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Abstract — A correct radiometric normalization between both 

images is fundamental for change detection. MAD method and its 

IR-MAD extension in an implementation on multisprectral aerial 

images is described in this paper.  

 

Keywords — Change detection, Iteratively reweighted 

multivariate alteration detection (IR-MAD), and Multispectral 

imagery. 

 

I. INTRODUCTION 

his  paper analyzes results of the application of an 

automatic method of radiometric normalization between 

two multitemporal images of the same zone. This 

radiometric adjustment is part of the preprocessing of image 

changes detection. Any surface in two images recorded with 

the same sensor should ideally appear with similar values in 

their digital levels, but in real practice it doesn’t happen due to 

several reasons, among them different atmospheric conditions, 

and different lighting from different recorded dates. That is the 

reason why pixels from the same terrain can show different 

radiance values, and, therefore, different values in their digital 

levels. In satellite images radiometric normalization must 

determine ground absolute reflectivity through correction 

algorithms as well as atmospheric properties related to the 

moment of the acquisition of the image [1]. For aerial images 

(in which atmospheric effects are not as prominent as in 

satellite images), and for many applications of change 

detection lineal radiometric normalization of multitemporal is 

enough. To this end one of the images is taken as reference 

and the necessary radiometric correction is applied to the other 

in order to make the tone of its pixels with those of the 

reference image. The behaviour of the spectral signals of a 

reflective lambertian surface with times t1 and t2 can be 

accepted as a lineal function. This way the pixels of the image 

at time t1 must be corrected to get radiometric normalization:  

 

k k
k kND a ND b   

where NDk is the grey value in the k band of the image in row i 

and columns j at time t1. kND normalizad pixel value in band 

k at time t1 and ,k ka b radiometric normalization constants for 

 

 
 

band k. According to the values taken by the coeficients, 

called gain and bias too[2], different normalization values will 

be obtained. Different methods have been analyzed in similar 

studies[3], which has been ordered in the following list from 

greater to less effectiveness: 

 

- No-Change Regression Normalization.  

- Dark Set-Bright Set Normalization. 

- Simple Regression Normalization.  

- Haze Correction Normalization.  

- Mean-Standard  Deviation Normalization. 

- Minimum-Maximum  Normalization. 

- Pseudo-Invariant Normalization.   

 

In aerial images can be difficult to get an absolute 

normalization due to the lack of atmospheric information 

associated to the image. Relative normalization based on the 

intrinsic radiometric information of the images is an alternative 

method, in which it is not necessary to know the absolute 

reflectivity of images[4]. In order to implement the relative 

radiometric normalization, it is assumed that the relationship 

between the radiance obtained by the sensors in two different 

instants from regions with constant reflectivity can be 

approximated by a linear function. The critical issue of the 

method is the determination of time invariant characteristics 

which can be the base of normalization       

The MAD (Multivariate Alteration Detection) 

transformation applied to both images from different times is 

invariant to arbitrary linear transformations of the intensities of 

the pixels involved in the transformation. That is the reason 

why in the implementation of the change detection method 

(MAD) preprocessing with radiometric normalization is 

superfluous. This work proposes combined use of MAD 

transformation applied to not-normalized multitemporal 

images to select NOT-changed pixels and then their utilization 

for a relative radiometric normalization. This is a simple, 

quick and completely automatic procedure, compared with 

methods requiring manual selection of characteristics that do 

not change with time. Upon completion this method could be 

combined, if results are not satisfactory under visual 

exploration of radiometric changes in the normalized image, 

with a histogram based transformation that modify the digital 

level of one pixel of the image being corrected, taking one of 

the two images as reference, so the final histogram of the 

image is similar to the histogram chosen as base. El que los 

histogramas sean similares significa que el brillo medio, 
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contraste y distribución de niveles digitales sean también 

parecidos.  

The IDL programming language has been used to 

implement this method in the ENVI software environment 

along with RADCAL-RUN extension. The method requires a 

previous transformation: IR-MAD (modification of MAD 

transformation [5]), which improves the location of no-change 

pixels. The quality of normalized images is evaluated in terms 

of the joint of t-test and F-test in order to compare the mean 

and the variance respectively. The MAD change detection 

procedure will be explained concisely in section II. 

 

II. THE   MAD   AND  IR-MAD   TRANSFORMATIONS 

The Multivariate Alteration Detection method (MAD) is a 

new change analysis method in multisprectal images originally 

proposed by [6]. The purpose of this method is that the data of 

two bitemporal multisprectal image Hill be transformed in 

such a way that the maximum variance in every band will be 

explained at the same time in the difference image. This 

transformation generates a set of mutually orthogonal 

difference images (MAD components), which have the same 

spectral dimension as the original multiespectral images that 

were transformed. 

 The method is based on correlation analysis. Linear 

correlation are obtained from two data sets, in such a way that 

the difference between the two first linear correlations 

correspond to the biggest correlation. This is called the first 

canonical correlation.  The two corresponding linear 

combinations are the first canonical components. 

 The transformation is as follows [7]: first two N-

dimensional multisprectal images are represented (where N 

means the number of bands) of a scene acquired in times t1 and 

t2 with two random vectors, called and  X Y , assuming a 

gaussian normal distribution:  

   1 1,..., ,  ,...,
T T

N NX X X Y Y Y  . For the first image 

a lineal combination of the intensities can be established for 

every spectral band of the image, thus generating a scalar 

characterized by the random variable
TU a X  . The same 

is done with the second image
TV b Y  , and afterwards the 

scalar difference between both images is computedU V . La 

información del cambio existente  está ahora contenida en una 

sola imagen. Vectors and  Ta b can be determined by using 

Principal Components (PC) analysis on and  X Y . Another 

procedure consists of defining simultaneously the set 

and  Ta b  through maximizing the variance of U V with 

the criterion    var var 1U V  . It is assumed that both 

and  Ta X b Y   have positive correlation. The 

determination of the difference between the linear 

combinations with maximum variance is the same as the 

determination of the linear combinations with minimal and 

positive correlation. This is implemented through the standard 

Canonical Correlation Analysis (CCA). Both and  U V  are 

called canonical variables. 

 

A. Canonical Correlation Analysis 

This analysis includes a linear transformation of each set of 

multiespectral images such as, instead of being ordered by its 

wavelength, transformed components are ordered according to 

their mutual correlation. The greatest mutual correlation 

between the images is called first canonical variable (CV) and 

so on orderly second, third, etc. 

For the first image   ,
XX

X  is the variance-covariance 

matrix, and for the second image   ,
YY

Y  , the covariance 

between them is 
XY and the la correlation between 

and  U V   ,corr U V  : 

1 2

1 2

T

XY YY YX XX

T

YX XX XY YY

a a

b b









    

    
                                            (1) 

 

Thus the pair  1 1,U V has the maximal correlation; the pair 

 2 2,U V  has the next maximal correlation subject to be 

orthogonal (uncorrelated) to  1 1,U V  and so on with the 

other pairs. 

B. MAD  transformation 

 

Once the CCA has been exposed in the last paragraph, the 

MAD transformation defined as: 

 

1 1

T T

N N

T T

a X b Y
X

Y
a X b Y

 
   

   
    

                                                     (2) 

 

 The first MAD component has maximum variance in the 

intensity of its pixels. The absolute value of the last MAD 

component shows always the domain of the greatest undergone 

change. The correlation among the input bands and the MAD 

components make the interpretation of the mode of change 

easier. For 12 input bands (this is the case with two 

multitemporal images LANDSAT) the input is 6 MAD 

components, with which after the selection of a significant 

change threshold, the change-no change image can be 

represented. Depending on the type of present change, any of 

its components may exhibit significant change information. In 

fact one of the more interesting aspects of this method is that it 

orders different change categories in different uncorrelated 

components of the image. 
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MAD transformation is invariant to linear transformations 

applied to the original image (affine transformation type). This 

means too that it is invariant to radiometric and atmospheric 

corrections that could be applied. That is why it is considered 

a very robust method to detect changes. This invariance offers 

the possibility to use the MAD transformation to implement 

automatically a relative radiometric normalization onto 

multitemporal images, as it will be described subsequently. 

 

C.  Iteratively reweighted multivariate alteration detection    

(IR-MAD) 

This transformation can be implemented in an iterative 

schema, in which, when means and covariance matrices are 

calculated for the next iteration of the MAD transformation, 

weights are applied to observations according to the 

probability of determining the NO-change in the preceding 

iteration. It all begins with the original MAD transformation 

by assigning, for example, the same weight =1 to every pixel.  

In order to choose the weight of pixel j in the next iteration wj, 

the Z variable is used to represent the sum of the squares of the 

standard MAD components: 

 

 

2

2

1

i

N i
i

MAD

MAD
Z N




 
   

 
 

                                        (3) 

Where 
iMAD  is given by equation: 

 

 2

12 1
iMAD N i                                                          (4) 

 

NO-change observations are expected to distribute themselves 

normally and to be uncorrelated. The random variable Z 

should have a CHI-squared distribution with N degrees of 

freedom. For each iteration, weights determined by the CHI-

squared distribution can be applied to observations, calling: 

 

   2 ;
Pr 1 Zj N

No changew P


                                   (5) 

Here  Pr No change is the likelihood that a pixel Z located 

in the CHI-squared distribution could be big or very big. A 

small value for Z implies a corresponding big probability. The 

iteration of the MAD transformation continues until it stops 

because it meets the criteria, such as the lack significant 

changes in the canonical correlation  

,1...i N  [4]. 

 
 

Fig. 1 Images from Toledo 1995 above, 2005 below 

 

III. IMAGERY 

RGB color images were employed that come from a 

photogrametric flight over the city of Toledo (Spain) in dates 

of 1995 and 2005. The sensor was that of an analogical 

aerophotogrametric camera WILD RC30, flight scale 1:20000. 

They are therefore multiespectral images with three bands 

corresponding to the visible part of the electromagnetic 

spectrum. The images were scanned by the Zeiss/Imaging 

photogrametric scanner with resolution of 21 microns. After 

the aerotriangulation of the set of images, orthopictures were 

taken with GSD value of 1 meter using DIGI3D software. 

Visually, in figure 1, the changes experimented in those years 

can be observed, also the difference in shades between the 

images.   

 

IV. RADIOMETRIC NORMALIZATION 

In order to implement the radiometric normalization the 

RADCAL_RUN extension [4] developed by Dr. M. J. Canty 

PhD and programmed in IDL language over the digital image 

processing software ENVI 4.7 is used. As reference image has 

been used that of the year 1995.  

With the aim of carrying out a radiometric normalization 

tose pixels that satisfy  Pr No change ≥ t are chosen, where 

t is a decision threshold, usually 95%. The steps involved in 

the radiometric normalization are the following: [7]  

 Chose the values of weights equal to one for every 

pixel in the bitemporal scene. 
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 Repeat until the canonical correlations stop changing 

significantly: 

- Carry out a weighted sample of the bitemporal 

image so as to determine its mean vector and the 

covariance matrix. 

- Run CCA and build the MAD components Mi, 

i=1,...,N. 

- Recalculate the weights according to the 

equations (3) y (5). 

 

The IR-MAD method is applied to the images. The 

development of the iterations of the canonical correlations is 

shown in figure 2. As it can be observed, the first iterations are 

the more important ones It stabilizes itself from the seventh 

one on. 

In order to evaluate the process of normalization the 

program saves one in every three pixels of NO-change to carry 

out a reliability test. The mean and the variance are calculated 

before and after the normalization as well as the statistical 

hypothesis test of invariant pixels in both images. 

 

 
Fig. 2  Canonical correlations over 28 iterations 

 

1794 pixels for the normalization and 898 pixels for the 

statistical tests were used.  The results for the Student test for 

the mean in the red, green, and blue bands are -0.0077, -

0.5409 and 0.1284 respectively. With these values the 

confidence interval has a p-value between 0.89 and 0.99 for 

red and blue bands and 0.58 for the green band. As it can be 

seen in figure 4 in red, the part of the reject of the test covers 

almost all the distribution. In this case we reject radiometric 

normalization. By jeans of a visual analysis the bad result is 

confirmed because it doesn’t equal the radiometric values 

between the reference image, time 1 and the normalized one, 

time 2. 

 

 
Fig. 3 Regressions on RGB spectral bands of the images. 

 

 

 
 

Fig. 4 T-Student results in standardization, left for the red band, green 

band right 

 

The process is repeated but this time with the a priori 

condition of probability of belonging to NO-change pixels of 

99%. With this premise the number of used pixels for the 

radiometric normalization has decreased considerably down to 

368 and for the tests only 184 have been used. That means that 

the degrees of freedom have diminished for the calculation of 

confidence intervals. The results can be seen in table 2. They 

have clearly improved in respect with the previous test.  The 

radiometric normalization can be accepted then. 

 
Table 1 

Comparison of means and variances for 898 test pixels, with paired t-test and 

F-test. 

 

 Band 1 Band 2 Band 3 

Target mean 108,28 109,87 103,46 

Ref. mean 100,75 102,09 104,49 

Norm. mean 100,75 102,20 104,46 

t-stat -0,0077 -0,5409 0,1284 

p-value 0,9942 0,5887 0,8979 

Target var. 7602,22 6630,20 5890,32 

Ref. var. 4993,57 4506,05 3909,07 

Norm. var 5016,76 4538,78 3937,31 

F-stat 1,0046 1,0073 1,0072 

p-value 0,9447 0,9137 0,9142 

 

 
Table 2 

New normalization, comparison of means and variances for 184 test pixels, 

with paired t-test and F-test. 

 

 Band 1 Band 2 Band 3 

Target mean 104,54 106,33 101,87 

Ref. mean 97,43 99,05 103,53 

Norm. mean 98,15 99,50 103,53 

t-stat -1,4692 -1,0096 -1,8733 

p-value 0,1435 0,3140 0,0626 

Target var. 7833,07 6823,08 6249,76 

Ref. var. 5102,16 4634,28 4128,26 

Norm. var 5270,16 4762,56 4293,28 

F-stat 1,0329 1,0277 1,0400 

p-value 0,8267 0,8537 0,7912 
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Fig. 5.  Result of radiometric normalization. Reference image is on the left 

1995, and normalized on the right 2005. 
 

V. CHANGE   DETECTION 

One application among others of change detection is the 

updating of Geographic Databases. According to [8] the two 

main approaches to update a Database are: first to set up 

gradually a new Database that replaces the old one and the 

second approach is to detect, identify, and update only the 

changes. This option is faster and more convenient. That is the 

reason why automatic change detection is the first and most 

important step in the updating of Geographic Databases. The 

result of MAD transformation generates three components, see 

figure 6. Maximal change areas show white pixels (positive 

change) and black pixels (negative change).  Through a colour 

combination of the three MAD components a new image is 

obtained where change is shown in magenta colour, the new 

road and the new buildings. A change classified image can be 

finally set up by establishing thresholds and postprocess filters.  

Correlation among components and original bands are shown 

in table 3. The greatest correlation corresponds to MAD 3, 

with negative correlation in the bands of the year 2005 and 

positive ones in the year 1995. MAD 1 component shows a 

noise image; in the MAD 2 one can be seen in black colour the 

negative change because of the new buildings and the new 

road. At last the MAD 3 component shows in white colour the 

positive change due mainly to the different orientation of the 

shadows of the buildings. This change will be eliminated later 

by means of the application of a shadows mask. 

Table 3 

Correlation matrix of the MAD components with the original bands. 

  MAD 1 MAD 2 MAD 3 

Toledo R 0,079 0,084 0,465 

1995 G 0,158 0,193 0,432 

 B 0,052 0,279 0,413 

Toledo R -0,303 -0,171 -0,397 

2005 G -0,385 -0,237 -0,333 

 B -0,242 -0,337 -0,343 

 

In [9] and [10] MAD method is used as a technique of 

change detection between satellite multiespectral images. 

 
 

Fig. 6 MAD components and color composition where, in magenta, the 

detected change is observed. Exchange classified image below. 

VI. CONCLUSIONS 

Radiometric normalization among multitemporal 

multiespectral images using the IR-MAD transformation gives 

good results. This transformation selects invariant pixels in the 

presence of changed pixels. The associated statistics to the 

applied transformation with a t threshold, tables 1 and 2, has 

the utility of validate or reject the normalization. In the case of 

the aerial images in this work, a final threshold t≥99% was 

chosen to search for invariant pixels. 

Finally, MAD transformation as method of change detection 

has highlighted existing changes. This technique depends on 

the chose threshold to highlight changes in each component. 

These thresholds have to be selected by means of an empiric 

method through observation by the image analyst. 
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