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Abstract 

In the diffraction pattern produced by a half-plane sharp edge when it obstructs the passage of a 

laser beam, two characteristic regions are noticeable. There is a central region, where it can be 

noticed the diffraction of laser light in the region of geometric shadow, while intensity 

oscillations are observed in the non-obstructed area. On both sides of the edge, there are also 

very long light traces along the normal to the edge of the obstacle. The theoretical explanation to 

this phenomenon is based on the Fresnel-Kirchhoff diffraction theory applied to the Gaussian 

beam propagation behind the obstacle. Here we have supplemented this explanation by 

considering electromagnetic flow lines, which provide a more complete interpretation of the 

phenomenon in terms of electric and magnetic fields and flux lines, and that can be related, at the 

same time, with average photon paths. 

Keywords: Diffraction on the half-plane, Bohmian mechanics, Gaussian beam, electromagnetic 

energy flow lines 
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Light displays a characteristic dual nature.  It appears both 

as a wave motion but also as a stream of discrete particles 

of light, as photons. When a photon hits a material, it can 

emit one and only one electron. Light may be described by 

classical optics, but observing it is always based on the 

absorption of one quantum of energy.  

Stig Stenholm in the Presentation Speech for the 

2005 Nobel Prize in Physics awarded to Roy 

Glauber, John Hall and Theodor Hänsch 

1. Introduction 

    Bohmian mechanics enables the visualization and interpretation of the quantum mechanical 

behavior of particles with a mass through trajectories associated with the probability current 
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density [1]. Analogously, the electromagnetic field also admits a hydrodynamic formulation 

when the existence of a suitably defined photon wave function is assumed [2]. This formulation 

gives the possibility to interpret the optical phenomena in a picturesque way through “photon 

trajectories”, which describe the evolution of the electromagnetic energy density, particularly 

behind obstacles, where it may result of much interest for the information on diffraction and 

interference such trajectories provide. This approach, based on trajectories, has been used in the 

analysis of Young’s double slit diffraction [3-5], the Poisson-Arago spot [5,6], the Arago-Fresnel 

laws [7], the modes and energy propagation in optical and microwave waveguides [8,9] or, more 

recently, the high-power ultrashort laser-pulse propagation in nonlinear dissipative media [10]. 

    A group of scientists from the University of Toronto, under the guidance of professor 

Steinberg, has been able to experimentally determine the mean paths of single photons in 

Young’s experiment [11]. The trajectories determined in this way were in agreement with 

trajectories theoretically previously anticipated [2,3] and evaluated [5]. The achievement of 

Steinberg’s group was selected by Physics World as the top breakthrough in physics for the year 

2011, as a discovery that is shifting the moral of quantum measurement [12]. 

    In this work, we tackle the issue of diffraction by a half-plane sharp edge. The theoretical 

solution for the diffraction of a plane wave by the edge of a perfectly conducting plane was given 

by Sommerfeld in 1896 [13], which has become a standard starting point in solving diffraction 

problems for various two dimensional obstacles [14,15]. The diffraction of a Gaussian beam by 

an edge has been studied since the 1960s [16], although attention was mainly focused on the 

bright central part [17-19] of the diffraction image, while the less pronounced long side tails have 

not been analyzed until more recently [20,21]. This less pronounced tail extends with decreasing 

intensity along the diffraction plane on both sides of the diffracted-beam axis. Here we use the 

photon trajectory approach to interpret the diffraction pattern observed on a screen allocated 

beyond the place where the sharp edge produces the diffraction of an incident Gaussian laser 

beam, such as a razor blade. 

   This work is organized as follows. The theoretical approach of the electromagnetic energy flow 

lines (photon trajectories) is presented in Sec. 2. To be self-contained, first a brief overview of 

the photon trajectory approach is presented, and then the particular application to the problem of 

the diffraction by a half-plane edge is introduced. The description of the edge-diffraction 

experiment performed in the laboratory is given in Sec. 3, showing some of the outcomes 

obtained. Specifically, here we have used a razor blade to produce in the laboratory the edge 

diffraction patterns that are later on analyzed by means of photon trajectories. Based on the 

experimental outcomes reported in Sec. 3, and making use of the theory previously introduced in 

Sec. 2, in Sec. 4 we present and discuss our main results. These results show a good agreement 

between the theoretical predictions of the diffraction theory and the space evolution of swarms of 

electromagnetic flow lines, particularly when their arrivals are collected and represented in the 

form of a histogram. Finally, a concluding summary is given in Sec. 5. 

 



2. Electromagnetic energy flow approach 

2.1. Field and trajectory equations 

    Electric and magnetic fields in vacuum obey the following wave equations: 

∇2�⃗� (𝑟 , 𝑡) −
1

𝑐2

𝜕2�⃗� (𝑟 ,𝑡)

𝜕𝑡2 = 0,                                                         (1) 

∇2�⃗⃗� (𝑟 , 𝑡) −
1

𝑐2

𝜕2�⃗⃗� (𝑟 ,𝑡)

𝜕𝑡2
= 0,                                                         (2) 

where c  is the speed of light in vacuum, 𝑟  is the position vector and 𝑡  is time. For a 

monochromatic electromagnetic (EM) wave the electric and magnetic fields are given by 

�⃗� (𝑟 , 𝑡) = �⃗� (𝑟 )𝑒−𝑖𝜔𝑡 and �⃗⃗� (𝑟 , 𝑡) = �⃗⃗� (𝑟 )𝑒−𝑖𝜔𝑡, respectively. So, from Eqs. (1) and (2), it follows 

that the complex amplitudes �⃗�  and �⃗⃗�  satisfy the Helmholtz equations 

𝛻2�⃗� (𝑟 ) + 𝑘2�⃗� (𝑟 ) = 0,                                                            (3) 

∇2�⃗⃗� (𝑟 ) + 𝑘2�⃗⃗� (𝑟 ) = 0,                                                            (4) 

where 𝑘 = 𝜔 𝑐⁄ = 2𝜋 𝜆⁄ . The electromagnetic energy (EME) flow lines, describing the flow or 

propagation of the corresponding EM energy in vacuum, are determined using the energy flux 

vector, given by the real part of the (time-averaged) complex Poynting vector, 

𝑆 (𝑟 ) =
1

2
𝑅𝑒[�⃗� (𝑟 ) × �⃗⃗� ∗(𝑟 )] ,                                                       (5) 

from the equation  

𝑑𝑟 

𝑑𝑠
=

𝑆 (𝑟 )

𝑆(𝑟 )
=

𝑆 (𝑟 )

𝑐𝑈(𝑟 )
 ,                                                             (6) 

where ds is an elementary arc length along the EME flow line, and 𝑈  is the time-averaged 

energy density 

𝑈(𝑟 ) =
1

4
[𝜖0�⃗� (𝑟 )�⃗� 

∗(𝑟 ) + 𝜇0�⃗⃗� (𝑟 )�⃗⃗� 
∗(𝑟 )] .                                           (7) 

2.2 Diffraction by a half-plane edge 

    The theoretical solution of the diffraction problem is obtained by solving the Helmholtz 

equation behind the obstacle, so that the boundary conditions at the obstacle are satisfied. The 

solution can be written in the form of the Fresnel-Kirchhoff integral [15]. Let us consider the 

incident beam travelling along the y axis, coming to the opaque obstacle located at xOz plane, 

with the edge along the z axis. For simplicity, we will assume that the incident wave does not 

depend on the z-coordinate, and it is Gaussian along the x axis. In that case, the Fresnel-

Kirchhoff integral reads as 

𝛹(𝑥, 𝑦) = √
𝑘

2𝜋𝑦
𝑒−

𝑖𝜋

4 𝑒𝑖𝑘𝑦 ∫ 𝛹0(𝑥′, 0
+)𝑒𝑖𝑘(𝑥−𝑥′)

2
/2𝑦𝑑𝑥′

+∞

−∞
,                 (8) 



where 

𝛹0(𝑥′, 0
+) = 𝑒

−
𝑥′2

4𝜎2,                                                      (9) 

for −∞ < 𝑥′ < +∞, in the case of free propagation, and 

𝛹0(𝑥′, 0
+) = {

0,                   𝑥′ > 0

𝑒
−

𝑥′2

4𝜎2 ,            𝑥′ ≤ 0
 .                                        (10) 

if the laser beam meets the half plane. 

    After substitution of the ansatz (9) into the functional form (8) we obtain 

𝛹(𝑥, 𝑦) = √
𝑘

2𝜋𝑦
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𝑖𝜋

4 𝑒
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𝑒
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𝜋

𝑎
 ,                                    (11) 

for the propagation of the free Gaussian, with 
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1
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𝑖𝑘

2𝑦
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𝑖𝑘𝑥

𝑦
 .                                            (12) 

On the other hand, when the ansatz (10) is substituted into (8), we obtain 

𝛹(𝑥, 𝑦) = √
𝑘

2𝜋𝑦
𝑒−
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−
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for propagation behind a half plane. In deriving the solution of the Helmholtz equation in the 

form (8), it is assumed [15] that 𝜆 ≪ 𝜎 and 𝑥 ≪ 𝑦 (paraxial approximation). 

    The incident wave can be recast, in general, in terms of two components [15]: H-polarized, 

with the magnetic field polarized along the z-axis, and E- polarized, with the electric field 

polarized along the z-axis, with a phase shift 𝜙 between them. Behind the obstacle the magnetic 

field of the H-polarized wave and the electric field of the E-polarized wave are proportional to 

𝛹(𝑥, 𝑦), and read as  �⃗⃗� ℎ =  𝐴𝛹𝑒 𝑧 and  �⃗� 𝑒 =
𝐵𝑒𝑖𝜙

𝜖0𝑐
𝛹𝑒 𝑧 , respectively. 

    From Maxwell’s equations it follows [7] that the electric field of the H-polarized wave is 

given by �⃗� ℎ =
𝑖

𝜔𝜖0
∇ × �⃗⃗� ℎ, while the magnetic field of the E-polarized wave is  �⃗⃗� 𝑒 = −

𝑖

𝜔𝜇0
∇ ×

�⃗� 𝑒, so that the total solution behind the obstacles is given by [2,3,7]: 

�⃗⃗� = −𝑖𝑘−1𝐵𝑒𝑖𝜙 𝜕𝛹

𝜕𝑦
𝑒 𝑥 + 𝑖𝑘−1𝐵𝑒𝑖𝜙 𝜕𝛹

𝜕𝑥
𝑒 𝑦 + 𝐴𝛹𝑒 𝑧,                        (14) 
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𝜕𝛹

𝜕𝑥
𝑒 𝑦 +

𝑘𝐵𝑒𝑖𝜙

𝜖0𝜔
𝛹𝑒 𝑧.                             (15) 

The components of the Poynting vector can be expressed as 

𝑆𝑥 =
𝑖

4𝜖0𝜔
(𝐴2 + 𝐵2) (𝛹

𝜕𝛹∗

𝜕𝑥
− 𝛹∗ 𝜕𝛹

𝜕𝑥
) ,                                    (16) 
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    In the case we are dealing with here, the solution (8) of the Helmholtz equation satisfies the 

approximate relations 

|
𝜕Ψ

𝜕𝑥
| ≪ |

𝜕Ψ

𝜕𝑦
|,    |

𝜕Ψ

𝜕𝑦
| ≈ 𝑖𝑘Ψ ,                                             (19) 

and therefore the EME density (7) becomes proportional to |Ψ|2, since 

𝑈(𝑟 ) =
𝜇0

2
(𝐴2 + 𝐵2)|Ψ|2 .                                              (20) 

    The photon trajectories are obtained by numerical integration of the differential equations 

𝑑𝑥

𝑑𝑦
=

𝑆𝑥

𝑆𝑦
,                                                             (21) 

𝑑𝑧

𝑑𝑦
=

𝑆𝑧

𝑆𝑦
 .                                                            (22) 

In the case of an E-polarized or H-polarized incident beam, photon paths are located on xOy 

plane. The initial x-coordinates of the flow lines are chosen to be 

𝑥𝑖 = 𝜎𝐹−1(𝑢) ,                                                    (23) 

where 𝐹−1(𝑢) is the inverse of the Gaussian cumulative distribution function. If the variable 𝑢 

has a uniform distribution on the interval (0,1) , 𝑥𝑖  will have a Gaussian distribution with 

variance  𝜎. 

3. Experimental setup and diffraction picture 

    As an illustration of our theoretical approach, we have chosen an experimental setup that can 

be easily performed at the classroom. As pointed out by Aviani and Erjavec [21], this 

demonstration is suitable for applying a predict-observe-explain sequence in teaching optics. 

Specifically, the experimental setup, which is shown in Fig. 1(a), consists of an optical bench 

containing two supports that hold a green laser pointer with wavelength 𝜆 = 532 nm, an opaque 

barrier with a razor glued along its vertical edge and an observation screen, which can be 

accommodated at different distances from the diffracting edge. 

    As it can be noticed, if the laser beam is left to freely propagate (i.e., the edge is not present in 

the setup), a circular bright spot is observed on the screen, as shown in Fig. 1(b). However, when 

the edge is accommodated in the optical bench in such a way that half of the beam is blocked in 

its way to the observation screen, it can be seen a characteristic diffraction pattern formed by a 

central highly intense spot surrounded by two long horizontal tails (perpendicular to the edge). 

This can be seen in panels (c) and (d), which correspond to two different positions of the 

observation screen with respect to the edge, y = 0.6 m and y = 3 m, respectively. 
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4. Intensity and EM flow lines for both a free propagating laser beam and an obstructed 

one by a half plane 

    Taking into account the wavelength of our laser beam, the intensity curves  𝐼 = 𝑈(𝑟 )𝑐 of the 

freely propagating and obstructed laser beam produced by this theoretical approach can be seen 

in Fig. 2 for different values of the distance between the edge and the observation screen. As can 

be seen in Fig. 2(a), the intensity curve of the obstructed beam shows an oscillatory decrease in 

the non-obstructed region and a simple decrease in the obstructed region. As can be noticed in 

Figs. 2(b), as the observation screen is displaced further away from the edge, the oscillations on 

the left-hand side of the diffraction pattern get weaker. These features are well known [16,20] 

and are similar to the features seen in the diffraction pattern of a plane wave [13-15]. The 

phenomenon of long tails in Figs. 2(c) and (d) was not noted and studied until recently [20,21]. 

Anakhov et al. [20] analyzed this phenomenon by writing the expression for the electric field as 

a sum of two contributions, namely a geometrical contribution and a diffraction one. Here, we 

have evaluated the total electric and magnetic field and the corresponding energy density for 

both the freely propagating Gaussian beam and the beam obstructed by the half plane. In our 

opinion, the slower decrease of obstructed Gaussian [see Figs. 2(c) and (d)] explains the 

phenomenon of long tails on both sides behind the half plane [see Figs. 1(c) and (d)]. 

 

 

 

 

 

(a) 

(b) 

(c) 

(d) 

Figure 1. (a) Experimental setup to observe diffraction by a straight edge of the light emitted by 

a green laser pointer (𝜆 = 532 nm). (b) A green circular spot is observed when the laser beam 

freely propagates. (c) Diffraction pattern when the edge is introduced in the setup, covering 

nearly half the incident laser beam, for a distance y = 0.6 m between the edge and the observation 

screen. (d) As in panel (c), but for y = 3 m. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    The propagation of a free Gaussian beam is visualized in Fig. 3 in terms of a swarm of photon 

trajectories, showing the intensity profile at three different distances (from left to right, 0.2 m, 

0.4 m, and 0.6 m). The trajectories are determined using the magnetic and electric fields, Eqs. 

(14) and (15), respectively, recast in the functional form (11), and then solving the corresponding 

differential equation (21). The initial conditions have been distributed following Eq. (23). 

    From the intensity curves shown in Fig. 3 we see that free propagating Gaussian beam spreads 

very slowly in the spatial range considered. The form of the photon trajectories is consistent with 

the spreading described by the intensity curves, with their density being maximal at the center of 

the beam and decreasing with the distance from the center. Indeed, the separation among 

trajectories is relatively small, which in compliance with the slow spreading displayed by the 

beam. Finally, also notice that these trajectories do not mixup, which means that the trajectories 

started on the region covered by one half of the initial Gaussian beam will contribute all the way 

down to the intensity associated with that part of the of Gaussian beam. To highlight this aspect, 

trajectories with initial positions distributed along positive and negative x have been denoted 

Figure 2. Intensity 𝐼 = 𝑈(𝑟 )𝑐 of the freely propagating laser beam (dotted line) and laser beam 

propagating  behind a half plane at distances: (a) y = 0.05 m, (b) y = 0.6 m, and (c) y = 3 m. (d) 

Enlargement of panel (c). 



with black and gray color, respectively. Although it might seem a rather trivial issue, this well-

known noncrossing behavior for Gaussian beams has an interesting counterpart when edge 

diffraction is considered, as seen below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    The propagation of an H-polarized Gaussian beam obstructed by a totally absorbing half plane 

is shown in Fig. 4 in terms of a swarm of photon trajectories. In this case, the spreading is faster 

due to the diffraction undergone by the incident beam, so the trajectories are shown in two 

different panels corresponding to two distances from the edge [see panels (a) and (b)], which also 

helps us to better visualize the change in shape of the density profile (see discussion below). As 

before, the trajectories are determined by recasting the magnetic and electric fields, Eqs. (14) and 

(15), respectively, in terms of the functional form (13), and then solving the corresponding 

differential equation (21). 

Figure 3. Photon trajectories for a freely propagating Gaussian beam. Intensities at three 

different distances are also shown (from left to right, 0.2 m, 0.4 m, and 0.6 m) to illustrate how 

the flow of trajectories is in compliance with the standard solution provided by the theory of 

diffraction. Trajectories with initial positions distributed along positive and negative x have been 

denoted with black and gray color, respectively, to show that they do not mixup. 



    As before, we readily notice in Fig. 4 that the density of trajectory end points at a given 

distance from the edge is in compliance with the corresponding EME density curve displayed. 

Since the profile of the EME density changes, we have considered two different distances to 

stress such agreement, specifically y = 0.05 m and y = 0.6 m [panels (a) and (b), respectively]. 

Thus, the accumulation of end points is more prominent in those regions where the EME density 

is larger, while it is scarcer where the latter has smaller values, as seen more noticeably in panel 

(b). In the case of panel (a), there are two different behaviors. On the one hand, to the left of the 

largest maximum of the EME density, there is a monotonic decrease of the density of end points, 

which is somehow analogous to the behavior observed in the case of free propagation (see Fig. 

3). On the other hand, to the right of such a maximum, the EME density profile displays an 

oscillatory behavior, which produces an also oscillatory variation of the density of end points as 

we move to the right, getting scarcer as we move further away from the largest maximum. This 

behavior is thus quite different from the one observed in the edge-free propagation. 

    Also, in order to emphasize the differences with respect to the case free of edge diffraction, we 

have considered a different color for the trajectories according to their initial distribution. Here it 

is we do not have a Gaussian, but half a Gaussian, as described by Eq. (20). So, taking this 

distribution as a whole, we have divided into two parts. Accordingly, those trajectories started 

between the center of the Gaussian (which coincides with the position of the edge) and some x 

value in its decreasing part are displayed with black color, while the remaining trajectories (to 

the right) are with gray color. The x value has been chosen in such a way that, although the initial 

positions are distributed according to a Gaussian, there is the same number of black and gray 

trajectories. Accordingly, as shown in panel (a), near the edge we observe that the contribution to 

the main maximum essentially arises from the black trajectories, while the gray trajectories 

contribute to the oscillatory part of the intensity. In other words, while the black trajectories are 

found to be more spatially confined, the gray trajectories are going to cover a larger region. On 

the other hand, as can be seen in panel (b), far from the edge (at a distance of about one order of 

magnitude larger than in the previous case), we observe that both groups of trajectories are 

nearly the same, with the black trajectories contributing to the intensity to the left of the 

maximum, and the gray trajectories doing it to the right, something that reminds the case of the 

edge-free propagation seen above. The key to understand this remarkable change of behavior is 

in the twist undergone by the trajectories at about twice the distance considered in panel (a), i.e., 

y ~ 0.1 m, which can be more clearly seen in the enlargement of panel (b) [see panel (c)]. This 

twist produces a spatial redistribution of the trajectories, which eventually leads to an equal 

distribution of trajectories on both sides of the central maximum displayed by the intensity 

asymptotically, i.e., the central bright spot observed in the experiment reported in Sec. 3. 

Furthermore, also notice that the two surrounding tails, typical of this diffraction phenomenon, 

are associated with the faster spreading undergone by the most marginal trajectories on both 

sides. Of course, the number of trajectories departing to regions far from the center of the main 

maximum is rather small (compared to those contributing to this maximum), which explains why 



the intensity in the tails so weak but spreads out over a long spatial range (perpendicularly with 

respect to the edge). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Swarms of photon trajectories illustrating the behavior of the EME flow behind a half 

plane illuminated by a Gaussian beam (𝜎 = 0.3 mm) centered at the edge of the half plane. The 

distribution of initial coordinates for the trajectories is determined by the intensity of the incident 

H-polarized Gaussian beam. For a better visualization, trajectories associated with half of the 

incidence energy (near the maximum of the Gaussian) are displayed with black, while those 

associated with the other half of the intensity (in the decreasing part of the Gaussian) are in gray 

color. (a) Photon trajectories up to a distance y = 0.05 m. The intensity profile denotes the light 

energy density (right) evaluated from Eq. (20) at the distance y = 0.05 m. (b) Photon trajectories 

behind half plane up to a distance y = 0.6 m. The intensity profile denotes the light energy 

density (right) evaluated from Eq. (20) at y = 0.6 m. (c) Enlargement of panel (b) in order to 

show in more detail the central photon trajectories and the effect of the edge on them. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    In order to show the validity of the above qualitative description, we have evaluated 3,000 

trajectories up to a distance y = 0.6 m from the half plane. As seen in Fig. 5, the histogram of the 

number of trajectory endpoints along the x-axis at the chosen distance shows an excellent 

agreement with the corresponding intensity profile. It is remarkable that the histogram of end 

points reproduces very well the difference in the form of the intensity profile on the left and right 

hand sides, even at this large distance. 

5. Concluding remarks 

    When a sharp edge obstructs the passage of a laser beam, a characteristic diffraction pattern 

can be observed behind the edge, consisting of a bright spot and two fainter long tails leaving 

such a spot along the perpendicular direction to the edge. This problem has been tackled in the 

literature by means of the usual theory of diffraction. Here, inspired by the Bohmian formulation 

of quantum mechanics, we have reconsidered the problem from the viewpoint of electromagnetic 

flow lines, which provide a more complete interpretation of the phenomenon in terms of EM 

fields and flux lines, and that can be related, at the same time, with average photon paths. As has 

been illustrated by means of histograms, these lines or trajectories are in compliance with 

Maxwell’s equations, showing that they are not an external element to the electromagnetic 

Figure 5. Histogram built by box-counting trajectory endpoint along the x axis and at a distance 

y = 0.6 m from the half-plane. The total number of trajectories considered to produce this 

statistics has been 3,000. The black solid line denotes the green light intensity profile at y = 0.6 

m, obtained from Eq. (20). 



theory, but that they constitute a convenient tool to understand the evolution or propagation of 

electric and magnetic fields, particularly in problems of interference and diffraction. 

    The theoretical results presented here have been obtained on the basis of a real experiment, 

which has been previously performed in the laboratory making use of a relatively simple 

experimental setup, consisting of a green laser pointer (light source), a razor (sharp edge) and an 

observation screen, all of them allocated along an optical bench. As has been shown, the results 

were in good agreement with the experimental observations. 
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