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Abstract:  

CO2 photoreduction with water to obtain solar fuels is one of the most innovative and 

sustainable processes to harvest light energy and convert it into hydrocarbons. Although 

photocatalytically active materials and photoreactors have been developed for this 

purpose, lack of standardisation in testing conditions makes the assessment of process 

parameters and the comparison of material performance a challenge. Therefore, this paper 

is aimed at investigating the effect of CO2 photoreduction parameters irradiance and 

reaction time on production of methane from two photocatalytic rigs. This was pursued 

through a design of experiments (DOE) approach, which assessed the influence of 

experimental conditions between different setups. Using low irradiance (40 – 60 W·m-2), 

reaction time and temperature significantly affected methane production, with a 

maximum production of 28.50 µmol·gcat
-1 (40 W·m-2, 4 h). When using high irradiance 

(60 – 2400 W·m-2), only irradiance was found to significantly affect methane production, 

with a maximum production of 1.90 ∙ 10-1 µmol·gcat
-1 (1240 W·m-2, 2 h). Considering 

proposed reaction mechanism for CO2 photoreduction, this paper highlights that 

experimental results give different yet complementary information on the two most 

important steps of the process, i.e. photoexcitation and surface chemical reaction. 
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1 Introduction 

Photoreduction is one of the most innovative, environmentally sustainable and promising 

technologies to convert carbon dioxide (CO2) into hydrocarbons using water as a reducing 

agent and light as primary energy input [1, 2]. Efforts have been placed on researching 

how to improve the effectiveness of this process [1, 3, 4]. For example, photocatalysts 

modification is one of the pursued strategies, where several semi-conductors have been 

investigated, including CdS [5-7], ZnO [8-9], ZrO2 [10], WO3 [11], SrTiO3 [12], although 

TiO2 remains the most investigated and promising material [13-15]. Another strategy to 

increase photoactivity is materials modification, aimed at suppressing electron-hole 

recombination, which can be pursued in several ways: use of co-catalyst [16-19], metal 

doping [20], graphene encapsulation [21]; but one of the most promising options is the 

introduction of surface plasmonic resonance particles [21-24]. Material engineering 

aside, reactor design and catalytic conditions for CO2 photoreduction still need to be 

further investigated and standardised to compare materials photoactivity significantly. A 

wide variety of photocatalytic reactors has been reported [25, 26, 27], but due to a lack in 

standardisation in experimental procedures, reaction regimes and data collection and 

processing, it is difficult to compare results reported from different systems. Recently, 

gas phase systems have been preferred to liquid phase to overcome limitations by photon 

and mass transfer [27, 28, 29], focusing on gas phase systems operating at room 

temperature and atmospheric pressure [30-32]. A recent study reported that when reagents 

are in gas phase, CO2 undergoes deoxygenation faster than hydrogenation, improving 

selectivity to methane (CH4), which is the most desired solar fuel, due to its high hydrogen 

to carbon ratio [28]. 

In the field of CO2 photoreduction, general catalysis parameters (e.g. catalyst amount, 

reaction time, reagents concentrations) have been investigated [33-35], whilst photons 

irradiation, which represents the primary energy input have not been thoroughly studied 

yet. Materials light harvesting considerably affects surface activation and, consequently, 

the number of active sites to catalyse CO2 photoreduction [36]. In the case of 

photooxidation reactions, correlation between photons input and reaction rate varies with 

photons flux, indicating different activation mechanisms [37]. However, to the best of the 
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authors’ knowledge, photons input effect on CO2 photoreduction with water has not been 

investigated yet. 

In this paper, the authors investigate the effect of reaction time and irradiance on 

conversion. The choice of these parameters is due to their correlation to photons input in 

the catalytic system, which is the energy source of the whole process [38]. To provide a 

rational approach to understanding the effect of these parameters on CO2 photoreduction 

into methane, a Design of Experiments (DOE) was employed for the first time for two 

different reactor designs. DOE is a powerful tool that allows for generating highly 

efficient systematic experimental designs that can be used to screen and optimise 

parameters on selected responses [39-41]. The objective of DOE is to fit a function 

including only statistically significant parameters to a response. The systematic treatment 

of the data employed here allows for parameters irradiance and reaction time to be 

compared for the two studied different reactor systems on the responses to methane 

production. This study highlights how reactor design and experimental conditions can 

affect selectivity and conversion in CO2 photoreduction.  

 

2 Experimental 

2.1 Materials synthesis 

Titanium dioxide was prepared by the precipitation method [28]. A 1.2 M titanyl sulphate 

solution (TiOSO4·xH2O·yH2SO4, Ti assay > 29 % Sigma Aldrich) and a 9.0 M NaOH 

solution (assay > 97% Carlo Erba) were dropped simultaneously to 200 mL of distilled 

water under vigorous stirring, maintaining pH neutral. The Ti(OH)4 suspension was then 

aged at 60 °C for 20 h, filtered and washed with distilled water to remove the sulphate 

ions, as verified by the barium chloride test [42]. Wet Ti(OH)4 was dried at 110 °C for 18 

h and finally calcined at 400 °C for 4 h in air flow to obtain TiO2. 

To introduce gold nanoparticles, the deposition–precipitation (DP) method was used 

since it allows to obtain small gold nanoparticles [43, 44]. Titanium dioxide was 

suspended in an aqueous solution of HAuCl4·3H2O for 3 h, maintaining pH at 8.6 by the 

addition of 0.5 M NaOH. Gold loading was 0.2 wt. %, as confirmed by flame atomic 

absorption spectrometry (FAAS). After filtration, the sample was washed from chlorides 

with distilled water, as verified by the silver nitrate test [45]. The wet catalyst was dried 

at 35 °C for 18 h and finally calcined in air for 1 h at 400 °C. 

 

2.2 Characterization of the photocatalysts  
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N2 adsorption–desorption isotherms at 196 °C were performed using a 

MICROMERITICS ASAP 2000 analyser to obtain information on the porous texture. All 

samples were previously outgassed at 200 °C for 2 h. The mesoporous volume was 

measured as the adsorbed amount of N2 after capillary condensation. The surface area 

was evaluated using the standard BET [46] equation and the pore size distribution was 

obtained using the BJH method applied to the isotherm desorption branch [47]. 

X-ray diffraction (XRD) analyses were conducted using a Bruker Nonius X8-Apex2 CCD 

diffractometer with an Oxford Cryosystems Cryostream routinely running at 100K 

(copper anode; operating conditions, 40 kV and 40 mA) and a Si(Li) solid state detector 

(Sol-X) set to discriminate the Cu Kα radiation. Apertures of divergence, receiving and 

detector slits were 2.0 mm, 2.0 mm, and 0.2 mm, respectively. Data scans were performed 

in the 2θ range 5°–80° with 0.02° step size and counting times of 3 s/step. The actual 

amount of copper and gold loaded in the promoted catalysts was determined by flame 

atomic absorption spectroscopy (FAAS) using a PerkinElmer Analyst 100.  

The UV-adsorption and bandgap of the coated glass slides were characterized by a 

UV/Vis spectrometer (Perkin Elmer lambda 950) equipped with a 150 mm integration 

sphere (Perkin Elmer).  The band gap energy (BG) of the catalysts were determined by 

the intercept of a linear fit to the absorption edge and calculated according to Equation 1: 

BG = ℎ	 ∙
�
�
 

Equation 1 
where: h is Planck’s constant (6.626·10-34 m2·kg·s-1), c is the speed of light (3.00·108 m·s-

1) and λ is the wavelength of adsorption. 

 

2.3 Photoactivity tests at low irradiance 

The catalytic apparatus used for the photoactivity tests at low irradiance is similar to that 

reported previously [28]. CO2 photoreduction was carried out in a borate glass thin film 

reactor (length 33 mm, height 18 mm, thickness 2 mm). The catalyst (10 mg) was 

introduced by depositing a catalyst suspension in 2-propanol on the light-exposed side of 

the reactor.  
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Figure 1 Film reactor in light blue showing catalyst loaded and the light source 
housing and source purple. 

 

The samples were illuminated using a 125 W mercury UVA lamp (provided by Helios 

Italquartz srl, emission range 315–400 nm shielded by a special tubular quartz to select 

the 366 nm wavelength).  It was measured with a photoradiometer (Delta OHM 

HD2102.2) that irradiance on illuminated surface of the reactor is the same on that behind 

irradiation source: thus it is possible to state that the reactor walls do not adsorb light.  

Before testing materials in both rigs, blank tests were performed without either reagents, 

or light or catalyst. In none of these cases, products formation was observed, indicating 

that catalyst and reagents are stable in reaction conditions and that also in all conditions 

no photochemical reaction occurs and only the photocatalytic process can be observed 

and measured. 

In performed tests, neither heating nor cooling was used. UV lamp provides a stable and 

constant temperature of 40 °C on the photocatalytic surface. Afterwards, a gaseous 

mixture of CO2 and H2O was introduced into the reactor. Compressed CO2 (99.99%) was 

regulated by a mass flow controller, which was carried through a water bubbler kept at 

40 °C to generate CO2 and H2O vapour mixture with a 0.07 H2O/CO2 molar ratio 

according to Equation 2:   

	
�	��� = 	
�	
�������	����������,� ∙ ��
���

���� − �	
�������	����������,�
 

Equation 2 
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The reactor was sealed when the reagents ratio was constant. This point was taken as the 

beginning of the reaction. Therefore, the reaction was performed in static batch 

conditions. A total of 9.2 µmol of CO2 and 0.7 µmol of H2O were present within the 

sealed reactor.  

The reaction products were analysed by a gas chromatograph (HP G1540A) equipped 

with a Porapak Q column with a TCD detector. Activity results are expressed in turn over 

numbers (TONs) in µmol·gcat
-1, as commonly used in literature [48, 49]. Photonic yield 

(Φ) was calculated according to IUPAC recommendations, as the ratio between required 

electrons for CO2 reduction to CH4 (which is considered equal to 8 times CH4 production) 

and incident photons [38]: 

 

Φ	!%# =
$%&'($%)	%* = 8	 ∙ �	,!-�#
(.�()%./	�ℎ�/�.0	!1(.0/%(.#

∙ 100 

Equation 3 

 

Φ	!%# =
8 ∙ �	,!-�# ∙ 4$$	!5 ∙ -*
# ∙ /	!0# ∙ 6	!-
# ∙ �	!-# ∙ 78!-�*9#

ℎ	!: ∙ 0# ∙ �	!- ∙ 0*9#
∙ 100 

Equation 4 
 

where:	 8 is the number of required electrons for CO2 reduction to CH4, 4$$ is the 

irradiance, / is reaction time, 6 is the illuminated area, � radiation wavelength, 78 is 

Avogadro’s number, ℎ is Planck’s constant and � is speed of light. 

DOE experimental conditions were established for the different tests to be carried out at 

varying reaction times (4, 6 or 8 hours) and irradiance values (40, 50 or 60 W·m-2) (see 

Table 1). First four tests represent the corner points of the model, whereas the last three 

are the centre points. Test at centre point conditions was performed three times to test the 

repeatability of the experimental conditions. Experimental ranges for reaction time and 

irradiance were chosen as centre point conditions used for materials screening.  
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2.4 Photoactivity tests at high irradiance 

High irradiance CO2 photoreduction with H2O tests were performed in a cylindrical Pyrex 

glass reactor (Figure 2), which consisted of two stainless steel lids (one of which was 

equipped with a quartz window) and a cylindrical Pyrex vessel (diameter 5.5 cm, length 

11 cm), which was sealed with O-rings four stainless steel rods secured with wing nuts. 

The catalyst (20 mg) was suspended in 2-propanol (1 mL) and then deposited on a quartz 

plate until complete evaporation, keeping the impregnated area equal to 12 cm2 (width 2 

cm, length 6 cm). The impregnated plate was dried for one hour at 110 °C to eliminate 

completely any trace of dispersing agent. 

Similar to the low irradiance reactor tests, a saturator was used to introduce water vapour 

in the gas inlet, monitoring temperature and pressure using a thermocouple and a pressure 

gauge, respectively. Irradiation was provided by an OmniCure Series 2000 with a 365 nm 

filter by Lumen Dynamics and irradiance was controlled by UV/Vis OmniCure 

Radiometer. Reagents and products were detected using a Hyden Analytical Quadrupole 

Mass Spectrometer (HPR-20 QIC) equipped with both a Faraday cup and secondary 

electron multiplier detectors. For a quantitative analysis, before any photocatalytic tests, 

calibration was performed using gas mixture (BOC Industrial Gases) containing 100 ppm 

of: hydrogen (H2), oxygen (O2), methane (CH4), methanol (CH3OH), ethane, (C2H6), 

ethylene (C2H4), acetaldehyde (CH3CHO), ethanol (CH3CH2OH) and CO2 in a balance 

of Argon.  

Experimentally, before each test, the catalyst was introduced into the reactor and let 

overnight under a 1 mL·min-1 helium flow to keep surface clean and avoid atmospheric 

oxygen contamination. CO2 (99.999 % BOC Industrial Gases) was then introduced into 

the reactor using a mass flow controller (8 mL·min-1) and was saturated with water vapour 

Table 1 DOE experimental conditions varied during low irradiance tests. 

Std. Order Time (h) Irradiance (W·m-2) Photons (Einstein) 

1 4 60 0.011 

2 8 60 0.021 

3 8 40 0.014 

4 4 40 0.007 

5 6 50 0.013 

6 6 50 0.013 

7 6 50 0.013 
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by means of a saturator at room temperature. Considering water vapour pressure at room 

temperature and CO2 flow rate, the H2O/CO2 ratio was equal to 0.5. Once the reactor was 

filled with the reaction mixture at 1.5 bar, the reactor was closed and the lamp was 

switched on. For the DOE analysis, irradiance was varied between 60 and 2400 W·m-2, 

whilst reaction time ranged from one to three hours (Table 2). Blank tests were performed 

as described for the low irradiance tests. 

 

 
Figure 2 Batch reactor used for high irradiance experiments. 

 
 

Table 2 DOE experimental conditions varied during high irradiance tests 
 

Std. Order Time (h) Irradiance (W·m-2) Photons (Einstein) 

1 1 60 0.008 

2 3 60 0.024 

3 1 2400 0.316 

4 3 2400 0.948 

5 2 1200 0.316 

6 2 1200 0.316 

7 2 1200 0.316 

 
 

2.5 Statistical analysis of results 

For the statistical analysis of data from DOE experiments, Minitab 17 Statistical Software 

(2010) developed by Minitab, Inc. (PA, USA) [50] was used to create Pareto Charts and 

assess statistically significant effects of irradiance and reaction time on methane 

production. Pareto charts of standardised effects and main effects are powerful 

visualisation tools that summarise the results of the full factorial designs visually. Pareto 

Catalyst coating 

on glass slide 

UV light 

source and 

focuser 

Batch photoreactor 

Inlet 

Outlet 
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charts of standardised effects indicate the statistically significant parameters as those that 

are above the reference red line. For a parameter to be statistically significant, the null 

hypothesis of the parameter’s co-efficient being equal to zero is tested by comparing the 

calculated ANOVA p-value with a significance test level of α = 0.05. If the p-value is less 

than α, the hypothesis that the co-efficient is equal to zero is rejected and deemed to be 

statistically significant. The weight of the parameters is also indicated by the length of 

the plotted bar. The main effects plot indicates the parameters effect between its high and 

low settings. The blue points (Corner point type) on either side of the line are the mean 

of the values recorded for the high and low settings, where the blue line connects these 

two points. A line with a steep slope indicates the parameter has a strong effect on the 

response. The red square indicates the mean of the center points (Center point type), 

where for this study three replicate points were performed. The grey dotted line indicates 

the mean for all of the experiments.  

 

3 Results and discussion 

3.1 Materials characterisation  

The synthesized Au-TiO2 photocatalyst sample provided suitable surface and lattice 

properties for CO2 photoreduction, with similar values to those previously reported in the 

literature [9, 51, 53]. The N2 physisorption isotherm (Figure S1) showed this sample is 

mesoporous and characterised by 110 m2·g-1 surface area, with wide pore size distribution 

between 5- 25 nm. The XRD spectrum (Figure S2) concluded that the only titanium 

dioxide crystal phase observed is anatase, which is the most suitable for photocatalysis, 

due to its enhanced stability of electron-hole pairs [53]. This experimental evidence is in 

accordance with UV-Vis spectrum (Figure S3), in which a strong adsorption was 

observed at wavelengths lower than 388 nm, corresponding to a band gap of 3.21 eV, 

typical of anatase phase [54]. Moreover, UV-VIS spectrum (Figure S3) shows an 

absorption between 480 nm and 620 nm relative to gold nanoparticles surface plasmonic 

resonance, which is correlated to a higher ability to separate surface charges [55]. 

 

3.2 Comparison of photoreactor features 

The comparison of data collected in the two different rigs, even using the same benchmark 

material, still represents a challenge [37, 56]. However, there are sufficient similarities 

that allow to compare the two systems, as reported in Table 3.  
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Table 3 Comparison of the main features of low and high irradiance rigs. 

 Film reactor Quartz plate reactor 

Temperature (°C) 40 25 

Pressure (bar) 1 1.5 

Catalyst loading per reactor volume (g/cm3) 0.02 0.00014 

Catalyst loading per illuminated area (g/cm2) 0.001 0.003 

H2O/CO2 (v/v) 0.07 0.05 

Irradiance (W·m-2) 40-60 60-2400 

 

It should be noted that in both cases the reaction is performed in a gas-solid system, 

avoiding mixture issues [57]. Moreover, CO2 is in excess (H2O/CO2 is 0.07 and 0.5 v/v 

in low and high irradiance rig, respectively) to avoid highly favourable water adsorption 

and hydrogen production via water splitting, reported in Equation 6 [31, 58].  

 

2	
� ⇌ 2	
 + �
 

Equation 5 

In other terms, the reagents ratio is far above the stoichiometry; from previous studies, a 

variation of CO2/H2O ratio in the range of 0.01 and 0.8, i.e. in large excess of CO2, does 

not affect significantly obtained results [59, 60]. 

 

��
 + 2	
� ⇌ �	, + 2�
 

Equation 6 

Moreover, in both cases, tests were performed close to atmospheric pressure. According 

to the Langmuir-Hinshelwood type kinetic model proposed by Tahir and Amin, pressure 

effect on reaction rate can be considered negligible for low H2O/CO2 ratios [61]. 

Regarding temperature, there are some differences, which might have a beneficial effect 

on different phenomena, such as reaction kinetics, products desorption and mass transfer 

[49]. Also the catalyst loading per reactor volume is not similar, affecting diffusion 
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phenomena; however, preliminary studies excluded diffusion limitations for both reactors 

[28, 62].  

From these considerations, there are fundamental similarities between the two rigs in 

operative temperature, pressure, catalyst loading and reagents ratio. Nonetheless, there 

are still several differences in experimental parameters, with the most substantial one 

being irradiance, which is strictly connected to incident photons, which is the crucial 

metric for this study. 

 

3.3 Low irradiance DOE tests 

For the low irradiance tests, a full factorial design was used to evaluate reaction time (4 

– 8 hours) and irradiance (40 – 60 W·m-2) as variables on the response of CH4 production, 

expressed as methane turnover number (Table 4). In all experiments methane and 

hydrogen were detected whilst CO, CH3OH and other hydrocarbons were not observed. 

This product distribution could be explained by hydrogen being formed from the water 

splitting reaction and methane by fast CO2 deoxygenation and following hydrogenation 

[28], which is the generally desired product in carbon dioxide photoreduction, due to its 

high H/C ratio.  

 

 

 

Table 4 Experimental points and responses used for factorial 
design of the film reactor.  

 

  

Std. 

Order 

Time 

(h) 

Irradianc

e 

(W·m-2) 

Methane 

(µmole/g) 

Hydrogen 

(µmole/g) 

Photonic 

yield CH4 

(%) 

Photonic 

yield H2 

(%) 
1 4 60 20,84 2,80 1,58E-02 2.13E-3 

2 8 60 28,50 3,70 1,08E-2 1,40E-3 

3 8 40 20,94 3,94 1,19E-2 2,24E-3 

4 4 40 12,69 1,54 1,45E-2 1,74E-3 

5 6 50 19,49 3,49 2,47E-02 4,416E-

6 6 50 17,34 2,62 2,19E-02 3,315E-

7 6 50 21,04 2,54 2,66E-02 3,214E-
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Results reported in Pareto charts (Figure 3) show standardised effects for both irradiance 

and reaction time on methane production. Both time (p = 0.014) and irradiance (p = 0.014) 

have a statistically significant effect on methane productivity. No interaction effect 

between the two variables was found, indicating that they are not dependent on each other. 

The main effects plot (Figure 4) showed the strong effect of reaction time and irradiance 

on the production of methane. Equation 7 shows the linear model that only includes 

statistically significant terms (p<0.05).  

 

�	, = −10.83 + !1.98 ∙ A(-%# + !0.392 ∙ 4$$B)(B.�%#	 
Equation 7 

where: �	, is the yield of methane in µmol·gcat
-1, A(-% is the reaction time in hours and 

4$$B)(B.�% is the reaction irradiance in W·m-2.  

Figure 3 Pareto Charts for reaction time and irradiance on methane production from 
the low irradiance DOE tests. Response is methane production in µmol·gcat

-1, α=0.05. 
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 Figure 4 Main effects plot of reaction time and irradiance on methane production 
results from low irradiance DOE tests. 

 

 

The methane production is represented in a 3-D space as a function of irradiance and 

reaction time (Figure 5), showing all experimental points are in a plane with a 0.92 R 

correlation value, confirming that methane production is linearly dependent on both 

reaction time and irradiance and that these two parameters are independent one to the 

other on the final output.  
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Figure 5 3-D plot of methane production vs. time and irradiance. 

 

Considering that incident photons are proportional to both reaction time and irradiance, 

the overall effect of photonic input on methane formation was considered. Figure 6 shows 

that methane production is linear with photons input, as assured by R value, regardless of 

irradiance or reaction time. 

 

 

 

 

Figure 6 Methane production as a function of photons input at low irradiance.  
 

Therefore, at low irradiance methane production by CO2 photoreduction can be enhanced 

by increasing irradiance and/or lengthening reaction time, opening to different strategies 

to pursue this aim. This statistical result from collected data has several implications that 

explain the effect of photonic input on CO2 photoreduction. The effect of irradiance 

observed here is in agreement with previous work by Hermann [37] regarding 

photocatalytic oxidations. His work indicates that for irradiances lower than a critical 

value, products formation is proportional to photons input, while higher irradiances might 

affect recombination rate.  

For a deeper understanding of this result, proposed CO2 photoreduction reaction 

mechanism should be considered. Photons are explicitly expressed in the first step of the 

whole process, i.e. photocatalyst activation via electrons promotion from valence band 

(VB) to conduction band (CB). 
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A(�
 + ℎC → ℎE +	%* 

Equation 8 

If photons are considered as proper reactants in the process, it is possible to state that, in 

these conditions, catalyst photoexcitation is the limiting step of the whole process [28]. 

This means that, using low irradiances, it is possible to assess whether a material is 

efficient in light harvesting or not.  

In this field, this reported result is particularly relevant because, up to now, irradiance 

effect has not been thoroughly investigated for CO2 photoreduction. At the best of 

author’s knowledge, only Tan et al. reported the effect of irradiance on methane formation 

in CO2 photoreduction with water [21] and observed that methane production increased 

with irradiance (650 and 1800 W·m-2), a range that is significantly higher than values used 

in this work; however, increase in methane formation was not linear with irradiance and 

a correlation between them was not reported nor attempted. Therefore, the work presented 

here represents the first study that assesses the effect of irradiance on CO2 photoreduction 

to methane. 

Considering reaction time studies in this work, methane production linearly increases 

with time in the investigated range and no sign of activity loss in methane production with 

time was observed. In contrast, Bazzo and Urawaka reported CO2 photoreduction tests at 

higher temperatures (80 °C and 150 °C) observing an increase in methane production for 

relatively short reaction times (60 to 90 minutes) following further deactivation [63]. 

Similar results were found also by Tan et al. [64] and Anpo and co-workers [65]. 

Therefore, it is probable that the experimental reaction time range in this work covers a 

time region where no (or little) deactivation occurs.  

 

3.4 High irradiance DOE tests 

High irradiance tests were performed using a full factorial design, where reaction time (1 

– 3 h) and incident irradiance (60 – 2400 W·m-2) were evaluated as variables on the 

response of methane production (Table 5).  
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The results, reported in Pareto charts (Figure 7), show standardised effects for both 

irradiance and reaction time on methane production. Reaction time (p = 0.048) is a 

statistically significant effect on methane productivity. No interaction effect between the 

two variables was found, indicating that they are not dependent one to the other. The main 

effects plot (Figure 8) showed the strong effect of reaction time on the production of 

methane. Conversely, irradiance is much weaker effect and statistically insignificant 

(Figure 8). Equation 9 shows the linear model that only includes statistically significant 

terms (p<0.05): 

 
 

FGH = −I. JK	 ∙ 	LM*N + !M. LNO		 ∙ 	PQRS#			 

Equation 9 
 

where: FGH is the yield of methane in µmol·gcat
-1 and PQRS is the reaction time in hours.  

Table 5 Experimental points and responses used for factorial 
design collected using quartz plate reactor. 

 

Std. 

Order 

Time 

(h) 

Irradiance 

(W·m-2) 

Methane 

(µmol·gcat
-1) 

Hydrogen 

(µmole/g) 

Photonic yield 

CH4 (%) 

Photonic yield 

H2 (%) 

1 1 60 4.43·10-3 1,30E-02 1,59E-03 1,83E-02 

2 3 60 3.05·10-1 9,00E-01 3,30E-02 3,88E-01 

3 1 2400 7.08·10-2 2,10E-01 2,15E-04 2,57E-03 

4 3 2400 2.74·10-1 8,00E-01 2,50E-03 2,91E-02 

5 2 1240 6.64·10-2 1,90E-01 1,21E-03 1,39E-02 

6 2 1240 1.90·10-1 5,70E-01 3,23E-04 3,88E-03 

7 2 1240 1.77·10-2 6,00E-02 3,47E-03 3,99E-02 
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Figure 7 Pareto Charts from ANOVA analysis of results from high irradiance DOE 
tests. Response is methane production in µmol·gcat

-1, α=0.05. 

 
Figure 8 Main effects plot of reaction time and irradiance on methane production 

results from high irradiance DOE tests. 

 

The trends observed for high irradiance are different from those observed at low 

irradiances, where both reaction time and irradiance were significant parameters. In fact, 
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in these reaction conditions, time effect on photonic input is consistently more significant 

than irradiance, which is almost negligible within the investigated experimental range. 

The small significance of irradiance on CH4 formation can be explained considering that, 

in this experimental range, a small fraction of incident photons is able to activate all 

available photocatalytic sites, and therefore, a further increase in photonic input does not 

provide an increase in methane formation. 

The effect of irradiance on CO2 photoreduction was reported only by Tan and co-workers 

[21] but a correlation between products formation and irradiance has not been reported 

yet, so some comparisons must be made with more established photooxidative processes. 

For example, Vorontsov and Dubovitskaya reported that ethanol photocatalytic oxidation 

rate reached a steady state for high irradiance, thus not being a significant parameter for 

the process [66]. This phenomenon was also observed for toluene and formaldehyde 

oxidation by Strini and Schiavi [67] and Ching and co-workers [68], respectively. From 

this comparison with available papers on photooxidations, it is possible to sustain 

proposed explanation for irradiance irrelevance in these conditions, since they allow to 

saturate photocatalytic surface with photons already. 

For a deeper understanding of this result, it is not possible to consider, like in low 

irradiance tests, TiO2 photoexcitation and therefore, it should be assumed that 

photoactivation is not the limiting determining step of the overall process. The surface 

chemical reaction has proven to be a particularly difficult step in the overall process. In 

particular, as proposed by Tan et al., binding CO2 adsorption on TiO2 proved to be a 

particularly delicate, especially on TiO2 [21]. 

FTN
UVW
XY FTN,			VZ[          Equation 10 

FTN,VZ[
UVW
XY FVZ[

∗ + TN                    Equation 11 

GNT
UVW
XYGVZ[

∗ + TGVZ[
∗      Equation 12 

TGVZ[
∗ UVW
XYGVZ[

∗ + L N] TN      Equation 13 

FVZ[
∗ + HGVZ[

∗ UVW
XY FGH,VZ[      Equation 14 

FGH,VZ[
UVW
XY FGH       Equation 15 

 

 

Therefore, high irradiance conditions are suitable to assess whether a material is effective 

in surface catalytic CO2 reduction or not. 
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Considering together results at low and high irradiance, it is possible to assess whether a 

material is more efficient in photoexcitation or in the catalytic reaction itself. In the case 

of considered material, i.e. Au/TiO2, catalyst activation by photons is faster than reagents 

conversion to reagents. The coupling of low and high irradiance tests allowed to assess 

the strength of investigated material and suggest ways to improve it, i.e. by enhancing 

reagents interaction with the catalyst. 

 
Conclusions 

Assessing irradiance conditions is fundamental to understand results from photocatalytic 

CO2 reduction. Photons represent the primary energetic input and a change in this 

parameter might have an effect on materials performance. 

The different effect of photonic input was assessed by design of experiments approach, 

considering the experimental parameters affecting photons input, i.e. irradiance and 

reaction time. The effect of these variables proved to be different according to 

experimental regimes. At low irradiance, where surface is not saturated with photons, 

both reaction time and irradiance proved to influence significantly methane production, 

indicating that photoexcitation limits overall process efficiency. On the contrary, 

whereas, at high irradiance, due to photonic saturation of the surface, irradiance increase 

does not affect photocatalytic performance, but prolonged time proved to be important to 

increase methane yield, allowing to investigate CO2 conversion itself. Therefore, a single 

irradiance condition is not sufficient to assess materials activity, but, to handle a more 

comprehensive understanding of materials behaviours, low irradiance tests, which 

indicate materials photoactivity, should be couples to high irradiance one, show how 

efficiently the catalyst interacts with reagents.  
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