examples exist
that support the use of mass spawnings. In white seabass Atracto-
scion nobilis, prior and during spawning, multiple males surround a
female and thus sperm competition is expected to be intense, but
males contribute relatively equally to paternity [65].

3.2. How can the outcome of sperm competition be controlled in
mass spawners?

Several hatchery protocol questions arise when trying to control
negative effects of genetic variability resulting from mass spawn-
ing. In these cases, it is essential to understand the social in-
teractions established in the breeding tanks according to each
species' reproductive biology. Nonetheless, even when the
spawning events are recorded, it is challenging to differentiate the
significance of pre- and post-mating (including sperm competition)
contribution to progeny (see Table 1). These social interactions
include dominant and subordinate roles where the dominantmales
(usually larger) invest more in gaining access to the females and
less in their ejaculate quality (see section 1.1). In 10 Florida pom-
pano Trachinotus carolinus only the largest five individuals
contributed to the spawnings, with the largest male siring 73.8% of
the offspring [68]. However, the diversity of fish reproductive
strategies impedes generalizations. In the case of S. aurata for
example, male paternity seems to be more related with a male-
female size match, with medium size males siring most of the
offspring [64]. These behaviors are often different from the wild,
where the environment will have a determinant rule shaping the
reproductive success of the different males [69]. As an example,
polygamous pairing of Murray cod Maccullochella peelii peelii, a
known monogamous species in the wild, was observed in captivity
[70]. Other important parameters like distance to the eggs during
ejaculation and timing of gametes release (see section 1.2 and ex-
amples within) will also affect each male's contribution in mass
spawnings.

When pre- and post-mating competition are present, rearing
conditions should minimize the chances of one male dominance.
Even so, what the dominant-subordinate roles are in each spawn-
ing tank and how it affects pre- and post-mating competition and
male contribution for the next generation is not always easy to
identify exactly. Thus, alternative strategies should be implemented
to avoid negative impacts of sexual competition in the genetic pool
of the offspring. For example, the use of several mini-broodstocks
instead a few large broodstocks, where individuals rotate among
the stocks [63], or increase the number of fish in the spawning
groups [67]. Another alternative is the replacement of dominant
males by new ones [71].

3.3. Induced sperm competition by the use of pooled semen

When building mating schemes, every adult selected as



Table 1
Example studies that attribute differential contribution to the next generation's genetic composition to sexual selection in mass spawners. The selection mechanism and the
determinants of reproductive success include biology description of the species, results and postulated hypothesis of the cited works. SCI e sperm competition intensity (see
Supplementary Tables 1 and 2).

Species Goal Fish origin Selection mechanism Determinants of
reproductive success

SCI Reference

Gilthead seabream (Sparus aurata) aquaculture production farmed dominant breeders size match 3 [63,64,122]
White seabass (Atractoscion nobilis) restocking wild lottery polygyny sperm quality 5 [65]
Florida pompano (Trachinotus carolinus) aquaculture production wild and

farmed
male competition male size [68]

Ballan wrasse (Labrus bergylta) aquaculture production wild male territorial behaviour male dominance 2 [123]
Atlantic cod (Gadus morhua) aquaculture production wild male competition size match 4 [124]
Barramundi (Lates calcarifer) aquaculture production wild and

farmed
sperm competition sperm quality 4 [48,67]

Nile tilapia (Oreochromis niloticus) aquaculture production farmed male territorial behaviour male size and
condition factor

1 [125,126]

Large yellow croaker (Larimichthys crocea) aquaculture production wild male competition [127]
Common dentex (Dentex dentex) aquaculture production not

mentioned
dominant breeders [62]

Murray cod (Maccullochella peelii) restocking wild male territorial behaviour male size 1 [70]
Blunt snout bream (Megalobrama

amblycephala)
aquaculture production wild dominant breeders and

sperm competition
sperm quality [128]

The sperm competition intensity (SCI) was attributed following [129] ranking where 0¼ internal fertilization (including fertilization in the mouth) and no evidence for
communal spawning or polygamy; 1¼ internal fertilization and low communal spawning or polygamy, or external fertilization, distinct pairing, and no obvious communal
spawning; 2¼ internal fertilization and high communal spawning or polygamy, or external fertilization, distinct pairing, and low communal spawning; 3¼ external fertil-
ization, distinct pairing, and moderate communal spawning, or no pairing and low communal spawning; 4¼ external fertilization, distinct pairing, and high communal
spawning, or no pairing and moderate communal spawning and; 5¼ no pairing and high communal spawning.

J. Beir~ao et al. / Theriogenology 133 (2019) 201e209204
broodstock should have the same opportunity and an equal prob-
ability to produce the same number of offspring [72]. Thus, to
maintain control over who spawns, if gamete stripping techniques
are available, in vitro artificial fertilization is the preferred tech-
nique. In these cases, without pooling, mating schemes of varying
complexity can be applied to control any unwanted effect of pre-
and post-mating competition that can bias the genetic pool [46].
Nonetheless, difficulties in obtaining or holding large broodstocks,
unbalanced sex ratios, or limiting resources to conduct large
numbers of fertilizations lead hatchery managers to frequently
choose to pool gametes as an alternative to maximize fertilization
rates and easily achieve factorial matings [72,73]. Different exam-
ples can be found where the use of pooled semen is justified to
secure high fertilization rates because of variable quality of sperm
between males [74,75], low semen volume [49,75] or even when
female-male post-mating interactions could limit the fertilization
success of a particular male [2,10]. Less frequently, the use of pooled
semen is recommended to ensure greater genetic variability [76],
paradoxically recognizing that males have different contributions
to the offspring [60]. As a result, semen pooling is still frequently
used in hatcheries for food production and to a lesser extent in
breeding programs for endangered species conservation [52],
where this practice has been progressively eliminated [77], but see
for example a study in O. mykiss [53].

Sperm competition success under in vitro fertilization condi-
tions is frequently mentioned as male potency, which is the ability
of a male to sire progeny when his semen is pooled with other
individuals [43]. Differences in male potency when using pooled
semen lead to a higher skewed parental contribution to the next
generation than would result from single-pair crosses [73,78]. In
one of the earliest studies on pink salmon Oncorhynchus gorbuscha,
Gharrett and Shirley [43] attributed unequal paternity to the
varying abilities of spermatozoa of different males to compete for
eggs and suggested that this could be linked to differentmaturation
stages of the stripped males. For artificial fertilization, males are
manually stripped and frequently sperm at different maturation
stages can be obtained [79] which may affect the sperm fertilizing
ability. While this explanation cannot be completely discarded,
sperm competition was probably also partly responsible for these
observations [43]. Some years later, Withler [44], compared male
potency in O. tshawytschawhen semen from one male was used to
fertilize the eggs, to when pooled semen in equal volumes from
three males were applied. In the pooled crosses, there was het-
erogeneity in male potency that could not be explained by the
fertilization success in individual male crosses or the individual
male's spermatocrit (proportion of semen that is sperm cells vs
seminal plasma). Instead, each male potency in each pooled cross,
was affected by the identity of the other individuals that contrib-
uted to the pool. A number of subsequent studies in farmed species
have shown that the use of pooled semen reduces genetic vari-
ability as a result of sperm competition [46,47,80e82], causing an
unequal contribution to the next generation [45] (see Table 2).
Males produce ejaculates of varying quality according to sperm
competition risk (see section 1). The pooled semen environment
could resemble natural conditions for species where gamete-
mediated mate choice is normal, but the importance of sperm
competition in pooled samples is greater than in the wild, where
pre-mating behavior of males to obtained higher number of mates
is part of the selection process [72].

A recurrent situation where semen pooling occurs is for storage
with all the aforementioned unavoidable consequences. Semen
storage is frequently used in breeding programs to assist in artificial
fertilization techniques [56,83,84]. Semen can be stored individu-
ally or pooled. In some occasions, most of them for experimental
procedures, semen is pooled before short-term cold storage [85]
and cryopreservation [75,86]. Under these conditions, some addi-
tional problems could arise from the use of stored semen in arti-
ficial fertilization. First, storage procedures affect spermatozoa
motility and fertilizing ability, and this effect is different among
males [87,88]; how this can affect individual male potency is un-
known. Second, when semen is pooled before storage, the sperm
stay in contact with the seminal plasma of competitors for a long
period of time and this could have an effect on their performance
[89]. Seminal plasma has been shown to mediate spermatozoa
velocity adjustments between dominant and subordinate males
[90], and to negatively affect competitors’ spermatozoa velocity as a
mechanism of subordinate males to compensate for their unfa-
vorable position [89,91,92]. Nonetheless, different studies have



Table 2
Example studies where differential contribution to the next generation's genetic composition is due to sperm competition after using pooled semen. The determinants of
reproductive success include results and postulated hypothesis of the cited works. SCI e sperm competition intensity (see Supplementary Tables 1 and 2).

Species Goal Fish origin Determinants of reproductive success SCI Reference

Atlantic halibut (Hippoglossus hippoglossus) aquaculture production wild and
farmed

spermatozoa motility and velocity [81]

Steelhead trout (Oncorhynchus mykiss) restocking wild sperm quality 3 [53]
Common carp (Cyprinus carpio) aquaculture production farmed spermatozoa concentration, motility and velocity 4 [95,96,130]
Caspian brown trout (Salmo trutta) restocking wild spermatozoa motility duration 2 [78]
Atlantic cod (Gadus morhua) fundamental research wild percentage of progressive spermatozoa 4 [131]
Silver catfish (Rhamdia quelen) stocking wild inconclusive [82]
Pink salmon (Oncorhynchus gorbuscha) restocking wild spermatozoa motility and other sperm

quality parameters
[43]

Chinook salmon (Oncorhynchus tshawytscha) restocking wild inconclusive [44]
Atlantic salmon (Salmo salar) fundamental research

and restocking
wild and
farmed

spermatozoa velocity and ATP 3 [34,105]

Whitefish (Coregonus zugensis) restocking wild spermatozoa velocity, male age and
growth rate

[45]

The sperm competition intensity (SCI) was attributed following [129] ranking where 0¼ internal fertilization (including fertilization in the mouth) and no evidence for
communal spawning or polygamy; 1¼ internal fertilization and low communal spawning or polygamy, or external fertilization, distinct pairing, and no obvious communal
spawning; 2¼ internal fertilization and high communal spawning or polygamy, or external fertilization, distinct pairing, and low communal spawning; 3¼ external fertil-
ization, distinct pairing, and moderate communal spawning, or no pairing and low communal spawning; 4¼ external fertilization, distinct pairing, and high communal
spawning, or no pairing and moderate communal spawning and; 5¼ no pairing and high communal spawning.
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failed to detect differences in offspring genetic variability between
pooled fresh or cryopreserved sperm [60,93]. The take home
message is that semen pooling before storage should be avoided,
especially if stored for stock enhancement or selective breeding
programs.
3.4. How can the outcome of sperm competition be controlled in
pooled semen?

The use of pooled semen should be avoided when building
mating schemes as a general rule, as sperm competition will
decrease the contribution of some males, even when this is the
rational way to produce factorial matings [94]. Nevertheless, if the
use of pooled semen cannot be avoided, the species' reproductive
behavior and post-mating competition should be considered in the
design of artificial reproduction protocols. Kaspar [95] provides
some general recommendations to decrease the negative conse-
quences on offspring genetic variability when pooled semen is
used. First, the most common recommendation is to use equal
volumes of semen [45,96]. This strategy not always results in an
improvement in skewed male contribution to the progeny as males
with higher concentration of spermatozoa will have a competitive
advantage [78]. Subordinate males usually gain prevalence over a
dominant individual's ejaculate if equal volumes of semen are
pooled. In an Alpine whitefish Coregonus zugensis, when equal
volumes of semen were used without consideration of the sper-
matozoa concentration, fast-growing males had a reproductive
advantage [45]. Second and intuitively, is to adjust the volume of
semen from each male to have equal numbers of spermatozoa, as
recommended by some authors [47,96,97]. However, in common
carp Cyprinus carpio this method was less effective in maintaining
the effective number of males [95], in this case males with higher
spermatozoa velocity had higher chances to achieve fertilization.
Using pooled samples from two G. morhua males, with semen
volumes adjusted to add approximately equal number of sperma-
tozoa, some males sired more larvae then others [98]. Also in
C. zugensis, when the volume of semen was adjusted according to
the sperm concentration, the loss of genetic variability was lower
than using equal volumes of semen, but younger males with faster
spermatozoa were favored, leading to a selection of early maturing
males [45]. Thirdly, Kaspar [95] also suggested to incubate the pool
of semen for some time prior to use, as in O. tshawytscha holding a
pool of semen for 60min prior to use allowed a good, if not total re-
equilibration of male contributions [80]. This observation is prob-
ably related with a stabilizing effect of the different male's seminal
plasma [90]. Nonetheless, there is a dearth of information regarding
the potential effects of seminal fluids among males and how it can
impact the incubation of pooled semen. Finally, we also suggest
using an equal amount of motile spermatozoa or spermatozoa
swimming at a certain speed. Sperm swimming parameters, such
as spermatozoa velocity, and motility are frequently the best pre-
dictors of sperm competition success [34,99] and individuals with
faster or highly motile spermatozoa fertilize a higher proportion of
the progeny. Furthermore, within an ejaculate different sperm
subpopulations exist with different swimming characteristics
[79,86], and the subpopulation structure is different between
dominant and subordinate males in S. salar [100]. Usually, the fast
moving subpopulations have higher chance to achieve fertilization
[86,101]. Exactly how these sperm subpopulations can affect sperm
fertilization under sperm competition is unknown. Nonetheless,
adjusting the semen volumes either based on percentages of motile
spermatozoa or spermatozoa swimming velocity could be techni-
cally challenging, since fertilization frequently needs to be con-
ducted shortly after gamete (sperm and eggs) stripping, and this
approach requires a more complex evaluation of the semen quality.

Another practice to avoid when using pooled semen is the
sequential addition of semen samples, as timing of sperm addition
to the eggs will affect each male's contribution. As previously
described, gamete release timing has been shown to have an
important impact in sperm competition success [22,30], in a logic
of first come first served (see section 1.2). Different studies in sal-
monids have observed that when the sperm are added at intervals,
the spermatozoa of the first male usually sires higher percentages
of progeny [30,43,47]. The longer the interval the more dispro-
portional will be each male contribution [43]. Thus, the sequential
addition of sperm should be avoided, and if pooled semen is to be
used, the semen should be added to the eggs in a way which en-
sures that every spermatozoa with same phenotypic traits has an
equal chance to fertilize.
4. Sperm competition between wild and hatchery fish

Genetic interactions between hatchery and wild fish are of key
conservation concern. Hatchery fish often interbreedwithwild fish,
either purposefully as with hatchery enhancement programs, or
unintentionally when farmed fish escape from their enclosures
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[102]. Fertilization of wild eggs can be achieved under two con-
texts: 1) when a wild female chooses to spawn with a hatchery
male, and 2) when she does not, but he releases sperm at the same
time as her chosen wild male (sperm competition). The former has
received a good deal of attention, but there is a dearth of infor-
mation on the later in the wild. Aquaculture escapees often do not
overlap in space and time with wild spawners, or do not perform
well in mating rituals. Such pre-mating barriers to spawning have
been documented elsewhere [103,104]; this section focuses solely
on post-mating sperm competition betweenwild and hatchery fish.
We consider situations where the female is of wild origin, and
sperm from at least one wild male and one hatchery male compete
to fertilize her eggs. Sperm released exclusively by hatchery males
(perhaps common in many stocking programs) is not examined.

Artificial fertilization environments create useful settings to
explore proximate mechanisms that lead to variable paternity
success under sperm competition. These can be comprised of two
situations. The first occurs when gametes are stripped frommature
fish and thenmixed in a container in known concentrations [2,105].
The second happens when fish are held in spawning tanks, cages or
artificial streams and allowed to mate on their own [55,106e108].
Paternity derived from the later approach is a result of both pre-
and post-mating competition including sperm competition (from
unknown amounts of semen/sperm), and teasing apart relative
effects can be difficult [109] as discussed in section 3.1 and 3.2.
These laboratory studies sometimes indicate that semen of captive
males is of poor quality [110] (but exceptions exist [100,111,112])
and such males should acquire low percentages of paternity under
sperm competition with wild males. Poor semen in captivity is
thought to be largely related to diet; broodstock breeding programs
use special diets to improve semen quality [113]. Hatchery males
that spawn shortly after escaping from aquaculture farms may
therefore be unlikely to steal much paternity (as individuals) from
wild males. However if they survive long term and switch to a wild
diet this buffer probably disappears [114]. Fish produced for
stocking programs, which have had a nearly life-long wild diet are
not expected to have reduced semen quality. This can lead to
problems as described below.

In the spawning location of a native wild female there can be
several types of hatchery males that ejaculate as she releases eggs.
These include males from her native population (section 4.1),
foreign populations of her own species (section 4.2), and of other
species (section 4.3).

4.1. Intra-population sperm competition between wild and
hatchery fish in nature

Hatchery origin fish are sometimes created from parents that
were collected from the same location in which the hatchery in-
dividuals now are spawning in nature. This generally means both
wild and hatchery spawners are descendent from the same
evolutionary lineage. Any local adaptations to that specific envi-
ronment would be historically common in both groups, and on the
surface, it would appear that no evolutionary divergence in wild
descendants would occur from spawning with hatchery in-
dividuals. Such is the goal of so-called “conservation hatcheries”
[51].

However, selective environments during the production of these
hatchery individuals causes variable amounts of domestication (see
section 3). If these fish steal paternity from wild males, they leave
descendants that are less fit for their wild environments. Because
these are the same species, if the hatchery fish are of similar
phenotype to wild individuals [114e117] there are likely to be few
barriers to mating. Even if hatchery fish are not good at courting,
sneaking or satellite spawning would lead to sperm competition
with wild males. Sperm competition therefore creates a pathway
for domesticated selection of entire wild populations if it occurs
continuously over several generations.

4.2. Inter-population sperm competition between wild and
hatchery fish in nature

Fish often adapt to their local environments, creating intra-
specific genetic variation that comprises a key component of
biodiversity that can be quite dramatic in some taxa [118]. Artificial
breeding programs often use broodstock from one region (popu-
lation) and either purposefully or accidently release fish into the
habitat of another [119,120]. Spawning by such fish leads to inter-
population matings including via sperm competition when a
hatchery male is not the chosen mate. Such intra-specific hybridi-
zation is much more common but harder to detect than inter-
specific hybridization, and is a form of genetic pollution that cre-
ates a large threat to biodiversity [121].

4.3. Inter-specific sperm competition between wild and hatchery
fish in nature

Inter-specific hybridization resulting from monogamous
spawning between species, or inter-specific sperm competition
between related species is rarer, but easier to observe than that
among intra-specific populations. Both species may naturally
coexist, but artificial breeding raises densities of one species,
leading to increased likelihood of co-spawning. An example is from
Alaska, where large releases of O. gorbuscha [119] likely increases
the rate of inter-specific sperm competition between male satellite
O. gorbuscha and wild chum salmon Oncorhynchus keta, creating
“chumpies”. Hatchery released fish can make up an enormous
proportion of spawners in some areas, so they could be a significant
problem. Other salmonid examples would include hatchery
released O. mykiss in the habitat of cutthroat trout Oncorhynchus
clarkii, and hatchery released or escaped S. salar in the native Eu-
ropean range of brown trout Salmo trutta.

Counter intuitively, this form of sperm competition is generally
of less conservation concern than intra-specific destruction of local
adaptation because although some proportion of a female's eggs
are lost to hybridization, in most cases F2s are rarely produced from
inter-specific unions and long-term introgression is limited.
Because this is an evolutionary dead-end, from the point of genetic
pollution, it is therefore often less damaging to produce foreign
species, rather than foreign populations of native species, if they
either purposefully or accidently spawn in nature. For example,
S. salar aquaculture does not cause genetic problems in the
southern hemisphere, or Pacific coast of North America, but it is a
cause of concern in their native range of the north Atlantic.
Cultured O. mykiss would be less harmful in the Atlantic, as there
are no salmonids that spawn at the same time of year.

5. Final remarks

The biology of different species and the artificial environments
created in hatcheries for both mass spawnings and for in vitro fer-
tilizations, will dictate the factors that influence sperm competi-
tion. The use of inappropriate protocols for spawning and artificial
fertilization in hatchery environments can result in loss of genetic
variability of offspring, inbreeding and problems for adaptability
and survival of broodstock and fish released in the wild. Different
studies to date, together with theoretical predictions, clearly advise
against uncontrolled mass spawning and pooling ejaculates when
the fish produced will be used as broodstock or for stocking natural
populations. In species that have reached a high volume production
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or in certain stocking programs, such as for different salmonids,
hatcheries have started to adopt techniques to control the negative
effects of sperm competition [72,94]. Nonetheless, limitations in
some low production species result in the use of pooled semen and
non-controlled mass spawning as the common approach. Species-
specific protocols need to be developed and adapted to each
hatchery scenario. But some basic guidelines are that every adult
selected as broodstock should be given an equal opportunity to
produce equal number of offspring [72].

We advocate that mass spawnings and the use of pooled semen
should be limited. Mass spawning should only be accepted on oc-
casions when the species’ reproductive biology creates difficulties
of using artificial fertilization. In these occasions, rearing conditions
should minimize the chances of one male dominating, by for
example, replacing the dominant male. The use of pooled semen
should only be accepted when semen limitation cannot be cir-
cumvented. In these cases, measures such as the use of equal
amount of spermatozoa, should be adopted. In both circumstances
a close monitorization of genetic variability should be made.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.theriogenology.2019.03.034.
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