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AN ASSESSMENT OF STONE WEAPON TIP STANDARDIZATION
DURING THE CLOVIS-FOLSOM TRANSITION IN THE WESTERN
UNITED STATES

Briggs Buchanan, Brian Andrews, Michael J. O’Brien, and Metin 1. Eren

It has long been assumed that Folsom points are more standardized than Clovis points, although an adequate test of this prop-
osition has yet to be undertaken. Here, we address that deficiency by using data from a sample of Folsom and Clovis points
recovered from sites across the western United States. We used geometric morphometric techniques to capture point shape
and then conducted statistical analyses of variability associated with Clovis and Folsom point bases and blades. Our results
demonstrate that Folsom bases and blades are less variable than those on earlier Clovis points, indicating an increase in point
standardization during the Early Paleoindian period. In addition, despite published claims to the contrary, Clovis and Folsom
point bases are no more variable than blades. Based on these results, we conducted additional analyses to examine the modu-
larity and size of Clovis and Folsom points. The results suggest Clovis points have more integrated base and blade segments
than Folsom points. We suggest that several classes of Clovis points—intended for different functions—might have been in use
during the Clovis period and that the later Folsom points might have served only as weapon tips, the shape of which were con-
strained by the fluting process.

Durante mucho tiempo, se ha supuesto que las puntas de proyectil Folsom son mds estandarizadas que las puntas Clovis; sin
embargo, hasta la fecha no se habia llevado a cabo una prueba adecuada de esta propuesta. Aqui se aborda este asunto usando
datos de una muestra de puntas Folsom y Clovis recuperadas en sitios del oeste de Estados Unidos. Se utilizaron técnicas de
morfometria geométrica para analizar la forma de las puntas y se llevaron a cabo andlisis estadisticos de la variabilidad aso-
ciada con las bases'y los bordes de las puntas Clovis y Folsom. Nuestros resultados demuestran que las bases'y los bordes de las
puntas de proyectil Folsom son menos variables que los de las puntas Clovis. También demostramos que tanto para las puntas
Clovis como para las puntas Folsom, las bases no son mds variables que los bordes. Los primeros resultados indican un aumento
en la estandarizacion de las puntas de proyectil durante el periodo Paleoindio temprano. Los resultados sugieren que la hipdtesis
de que el retoque aumenta la variacion de forma asociada con los bordes en relacion con las bases carece de fundamento. Con
base en estos resultados llevamos a cabo andlisis adicionales para examinar la modularidad y el tamario de las puntas de proyec-
til Clovis y Folsom. Los resultados sugieren que las puntas Clovis, que son mds variables en forma y longitud que las puntas
Folsom, poseen segmentos de base y de borde mds integrados que las puntas Folsom. Sugerimos que varias clases de puntas
Clovis —destinadas para diferentes funciones— pudieron haber estado en uso durante el periodo Clovis y que las puntas Folsom
pudieron haber servido solo como puntas de armas. Parece que la estandarizacion y el uso especializado de las puntas Folsom
evolucionaron conjuntamente en un circuito de retroalimentacion resultante tanto de las limitaciones del acanalamiento
Folsom como de los beneficios para la funcion de la punta que pueden haber resultado del mismo acanalamiento.

well-known transition occurred across beginning 12,700-12,600 cal BP (Meltzer 2009;
the Great Plains, Southwest, and Rocky  Surovell, Boyd et al. 2016), when the Clovis cul-
Mountain regions of North America ture and its iconic fluted point was replaced by
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the Folsom culture and its likewise iconic point.
Until 12,900-12,700 cal BP (Waters and Stafford
2007, 2014), western Clovis groups hunted a var-
iety of prey, including, on occasion, now-extinct
megafauna such as mammoth and large bison
(DeAngelis and Lyman 2016; Emery-Wetherell
et al. 2017; Grayson and Meltzer 2015; Meltzer
2015; Surovell, Pelton et al. 2016). This period
encompassed a climate that changed from global
warming at the end of the Pleistocene to global
cooling during the first century of the Younger
Dryas (Sellet 2018; Straus and Goebel 2011).

Folsom technology began to replace Clovis
technology in a process of technological or
demic diffusion that appears to have originated
on the northern Plains (Collard et al. 2010; Sur-
ovell, Boyd et al. 2016). There, Folsom hunters
focused on bison, which necessitated high resi-
dential mobility and large home ranges (Amick
1996; Andrews et al. 2008; Hofman 1999,
2002; Jennings 2012, 2016; Jennings et al.
2010; Kelly and Todd 1988). In more topograph-
ically varied settings, such as river valleys and
the foothills of the Rocky Mountains, Folsom
subsistence was more diverse (Cannon and Melt-
zer 2008; Kornfeld and Larson 2008). The Fol-
som culture, set in the Younger Dryas (Meltzer
and Holliday 2010), lasted until approximately
12,200 cal BP, only four or five centuries after
it first appeared (Surovell, Boyd et al. 2016).

Differences in the key diagnostic features of the
Clovis and Folsom complexes—both flaked stone
projectile points—are well documented. Clovis
points are bifacially flaked and lanceolate in
shape, with parallel to slightly convex sides, con-
cave bases, and short basal flutes that extend
one-quarter to one-third of a point’s length
(Wormington 1957). An empirically supported
function of Clovis flutes is that they were shock
absorbers, which redistributed stress and relocated
damage in order to prevent catastrophic failure
(Thomas et al. 2017). Folsom points are lanceolate
or lozenge-shaped and usually smaller and lighter
than Clovis points, with flute scars that travel
two-thirds or more of the point’s length. There
are currently no empirically well-supported
hypotheses for the precise function(s) of Folsom
fluting (Ahler and Geib 2000; Sellet 2018),
although it likely was a kind of improvement on
Clovis fluting.

[Vol. 83, No. 4, 2018]

Explanations for the apparent size difference
between Clovis and Folsom points have focused
on differences in delivery system and the avail-
ability and size of prey. Recent evidence suggests
that the delivery system was not a factor, as both
Clovis and Folsom points appear to have been
used with the atlatl and dart (Hutchings 2015).
Buchanan and colleagues (2011) found some
support for the prey hypothesis, showing that
Clovis and Folsom points used to hunt bison
were smaller than Clovis points used to hunt
mammoth, but they also noted a size difference
between Clovis points used to hunt bison and
Folsom points, with the latter being smaller.

It has long been proposed that, as a group,
Folsom points are more uniform in shape and
size than Clovis points (Ahler and Geib 2000;
Boldurian 1990; Frison and Bradley 1980; Tun-
nell and Johnson 2000; Wilmsen and Roberts
1978). An influential study by Judge (1973)
compared coefficients of variation for a suite of
measurements taken on a sample of Clovis and
Folsom points from the middle Rio Grande Val-
ley of New Mexico. He primarily measured point
bases, arguing that the base was the critical area
where points were affixed to darts and hence
less subject to changes resulting from resharpen-
ing (but see Buchanan et al. 2015). The study
showed that Folsom points were less variable
than Clovis points, although Judge cautioned
that further studies using materials from beyond
the middle Rio Grande Valley were needed.

Several other researchers observed the relative
uniformity of Folsom points noted by Judge.
Boldurian and colleagues (1985), for example,
suggested that Folsom base widths were standar-
dized to fit an anvil and backstop device used to
remove channel flakes from Folsom preforms,
although Folsom knapping and fluting can be
done much more easily with direct percussion
(Patten 2002, 2005). Ahler and Geib (2000)
also linked the perceived uniformity of Folsom
to the process of fluting and hafting. They argued
that Folsom points served as replaceable com-
ponents in the weapon system and that the
point was designed to be fitted precisely into a
haft. If dulled or damaged, the point could be
resharpened and reset in the haft for continued
use (see also Bement 2016). Thus, the uniformity
of Folsom point bases has been argued to be
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purposely standardized to fit interchangeably
into hafts and to reduce risk of failure when hunt-
ing bison (Ahler and Geib 2000; Amick 1994;
Boldurian et al. 1985; Hofman 1991, 1992,
2003; Hunzicker 2008; Kelly and Todd 1988;
Surovell 2009).

Our study extends Judge’s analysis beyond
the middle Rio Grande Valley and examines a
large sample of points from across the Folsom
range of the Great Plains, Rocky Mountains,
and Southwest. Although our primary focus is
on point shape, given our belief that shape is a
critical aspect of form in terms of performance
characteristics (e.g., Cheshier and Kelly 2006),
we also tested for differences in the variability
of Folsom and Clovis point size. We conducted
four sets of analyses. First, we tested for differ-
ences in the amount of variation in maximum
length and maximum width of Clovis and Fol-
som points. Second, we tested the hypothesis
that Folsom bases are more standardized in
shape than Clovis bases. To conduct this
research, we captured base shape by using geo-
metric morphometrics (GM), which is a suite
of methods that remove the effects of size prior
to shape analysis (Dryden and Mardia 1998;
O’Higgins 2000; Slice 2005, 2007), and then
applied statistical tests of variation. Third, we
compared Folsom and Clovis blade-shape vari-
ation. A previous study by Buchanan and collea-
gues (2012) demonstrated that, at least with
Clovis, blades and bases exhibit similar levels
of variation, suggesting that if blades were
resharpened, they were under similar constraints
as bases. With this idea in mind, we carried out
analyses that compared variation in Folsom
blade shape to Clovis blade shape. Fourth, we
compared Folsom base-to-blade variation to
Clovis base-to-blade variation to determine if
the results of the study by Buchanan and collea-
gues could be replicated.

Materials and Methods

We examined Clovis and Folsom points in
assemblages from across the western United
States. The Clovis point sample (n=125) is
described in previous studies (Buchanan et al.
2011, 2014) and includes specimens from well-
known assemblages from the Great Plains,
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Rocky Mountains, Southwest, and Northwest
(Figure 1; see Supplemental Table 1). The Fol-
som point sample (n=156) is more spatially
restricted and includes points from sites located
in the Great Plains, Rocky Mountains, and
Southwest (Figure 1).

For the size analysis, we used published mea-
surements of maximum length and width, or in
some cases took measurements on the artifacts
ourselves. Because neither variable conformed
to normality according to Shapiro-Wilk tests
(Iength: W=0.794, p <0.000; width: W=0.832,
p<0.000), we used distribution-free Fligner-
Killeen (FK) tests to compare coefficients of
variation (CV) among the samples (Fligner and
Killeen 1976). The CV normalizes the amount
of variation in a set of measurements and is calcu-
lated by dividing the sample standard deviation by
the sample mean and multiplying the quotient by
100. The FK test statistically assesses differences
in these measures.

For our shape analyses, we used digital images
of Clovis and Folsom points to record landmark
positions that were subsequently analyzed with
GM methods. Clovis and Folsom point images
were taken by the first author, or in cases where
collections were not available or were not visited,
suitable published images were used. The point
images were used for two-dimensional landmark
digitization and subsequent GM analysis. Three
primary landmarks were positioned on the digital
image of each point, one at the tip and two at the
basal ears. Twenty semilandmarks were placed
between the primary landmarks using a procedure
that makes their positions geometrically corres-
pondent (Lycett and von Cramon-Taubadel
2013). Superimposed, equally spaced line seg-
ments drawn between the primary landmarks
provided the framework for the placement of
semilandmarks. The number of landmarks was
the same as in our previous studies (e.g.,
Buchanan et al. 2011, 2014), making the new ana-
lyses comparable. This number of landmarks pro-
vides a level of detail that has been shown to
effectively capture the relevant aspects of Paleo-
indian point shape differences. Increasing the
number of landmarks undoubtedly would provide
a finer-grain view of shape but would also have
the detrimental effect of eventually rendering
each specimen as being unique.
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Figure 1. Map of the western United States showing the location of sites included in the analysis. Key: Folsom Sites — 1
Agate Basin, 2 Badger Hole, 3 Barger Gulch, 4 Big Black, 5 Bobtail Wolf, 6 Cattle Guard, 7 Cedar Creek, 8 Cooper, 9
Elida, 10 Folsom, 11 Hanson, 12 Hell Gap, 13 Hot Tubb, 14 Kincaid, 15 Lake Theo, 16 Lindenmeier, 17 Linger, 18 Lips-
comb, 19 Lubbock Lake, 20 Mountaineer, 21 Pavo Real, 22 Rio Rancho, 23 Scharbauer, 24 Shifting Sands, 25 Shirey
Flats, 26 Waugh, 27 Wyche Ranch. Clovis Sites — 28 Anzick, 29 Colby, 30 Dent, 31 Domebo, 32 Drake, 33 East
Wenatchee, 34 Escapule, 35 Fenn, 36 Lange Ferguson, 37 Lehner, 38 Miami, 39 Murray Springs, 40 Naco, 41
Simon. Multicomponent Clovis/Folsom Sites — 42 Blackwater Draw/Mitchell, 43 Gault, 44 Jake Bluff. (Color online)

Following the digitization of the landmark
configurations, we carried out a superimposition
procedure using the tpsSuper program (Rohlf
2015a), which centers and scales the landmark
configurations to unit centroid size to reduce
size effects. After that, an average, or consensus,
configuration was computed. From that consen-
sus configuration, individual landmark config-
urations were translated and rotated using
least-squares criteria to minimize residual differ-
ences between sets of landmarks. The resulting
variation among the landmark positions—
Procrustes residuals—are interpreted as shape
differences in Kendall shape space. Projection
to the tangent Euclidean space and extraction
of partial warps (eigenvectors of the bending-
energy matrix that describe local deformation

along a coordinate axis) and the uniform compo-
nent (global information on deformation) were
performed using the tpsSmall (Rohlf 2015b)
and tpsRelw programs (Rohlf 2016), respect-
ively. Partial warps and uniform components
represent all information about the shape of spe-
cimens (Rohlf et al. 1996; Slice 2005). Lastly,
relative warps were computed from the partial
warps using the tpsRelw program. Relative
warps are the principal components of the
shape variables—the partial warps—and reflect
the major patterns of shape variation within a
group of specimens (Rohlf 1993).

We conducted the GM procedures outlined
above separately on the base and blade configura-
tions of the Clovis and Folsom points (Figure 2).
Base configurations were calculated using two
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Figure 2. Image of the consensus configuration for Clovis and Folsom points (z =281) with landmarks shown in gray
(green online). Primary landmarks are labeled 1-3; the dashed line demarcates the split between base and blade con-
figurations. The base configuration consists of landmarks 2—-6 and 17-23, and the blade configuration consists of land-

marks 1 and 7-16. (Color online)

primary landmarks (the basal ear tips; see Figure 2,
numbers 2 and 3) and 10 semilandmarks (see
Figure 2, numbers 4-6, 17-19, and 20-23).
Blade configurations were calculated using the
first primary landmark—Ilocated at the tip—and
10 semilandmarks (see Figure 2, numbers 7-11
and 12-16).

After obtaining the relative warps for both the
base and blade landmark configurations, we visu-
ally and statistically compared the variance of the
Clovis sample to that of the Folsom sample. Rela-
tive warps, like principal components, reduce
variation in a dataset to a smaller number of vari-
ables that capture different aspects of the overall
variation. In conducting our comparison, we
first visually assessed bivariate plots of the first
two relative warps for the base and blade datasets,
then used the F test to evaluate differences in vari-
ance. This technique tests the hypothesis that the

variances in the groups are equal—that is, the dif-
ference between the variances is zero. If the test is
significant at the p < 0.05 level, then we conclude
that the null hypothesis is incorrect and that the
variances differ significantly. Prior to conducting
the F' tests, we used Shapiro-Wilk tests (Razali
and Wah 2011) to determine that the variables
exhibited normal distributions. The results indi-
cated that one variable (relative warp 1 for Folsom
bases) was significantly different from normal
(Supplemental Table 2), and thus we report non-
parametric Monte Carlo—derived p-values. The
Monte Carlo procedure does not rely on the nor-
mal distribution to derive a p-value; instead, it
calculates the difference in variance in 9,999 per-
mutations of the data and compares these to the
original difference to calculate the p-value. We
carried out statistical tests using the free software
PAST 3.01 (Hammer et al. 2001).
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Results

Comparing Clovis and Folsom Size Variation

Clovis points are on average longer and wider
than Folsom points (Supplemental Table 3),
and the FK tests show that the associated coeffi-
cients of variation for length (7'=188.22; p<
0.000) and width (T=188.4; p <0.000) are stat-
istically different between Clovis and Folsom
points. Clovis points are more variable than Fol-
som in both size measures.

Comparing Clovis and Folsom Base-Shape
Variation

The first two relative warps of the Clovis and Fol-
som base landmark configurations account for
91.32% of the overall variation in the dataset.
The first relative warp (RW1) captures most of
the variation (84.76%). Base shape along the

AMERICAN ANTIQUITY
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RWI1 axis changes from narrow, long bases
with bell-shaped basal indentations on the posi-
tive, or right, side of the axis to wide, short
bases with shallow concave basal indentations
on the negative, or left, side (Figure 3). Clovis
bases are distributed primarily along the positive
end of the RW1 axis (mean = 0.104), and Folsom
bases are centered on the negative end (mean =
—0.083). The second relative warp (RW2) accounts
for only 6.55% of the overall variation. Shape
variation along the RW?2 axis is represented pri-
marily by depth of basal concavity, ranging from
shallow on the positive, or upper, end of the axis
to deeply concave and more constricted on the
negative, or lower, end. On the RW2 axis, both
Clovis and Folsom bases are centered very
close to the zero midline, with Clovis bases cen-
tered on the positive side (mean=0.008) and
Folsom bases positioned on the negative side
(mean =-0.007).
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Figure 3. Bivariate plot of Clovis (green circles, light gray in print) and Folsom (blue circles, dark gray in print) base-
shape variation. The X-axis shows relative warp 1 scores, representing 84.76 % of the overall variation in the dataset,
and the Y-axis shows relative warp 2 scores, representing 6.55% of the overall variation. The four point-base images
are deformations from the consensus configuration that are used to display the shape space defined by the first two rela-

tive warps. (Color online)



REPORTS 727

Clovis bases have nearly double the amount
of variation along the RW1 axis. Results of F
tests confirm this observation: Clovis base shapes
are significantly more variable than Folsom bases
for RW1 (Table 1). For RW2 scores, representing
about 6% of the overall variation, Folsom bases
are more variable than Clovis bases.

Comparing Clovis and Folsom Blade-Shape
Variation

For Clovis and Folsom blade shapes, the first two
relative warps encompass 97.25% of the overall
variation, with RW1 representing 93.15%. Blade
shape along that axis changes from long and
narrow on the positive, or right, side to short
and wide on the negative, or left, side (Figure 4).
Clovis blades are located primarily at the positive
end of the RWI1 axis (mean=0.122) and
Folsom blades primarily at the negative end
(mean =-0.098). RW2 accounts for only 4.10%
of the variation. Shape variation along that axis
is represented by specimens with converging
proximal blades at the positive, or upper, end
and by specimens with expanding proximal
blades at the negative, or lower, end. On the
RW2 axis, average Clovis and Folsom blades
are close to the zero midline, with Clovis bases
located on the negative side (mean=-0.0055)
and Folsom bases on the positive side (mean =
0.0044).

An F test showed that Clovis blades are sig-
nificantly more variable than Folsom blades
along the primary RW1 axis (Table 2). Along
the RW2 axis, which, again, represents only
4.10% of the overall variation, an F test indicated

Table 1. Mean and Variance of Relative Warp (RW) Scores
Associated with Clovis (n = 125) and Folsom (n = 156)
Bases. Results of Tests for Equal Variances between Clovis
and Folsom Relative Warp Scores Are Reported in the Last
Two Columns.

Monte Carlo
Mean Variance F p-value
RW1 Clovis 0.104 0.014 1.72 0.002*
RWI1 Folsom —0.083  0.008
RW2 Clovis 0.008 0.001 2.54 < 0.000%*
RW?2 Folsom —0.007  0.002

*Indicates significance using the Bonferroni adjusted
significance level of o =0.025.

that Folsom blades are more variable than Clovis
blades.

Comparing Base-to-Blade Variation within
Types

A follow-up analysis to the base and blade com-
parisons between Clovis and Folsom examined
the variability between the base and the blade
within the type samples. Buchanan and collea-
gues (2012) found that for Clovis points, basal
measurements were not more variable than
blade measurements. The results of our analysis
agree with their finding and extend it to Folsom
(Table 3). For both relative warps 1 and 2, Fol-
som bases have similar levels of variation to Fol-
som blades. This is also true for Clovis bases and
blades.

Discussion

Judge’s (1973) well-known finding that Folsom
bases are more standardized than Clovis bases
was based on a small sample of Early Paleo-
indian points from the middle Rio Grande Valley
of New Mexico. We extended Judge’s sample
both in size and spatial coverage to provide a
comprehensive test of the hypothesis. The find-
ings from our first three sets of analyses are con-
sistent with Judge’s original results: Folsom
points are shorter, narrower, and less variable
than Clovis points; Folsom bases are less vari-
able than Clovis bases; and Folsom blades are
less variable than Clovis blades. Our results
show that this pattern holds across western
North America and is not limited to the region
of New Mexico where Judge conducted his
study.

Our fourth set of analyses compared base and
blade variation within types. Judge (1973)
hypothesized that the basal portion of Early
Paleoindian points would be less variable than
blade portions, as he assumed the latter would
have been subject to resharpening. A study by
Buchanan and colleagues (2012) indicated that
this was not the case for Clovis points. Our
results provide further support for Buchanan
and colleagues’ (2012) comparison of Clovis
base and blade measurements: Clovis blades
are not more variable than Clovis bases. We
also compared variation in Folsom bases to that
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Figure 4. Bivariate plot of Clovis (green circles online, light gray in print) and Folsom (blue circles online, dark gray in
print) blade-shape variation. The X-axis shows relative warp 1 scores, representing 93.15% of the overall variation in

the dataset, and the Y-axis shows relative warp 2 scores,

representing 4.10% of the overall variation. The four point-

blade images are deformations from the consensus configuration that are used to display the shape space defined by

the first two relative warps. (Color online)

in Folsom blades and found the same result: Fol-
som blades are not more variable than Folsom
bases. These results call into question the gener-
ally untested assertion that resharpening results
in more shape variation in Paleoindian point
blades relative to bases (Thulman 2012). Rather,

Table 2. Mean and Variance of Relative Warp (RW) Scores
Associated with Clovis (n = 125) and Folsom (n = 156)
Blades. Results of Tests for Equal Variances between Clovis
and Folsom Relative Warp Scores Are Reported in the Last
Two Columns.

Monte Carlo
Mean  Variance F p-value
RWI1 Clovis 0.122 0.014 1.53 0.002*
RW1 Folsom —0.098  0.009
RW?2 Clovis —0.0055 0.0006 2.44  <0.000*
RW?2 Folsom 0.0044 0.0013

if resharpening was consistently applied to point
blades, the consequence was size reduction of the
blade, with little effect on blade shape. These
results are consistent with findings by Buchanan

Table 3. Tests of Homogeneity of Variance between Base and
Blade Portions of Clovis (n=125) and Folsom (n=156)

Points.

Base-to-Blade Monte Carlo

Comparison F  p-value* p-value

Folsom relative warp 1~ 1.155  0.370 0.326
scores

Clovis relative warp 1 1.027  0.880 0.835
scores

Folsom relative warp 2 1.442  0.023 0.024
scores

Clovis relative warp 2 1.387  0.067 0.123
scores

*Indicates significance using the Bonferroni adjusted
significance level of o.=0.025.

*Indicates significance using the Bonferroni adjusted
significance level of o.=0.0125.
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and Collard (2010) and Buchanan and collea-
gues (2012, 2015).

Several researchers have offered explanations
for the original observation made by Judge
(1973)—and supported in our study—that Fol-
som is more uniform than Clovis. The most com-
mon explanation, and one for which Judge was
himself a proponent, is that Folsom bases were
standardized so that they could fit precisely
designed haft systems (Ahler and Geib 2000;
Bement 2016; Boldurian 1990). Further, it usu-
ally is argued that because Folsom hunters relied
heavily on mobile and difficult-to-locate prey—
primarily bison—they invested considerable
time and energy in the design of their points
and delivery systems. The standardization of Fol-
som points is suggested to have allowed hunters
to easily resharpen (Ahler and Geib 2000) or
replace (Bement 2016) damaged points. Another
closely related explanation for the uniformity of
Folsom bases suggests more specifically that
the process of fluting, which is believed to be
integral to hafting, imposed strict constraints on
the form of Folsom bases (Ahler and Geib
2000). Our findings are consistent with these
explanations and may also provide evidence to
further develop the details of the arguments.
We believe a key to explaining why Folsom
points are relatively more standardized than Clo-
vis points has to do with activities attributed to
the latter but perhaps not the former: cutting, sli-
cing, and butchery.

Note that our results suggest that both point
base and blade variability decreased over time
from the Clovis to Folsom periods. This finding
is consistent with the hypothesis that Folsom
point standardization was the result of within-
tool-kit specialization. Use-wear studies of Clo-
vis points indicate they served as knives as well
as weapon tips (Kay 1996; Miller 2013; Small-
wood 2006), but to our knowledge, no such mul-
tifunctionality has been noted for Folsom points.
Indeed, use-wear analyses of Folsom points indi-
cate mainly hafting damage, with no evidence of
cutting wear (Ahler and Geib 2000). Further,
ultrathin bifaces, which are common occurrences
in Folsom assemblages, are often viewed as spe-
cialized knives (Jodry 1999; Root et al. 1999).
When our results are considered in light of
the above, the emerging picture indicates that
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variability in Clovis points relative to that in Fol-
som points reflects the evolution of one multi-
functional tool into two specialized tools. This
specialization of use among points is likely part
of a suite of changes in Folsom stone acquisition
and stone tool manufacture and usage that
occurred as populations settled into increasingly
familiar landscapes (see Buchanan et al. 2018).

To further examine the possibility that Folsom
points were more specialized functionally than
Clovis points, we examined the modularity, or
morphological integration (Klingenberg 2009),
of Clovis and Folsom points. Modularity in this
context is expressed as different subsets of a
point operating independently (Gonzélez-José
and Charlin 2012). We defined two potential
modules, the base and the blade (as outlined
above). If modularity is weak, covariation
between the base and blade will be high, whereas
if modularity is strong, covariation will be low.
Based on the hypothesis posited by several
researchers (e.g., Ahler and Geib 2000; Bement
1999, 2016; Judge 1973), Folsom points are
expected to be modular, meaning that the blade
is a component that was designed to be reworked
and reduced with use, whereas the base was stan-
dardized to fit particular hafting elements.

To investigate the modularity hypothesis, we
used the software Morphol (Klingenberg 2011)
to determine the covariation between the base
and blade sections of Clovis and Folsom points.
Our results showed that the base and blade
components of Folsom points do indeed have
stronger modularity, or lower covariation (RV
coefficient =0.76), than do Clovis points (RV
coefficient = 0.89). Thus, the base and blade por-
tions of Folsom points are less integrated than
they are in Clovis points and lend support to
the hypothesis that the separate portions of
Folsom points were independent modules: one
module for precise hafting and the other for
penetrating prey.

This finding leads us to ask, if Clovis points
served as multifunctional tools and are more
variable than Folsom, why are the base and
blade segments more integrated for Clovis than
Folsom? We suggest that the high covariation
between base and blade modules in Clovis points
is potentially indicative of the existence of
different forms of Clovis points with different
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intended functions. A comparison of Clovis and
Folsom point lengths shows the variability in
Clovis relative to Folsom (Figure 5). In particu-
lar, there is a much wider range for Clovis,
which suggests that points of different lengths
served different functions. Short Clovis points
might have been used primarily for hunting,
whereas medium-sized and larger points might
have been used for both hunting and butchering
tasks.

Another question raised by our study con-
cerns the relation between the emergence of Fol-
som point standardization and specialization
versus the iconic full-face fluting of Folsom.
Building off the hypotheses that have been devel-
oped previously (Ahler and Geib 2000; Bement
1999, 2016; Boldurian 1990; Boldurian et al.
1985), we propose that there likely was positive
feedback between increasing flute length and
point standardization, on the one hand, and func-
tional specialization, on the other. Clovis fluting
appears to be a functional attribute that allows a
point to absorb significantly more energy, last
longer, and remain intact relative to unfluted
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points (Thomas et al. 2017). The longer channel
flakes removed from Folsom points appear to be
exaggerations and extensions of a process that
began with Clovis (Patten 2002). This elongation
of the channel flake could have been a conse-
quence of Early Paleoindian knappers identify-
ing the benefits of a flute and attempting to
augment those benefits by increasing its length.

As flutes became longer, and more difficult to
remove successfully, a specific sequence of
knapping and a set of “process controls” evolved
(Patten 2005). This sequence is convergent with
Levallois technology (Figure 6) in that a convex-
ity is intentionally prepared, as is a specialized
platform that must be directly struck. As this prac-
tice continued, proto-Folsom knappers could
have recognized two benefits to their longer-
fluted points. First, the nascent Folsom knapping
sequence automatically resulted in increased
point plan-view standardization. The geometry
of Folsom points prior to flute removal—as
Lycett and von Cramon-Taubadel (2013) found
with Levallois cores that, like Folsom points,
appear to be isometrically scaled (Lycett et al.
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Figure 5. Histogram of Clovis point lengths (red bars online, light gray in print) and Folsom point lengths (blue bars
online, dark gray in print) for specimens in the study. (Color online)
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Folsom

Direction
of force

Prepared, facetted
platform (in gray)

Removed channel
flake (discarded)

Object with large
flake scar (kept)

Levallois

Distal convexity

Direction
of force

Prepared, facetted
platform (in gray)

Lateral convexity

Object with large
flake scar (discarded
or reprepared)

Removed Levallois
flake (kept)

Figure 6. Convergence of Levallois and Folsom production techniques showing distal concavities, platform locations,
direction of force, and distal and lateral views of products and by-products.

2010; Meltzer and Eren 2018)—must be “consist-
ently imposed by the knapper and cannot be
cheated; if it is incorrect, the physics does not
work” (Lycett and von Cramon-Taubadel
2013:1514), and the successful production of a
flute becomes impossible (Meltzer and Eren
2018). Second, the removal of increasingly full-
faced Folsom flute flakes would have also stan-
dardized point thickness across the surface area.
As Turq (1992) showed, stone specimens with a
more evenly distributed thickness of cross section
have a greater potential for retouch and reuse.
Eren and Lycett (2012) showed that preferential
Levallois flakes possess these morphometric,
and hence functional properties, and finished
Folsom points may be similar (Ahler and Geib
2000), except in the case of Levallois, the removed
flake is the item of use whereas in Folsom, the

point “core” is the item of use. As the benefits
of plan-view and thickness standardization became
apparent, Folsom flutes would have become
longer and the fluting process more standardized
(Crabtree 1966; Frison and Bradley 1980; Judge
1973; Tunnell 1977).

Conclusions

Folsom bases and blades are less variable than
Clovis bases and blades, which indicates
increased point standardization during the Early
Paleoindian period in the western United States.
In addition, Clovis and Folsom point bases are no
more variable than blades, which negates the
claim that resharpening increases the shape vari-
ation of blades relative to bases. Finally, Clovis
points, which are more variable in length, width,
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and shape than Folsom points, have more inte-
grated base and blade segments than Folsom
points. We propose that several classes of points
intended for different functions may have been in
use during the Clovis period and that, during the
subsequent Folsom period, points may have
served exclusively as weapon tips for hunting.
We conclude that the uniformity of Folsom
points was the result of constraints imposed by
preparations for successful fluting.
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