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Abstract

The study of solution bounds of algebraic Lyapunov and Riccati equations
are highly important in control problems, and have been an attractive re-
search topic over the past three decades. The solution bounds give solution
estimates, and can also be applied to solve such problems involving these
equations, hence a motivation for the research attraction. Besides, in control
applications involving them, the exact solutions are often not required, but
rather bounds of their solution, particularly when solving the equation is
difficult.

Therefore, many papers have proposed solution bounds for these equations,
mainly for a deterministic nominal system, when the exact values of the coef-
ficient matrices of the equations are available. Additionally, some works have
focused on solution bounds of these equations for perturbed systems, when
only approximate values of the coefficient matrices are available, so they avail-
able are perturbed versions of their actual values; as a consequence of these
perturbed coefficient matrices, the solution matrix also becomes perturbed,
so it becomes of interest to estimate the disturbance range for the solution.
Furthermore, fewer works have focused on solution bounds of coupled alge-
braic Lyapunov and Riccati equations arising from stochastic systems, for
both nominal and perturbed cases. In fact, it appears that there is no paper
in the literature that studies solution bounds of perturbed coupled algebraic
Riccati equations.

Finally, many existing bounds only exist under assumptions which are not
always valid, many of which are not realistic in control problems involving
each equation. Furthermore, some bounds do not appear fo be as tight as
others, some bounds require heavy and complicated calculations to deter-
mine, and some are not very concise. Therefore, this work seeks to obtain
solution bounds for Lyapunov and Riccati equations, which are tighter, less
restrictive, possibly simpler in calculation, and more concise than existing
results. When possible, all derived results shall be compared with existing
results to verify the advantage(s) of the new results.
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Notation

For convenience, the following notations shall be used throughout this thesis.

R The real number field
Rmxn The set of real m x n matrices
I The identity matrix

X, Y, Z Matrices
X > ()Y Matrix X —Y is positive (semi-)definite

Ai(X) The ith largest eigenvalue of matrix X € " fori=1,2,...,n
oi(X) The ith largest singular value of matrix X ¢ R**" fori=1,2,...,n
tr(X) The trace of matrix X € R**"

det(X) The determinant of matrix X € R**"

XT The transpose of matrix X € R**"

X1 The inverse of the nonsingular matrix X € ®**"

X2 The unique positive semi-definite matrix square root of the

non-negative definite matrix X € R such that X*/2X'/? = X
R(A(X))  Real part of an eigenvalue of matrix X € R"*"

iv



Chapter 1

Introduction and Background
Information

1.1 An Overview of Control Theory and Dy-
namical Systems

Control theory is an area of applied mathematics which is concerned with the
analysis and design of controlling devices for dynamical systems [3,69,73,74],
so as to influence the behaviour of the system and achieve the desired out-
come. Such controlling devices are known as controllers.

There are many types of control systems, including;

(1) Linear and non-linear systems: A linear system is one in which the be-
haviour of the system follows a linear rule. Graphically, this would be a
straight line. Similarly, a non-linear system is one that follows a non-linear
rule. Graphically, this would be a curve.

(2) Continuous-time and discrete-time systems: A continuous-time system
is one that is defined over all time. A discrete-time system is one that is
defined at particular instances of time.

(3) Time-invariant and time-variant systems: A time-invariant system is one
in which the system parameters do not alter over time. A time-variant sys-
tem is one in which the system parameters can change over time.



(4) Deterministic and stochastic systems: A deterministic system is a certain
system, i.e., the state of the system and other information about the system
can be determined definitely. A stochastic system is an uncertain system,
i.e., the system state and other information about the system cannot be de-
termined definitely, because the system has an element of uncertainty.

(5) Nominal and perturbed systems: A nominal system is one in which the
exact values of the system matrices and other information can be obtained
exactly. Often in practice, only approximate values of the system matrices
are available (possibly due to cost, inaccessibility, or external disturbances),
so they are perturbed versions of the actual ones. Such a system is a per-
turbed system.

In the field of mathematical control and systems theory, there are a number of
control problems whose solution amounts to solving an algebraic matrix equa-
tion [1,2,5,6,7,8,21,22,23,55,65,66,69,73,74,76,87,88,90]. In particular, there
are 8 algebraic matrix equations that are of concern to this research, which
will later be considered in more detail. Before doing so, however, some im-
portant concepts arising in this field will briefly be reviewed in the following
sections.

1.2 Linear Control Systems

The matrix equations in this project are related to linear time-invariant (LTT)
control systems [3,73,74]. The general state-space representation of a contin-
uous LTI control system is

x = Ax + Bu

y=Cx+ Du (1.1)
Also, the general state-space representation of a discrete LTI control system
is

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k) (1.2)

For each of the systems (1.1) and (1.2), x is the n x 1 state vector, u is the
m x 1 input vector, y is the p x 1 output vector, A is the n x n state matrix,
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B is the n x m input matrix, C is the p x n output matrix, and 0 is the
P X m direct transmission matrix. Two important concepts related to these
systems that shall be later called upon are controllability and observability.

1.2.1 Controllability

As mentioned at the end of the previous section, one particularly impor-
tant concept related to control system design and analysis is controllabil-
ity [3,4,73,74]. A control system is said to be controllable if it is possible
to change any initial state of the system to another state within a finite
time length for continuous-time systems (or a finite number of ‘instances’ for
discrete-time systems). If controllability can be achieved for all such states,
then the system is said to be completely controllable. If controllability cannot
be achieved for any system state, then the system is said to be uncontrollable.
If complete controllability cannot be achieved then the system is said to be
not completely controllable. Controllability is an assumption required to
guarantee the existence of a non-negative definite stabilizing solution of the
Riccati equations. For both the continuous-time and discrete-time LTI sys-
tems given by (1.1) and (1.2) respectively, the controllability matrix, which
we denote by C)y, is defined [73,74] by:

Cu=[BABA’B ... A"!B]

where n is the number of states of the system. A necessary and sufficient
condition [73,74] for the system (1.1) to be completely state controllable is
that the controllability matrix Cps is of rank n. It is also known (see for
example [34]) that controllability implies stabilizability, but the converse is
not true in general. A pair (A, B) is stabilizable if there exists a matrix K
(with suitable dimensions) such that A + BK is stable.

1.2.2 Observability

Another important concept which arises in control system design and analy-
sis is observability [3,4,73,74]. A control system is said to be ohservable if it is
possible to determine the state of the system directly from the output of the
system. If observability can be achieved for all such states, then the system is
said to be completely observable. If observability cannot be achieved for any
state then the system is said to be unobservable. If complete observability



cannot be achieved then the system is said to be not completely observable.
In addition to the assumption of controllability being required for the ex-
istence of non-negative definite stabilizing solutions of the algebraic Riccati
equations, the assumption of observability is also required to guarantee the
uniqueness of such solutions, the equations of which will be discussed in more
detail later in this chapter. For both the continuous-time and discrete-time
LTI systems given by (1.1) and (1.2) respectively, the controllability matrix,
which is denoted by Oy, is defined [73,74] by:

Oum = [CT ATCT (AT)2CT ... (AT 1(CT)

where n is the number of states of the system. A necessary and sufficient
condition [73,74] for the system (1.1) to be completely observable is that
the observability matrix Oy is of rank n. It is known (e.g. from [26,34])
that observability implies detectability, but that the converse is not true in
general. A pair (A, C) is observable if (AT, CT) is stabilizable.

1.2.3 Stability for Deterministic Systems

An important characteristic of control system design and analysis is the sta-
bility of the system. When designing a controller for a system, it is desired
that the controller be reliable, so that the system remains under control.
It should be noted that controllability of a control system implies that the
system is stabilizable, i.e., the system can be made stable. There are three
types of stability [74] that will be mentioned:

e Stability: If the state of a system along a trajectory begins at an origin
and remains within a region over an indefinite time length, then the system
is said to be stable.

e Asymptotic stability: If the state of a system along a trajectory begins at
an origin, remains within a region for some time and then decays to the origin
over an indefinite time length, then the system is said to be asymptotically
stable, the asymptote of stability being the origin.

e Instability: If the state of a system along a trajectory begins at an origin
and leaves the region over an indefinite time length, then the system is un-
stable.

There are other definitions of stability for deterministic systems that can



be found in the literature, which need not be discussed here (The interested
reader may refer to the references given, as well as other references therein).
Also, there are many tests for stability in the literature [73,74] (and refer-
ences therein) that also need not be elaborated on, but rather be left to the
interested reader to follow up. The most general stability analysis method for
control systems is the Lyapunov method. Lyapunov’s first method involves
analysing the stability of the system by first solving the system differential
equations to obtain the system state, and then analysing the stability of
the system based on the state. In contrast to the first method, the second
method of Lyapunov instead determines the stability of the system directly
from the system differential equations without solving them; this involves
the construction and use of a Lyapunov candidate function, which can be
difficult because construction of such a function is not straightforward. For
LTI systems, stability analysis involves the solution of the continuous and
discrete algebraic Lyapunov matrix equations.

1.2.4 Stability for Stochastic Systems

Unlike deterministic systems, stability is defined in many different ways for
stochastic systems. Because the systems are stochastic, one cannot be certain
of the system states, or any other information about the system (such as
inputs, outputs, etc.). As such, we the stability of the system can only
be assessed to a degree of certainty (such as almost-sure stability). There
are several types of stability for stochastic systems that are discussed in
the literature, for example as in [1,2,8,22,23,29,69,76,87,88], such as mean-
square stability, stochastic stability, almost-sure stability, and so on. When
analysing the stability of jump linear systems with Markovian parameters,
a system of linear matrix equations arise, known as the coupled algebraic
Lyapunov equations. Like the Lyapunov matrix equations for a deterministic
system, the solution of these equations also involve solving a system of linear
equations, although the linear equation systems resulting from the coupled
Lyapunov equations are considerably larger due to the involvement of the
coupling term.

1.2.5 Optimal Control Design

Another factor in control system analysis and design is how to design and an-
alyze a control system so that it behaves in some optimal way. In particular,
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the algebraic Riccati equations arise from the well-known linear quadratic
regulator (LQR) problem for linear control systems [74] in which the objec-
tive is to find the optimal control feedback gains required to ‘compel’ the
system to behave in some optimal way whilst still maintaining system stabil-
ity. As a real-life example, consider a car travelling on a straight line through
a hilly road [93]: The question is, how should the driver press the accelerator
pedal in order to minimize the total traveling time? Clearly in this exam-
ple, the term control law refers specifically to the way in which the driver
presses the accelerator and shifts the gears. The ”system” consists of both
the car and the road, and the optimality criterion is the minimization of the
total traveling time. Control problems usually include ancillary constraints.
For example the amount of available fuel might be limited, the accelerator
pedal cannot be pushed through the floor of the car, speed limits, etc. For
deterministic systems, when one is concerned with the optimal design of a
controller for a linear system with a quadratic performance index, we have
the well-known LQR problem; in the case of stochastic systems, this corre-
sponds to the linear quadratic Gaussian (LQG) problem. Also, for the case
of stochastic systems, stability analysis and optimal control design for forced
systems with an input matrix give rise to a system of non-linear matrix equa-
tions known as the coupled algebraic Riccati equations. Like the algebraic
Riccati equations for the deterministic counterpart, a system of non-linear
algebraic equations need to be solved to determine the solution matrices, but
the number of equations to be solved is greater because of the coupling term
in the equations. Another name for such a problem is the linear quadratic
optimization problem (see for example [21]).

1.3 The Continuous Algebraic Lyapunov Equa-
tion
The continuous algebraic Lyapunov equation (CALE) [74] is
ATP+ PA=-Q (1.3)
and is related to the n~dimensional continuous-time linear system
x(t) = Ax(t), x(0)==zo
where z, is the initial state. A is an n X n stable matrix in which the real

parts of the eigenvalues of A are negative, () is a given n X n symmetric,
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positive (semi)definite matrix, and P is the unique n x n symmetric solution
matrix of the CALE (1.3). If Q is positive definite, then P is positive definite.
If @ is positive semi-definite, then P is positive semi-definite. If @ is positive
semi-definite then P is positive definite if and only if the pair (4, Q1/2) is
observable, where Q'/2 means the nonnegative square root of the matrix Q.
It is known that the above system is asymptotically stable if and only if for
each positive (semi)definite matrix @ there exists a positive (semi)definite
solution P to (1.3).

1.4 The Continuous Algebraic Riccati Equa-
tion
The continuous algebraic Riccati equation (CARE) [74] is
ATP 4+ PA—- PBBTP =—-Q (1.4)
and is related to the n~dimensional continuous-time linear system
x(t) = Ax(t) + Bu(t), x(0) =z,

where x is the initial state. A is a constant nxn matrix, B is an nxm matrix,
Q is a given n X n symmetric positive (semi)definite matrix, and P is the
unique positive (semi)definite symmetric solution matrix of (1.3). It is well-
known in the literature (e.g., [34]) that the CARE has a unique symmetric
positive (semi)definite stabilizing solution under the assumption that (A4, B)
is a stabilizable pair and (A, C) is a detectable pair, where C € R**" such
that @ = CTC.

1.5 The Discrete Algebraic Lyapunov Equa-
tion
The discrete algebraic Lyapunov equation (DALE) [73] is
P=ATPA+Q (1.5)
and is related to the n-dimensional discrete-time linear system

x(k + 1) = Ax(k), x(0) = o
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where z, is the initial state. A is a n x n stable matrix in which the eigen-
values of A lie within the closed unit circle, Q is a given symmetric positive
(semi)definite matrix, and P is the unique symmetric positive (semi)definite
solution matrix of the DALE. This work will not be directly concerned with
deriving solution bounds of the DALE for a nominal case. However, bounds
for the DALE (both nominal and perturbed) will be obtained as special cases
of the discrete algebraic Riccati equation (DARE).

1.6 The Discrete Algebraic Riccati Equation
The discrete algebraic Riccati equation (DARE) [73] is
P =ATPA - ATPB(I + BTPB) 'BTPA+Q (1.6)
and is related to the n-dimensional discrete-time linear system
x(k + 1) = Ax(k) + Bu(k), x(0) ==zo

where z, is the initial state. A is an n X n constant matrix, B is ann x m
matrix, Q is a given symmetric positive (semi)definite matrix, I, is the iden-
tity matrix of order m, and P is the unique positive (semi) definite solution
matrix of the DARE. It is well-known in the literature that their exists a
unique positive (semi)definite symmetric stabilizing solution of the DARE
under the assumption that (A4, B) is a stabilizable pair and that (4,C) is a
detectable pair, where C' € RP*" such that Q = CTC. By use of matrix inver-
sion formulae [4,25], the DARE (1.6) may be rewritten in the following forms:

(i) If the solution is positive definite, the DARE may be rewritten as:
P=AT(P'+BBTY'A+Q (1.7

(ii) If the solution is positive semi-definite, the DARE may be rewritten as:
P=AY(I+ PBBT)"'PA+Q (1.8)

It is noted that (1.7) can only be employed in the case when the DARE
has a positive definite solution, but not a positive (semi)definite solution.
In addition to the existence conditions, the DARE has a positive definite
solution if at least one of the matrices A or @ is nonsingular, or, at the very
least, if the pair (A, C) is observable.
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1.7 The Continuous Coupled Algebraic Lya-
punov Equation

The continuous coupled algebraic Lyapunov equation (CCALE) [5,69] is

ATP;+ PA; + Y dyPj = —Q; (1.9)
J#s

and is related to the jump linear system
x = A(r(t))x

where A(r(t)) = A; when r(t) = i, A = A; + 3dil € RV, Q; € R"
is a given symmetric positive semidefinite matrix, and ¥, are the unique
positive semidefinite solution matrices of the CCALE (1.9). Here, d;; are
real constants such that d; < 0, d;; > 0 for i # j and ¥ ;csdi; = 0, where
i €S, and S = {1,2,...,n} is a finite set. Different conditions for the
existence of the CCALE solution can be found from [5,69].

1.8 The Continuous Coupled Algebraic Ric-
cati Equation

The continuous coupled algebraic Riccati equation (CCARE) [1,6,13,14,25,76,88]
is
ATP:+ PA; - P.B:B{ P, + Y di;P; = —Q; (1.10)
J#i
and is related to the jump linear system

x = A(r(t))x + B(r(t))u

where A(r(t)) = A; and B(r(t)) = B; when r(t) =i, A; = Ai+1diI € R,
B; € V™, Q; € R " is a given symmetric positive semi-definite matrix,
and P are the unique positive semi-definite solution matrices of the CCARE
(1.10). Here, d;; are real constants such that di; < 0, d;; > 0 for i # jand
Yicsdi; = 0, where i € S, and § = {1,2,...,n} is a finite set. In the
literature, there are a number of different conditions for the existence of
the solutions of the CCARE (1.10). Examples of such conditions can be
consulted from [1,6,76,88].



1.9 The Discrete Coupled Algebraic Lyapunov
Equation

The discrete coupled algebraic Lyapunov equation (DCALE) [22] is
P, = ATFA:i + Q: (1.11)
and is related to the dynamical system
x(k + 1) = A(r(k))x(k)

where fi(r(k)) = A; when r(k) =i, F; = Pi+Y . € P, Ai = \/é}',-/i.- € Rrxn,
Qi € R™*" is a given symmetric positive semi-definite matrix, and P; are the
unique positive semi-definite solution matrices of the DCALE (1.11). Here,
e;; are non-negative constants such that e;; = (&;;/€:) with €;; € [0,1], & >
0,and 3,cg&; =1, wherei € S, and § = {1,2,...,n} is a finite set. Like the
DALE, this thesis will not be concerned with solution bounds of the DCALE
for the nominal case; instead, bounds for the DCALE will be obtained as
special cases of the bounds for the discrete coupled algebraic Riccati equation
(DCARE). However, a solution bound for the DCALE with perturbations in
the coefficients will be derived separately. As before, existence conditions for
the DCALE solution can be found in references such as [22].

1.10 The Discrete Coupled Algebraic Riccati
Equation

The discrete coupled algebraic Riccati equation (DCARE) [2,8,13,14,25,87,88]
is
P, = ATF,A; — ATE;Bi(In+ BT K,B)) ' BT FiAi + Q; (L12)

and is related to the jump linear system
x(k + 1) = A(r(k))x(k) + B(r(k))u(k)

where A(r(k)) = A; and B(r(k)) = B; when r(t) = i, F; = P+ L €, P,
A; € Rv*m B; € ™™, @; € R™™" is a given symmetric positive (semi)definite
matrix, and P, are the unique positive (semi)definite solution matrices of the
DCARE (1.12). Here, e;; are non-negative constants such that e;; = (€ij/€:i)
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with &; € [0,1], &; > 0, and ;e &; =1, wherei € S,and § = {1,2,... ,n}
is a finite set. Like the DARE (1.6), the DCARE can also be rewritten accord-
ing to the matrix inversion Lemma (as seen in [22,58]). There are a number
of different conditions for the existence of the solutions of the DCARE which
can be found in the literature. Examples of such conditions can be found in
[2,8,87,88].

This work will not be concerned with deriving solution bounds of the DALE
and DCALE for a nominal case, although results for the DALE and DCALE
will follow as special cases of the DARE and DCARE respectively, for both
the nominal and perturbed cases. As such, this thesis will not review in
detail existing works on the discrete Lyapunov equations.

1.11 Solution Bounds of Algebraic Matrix Equa-
tions

As has been discussed in both the introduction and abstract, it is either
difficult or even impossible to solve the matrix equations (particularly the
Riccati equations) when the dimensions of the system matrices are high or
become higher. As such, many works have been presented over the past
three decades for deriving lower and upper solution bounds of these equa-
tions, many of which are summarised in [47,71]. Types of bounds include

(1) Eigenvalue bounds including;:

(1.1) extremal eigenvalue bounds (see [11,12,24,27,31,32,45,48,54,59,86,91,92]),
(1.2) eigenvalue summation bounds including the trace (see [13,14,24,27,30,32,
35,39,40,41,42,46,70,77,89}),

(1.3) eigenvalue product bounds including the determinant (see [27,37,38,39,
41,70,85)),

(1.4) norm bounds (see [30,75]).

(2) Matrix bounds (see [9,10,13,14-21,25,26,28,33,34,43,47,49-53,56-58,60-64,
67,72,78-80,86]).

Some of the above references are only examples of such bounds; many of
the proposed bounds for these equations are summarised in [44,71]. Of
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all the types of bounds, the matrix bounds are the most general, since
they can offer all other types of bound mentioned above. Furthermore,
the derived bounds can be applied to deal with control problems involv-
ing the solutions of these equations, such as control problems discussed in
[1-3,6,7,19,20,26,67,73,74,76]. Besides, the full, or rather the exact solution is
not always required; a ressonably tight bound will suffice, particularly when
solving the equation may be difficult. Looking at the literature, it appears
that most of the existing works have presented bounds which are only valid
under some rather restrictive assumptions, which are not common or real-
istic in control problems from which these equations arise. In addition, it
appears that some existing bounds are not as tight as others in some cases,
and the calculation of some bounds are also complex. As such, it is the aim in
this work to seek the existence of solution bounds which can overcome these
drawbacks. Attention will be paid nearly almost on matrix solution bounds,
since they are the most general and can immediately offer all types of eigen-
value bounds mentioned above. The tighter the matrix bound is, the tighter
the corresponding eigenvalue bounds are. It appears that only a minority of
papers in the literature have proposed matrix bounds. Of course, there are a
number of numerical methods in the literature that one may employ to obtain
the exact solution of each equation, as mentioned in [13] and presented, for
example, in [1,2,5,6,36,76,87,88], although reference (18] mentions that they
are usually heavy in terms of their computation, and their efficiency depends
on how close the starting matrix is to the actual solution. Furthermore, as
mentioned in [13], the numerical solution of coupled Lyapunov and Riccati
equations has not been studied as fully in the literature as it has been for
the standard Lyapunov and Riccati equations. In light of the numerical al-
gorithms, it is seen that one application of the solution bounds is that they
might be used as starting values for these algorithms.

To summarise, there are the following motivations for this work:

(1) solution bounds of the equations can be applied to a number of control
applications involving them.

(2) the exact solutions of the equations are sometimes not necessary, but
instead a solution bound will suffice, particularly, when solving the equation
is difficult. Solving the equation may be difficult because of the dimensions
of the system matrices.

(3) the efficiency of numerical solution algorithms depend on how close the
starting value is to the exact solution. The bounds may be used as the start-
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ing value for such algorithms, and could also result in improved efficiency.
(4) many existing solution bounds in the literature have at least one of the
following drawbacks:

(i) they may not be very tight or do not appear to be very tight,

(ii) they have been developed under at least one of the following types of
assumptions: 1) they require restrictions on the coefficient matrices, 2) they
require restrictions on some free variable or matrix involved, and may effect
the tightness of the bound,

(iii) their calculation may be complicated and/or they involve some heavy
computational burden(s).

(5) In addition, it is also mentioned in [58,62] that solution bounds of these
equations can give rough estimates before actually solving them and can pro-
vide a check of whether the solution techniques for them actually results in
valid solutions.

It is the aim that this work will determine new solution bounds that overcome
at least one of the drawbacks of point 4 above. Throughout, the bounds for
the equations are derived on the basis that the equations have a solution.
For some of these equations, existence conditions are discussed, whilst some
conditions for some equations can be consulted from the relevant literature.
Also, throughout this thesis, the trivial lower bound is P > 0, and the trivial
upper bound is P < ool.

Another important factor in this work is comparison of the tightness between
parallel bounds of the same measure. For most of the time, a comparison of
the tightness between parallel solution bounds of the same measure has not
been possible by any mathematical method. When comparing the tightness
between such bounds, the following issues need to be taken into account:

(i) The mathematical form of the bound, such as whether it involves matrix
inverse, matrix eigenvalues, matrix square roots, and so on,

(ii) the involvement of any free parameters and/or matrices,

(iii) the restriction for validity of the bounds; if one bound does not exist
for a case but another does, then there is no point to compare the tightness
between them.

Despite the above, arguments, it is always possible, when the bounds ex-
ist, to make a comparison by numerical examples.
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One example of a real-life application of these solution bounds is in the effect
of the advertisement on the sales in the marketing process and the relation-
ship between inventory and production in the production process, which is
discussed in [63].

1.12 Outline of the Thesis

The remainder of the thesis has the following structure:

Chapter 2 recalls some useful lemmas that are used in the derivation of the
main results. It also reviews existing works on solution bounds for algebraic
Lyapunov and Riccati equations arising from deterministic and stochastic
systems, for both nominal and perturbed cases, and the methodology in de-
riving the main results is also discussed; in particular, the unified approach,
which has been employed in numerous papers in the literature, is also dis-
cussed.

Chapter 3 presents matrix bounds for the continuous and discrete algebraic
Riccati equations when their coefficient matrices are subject to small pertur-
bations. It seems that this is the first time that matrix bounds have been
proposed for such equations.

Chapter 4 proposes new lower and upper matrix bounds for the continuous
algebraic Lyapunov equation, which always work when the CALE solution
exists. In particular, the lower matrix bounds are more concise than many
existing lower matrix bounds, and are also more efficient in their calculation.

Chapter 5 discusses new lower matrix bounds for the continuous algebraic
Riccati equation and new upper matrix bounds for the discrete algebraic
Riccati equation. The new lower matrix bounds for the CARE always work
when its solution exists, and always provide nontrivial lower matrix bounds
for its solution, even when matrix @ is positive semidefinite. The new upper
matrix bounds for the DARE are always calculable when its solution exists,
whilst all existing upper matrix bounds are only valid under conditions ad-
ditional to the usual existence conditions for the DARE solution.

Chapter 6 reports nontrivial lower matrix bounds for the continuous cou-
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pled algebraic Lyapunov equation which are always valid when its solution
exists, a less conservative lower matrix bound for the continuous coupled al-
gebraic Riccati equation, and nontrivial upper matrix bounds for the CCARE
which seem to be the first nontrivial upper matrix bounds to exist for such
an equation.

Chapter 7 derives two upper matrix bounds for the discrete coupled alge-
braic Riccati equation, which provide a supplement to what appears to be
the only existing nontrivial upper matrix bound for the DCARE in the liter-
ature; these bounds also require different validity conditions to the existing
upper matrix bound.

Chapter 8 presents some solution bounds for the continuous and discrete
coupled algebraic Lyapunov and Riccati equations when all their coefficient
matrices are subject to small perturbations. All of these results appear to
be the first results to exist for such equations in this area of research.

Chapter 9 gives some concluding remarks regarding the work of this the-
sis, and also outlines some possible future work as a result of the work that
has been undertaken in this thesis.

Following chapter 9 are an appendix and a list of references. Within the

appendix are a list of presentations delivered and publications made by the
author during the course of this work.
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Chapter 2

Lemmas, Literature Review
and Methodology

In this chapter, some lemmas that will be used in deriving the main results
are recalled. A literature review of existing results in the field is also given,
showing what is lacking with the present body of knowledge, as well as a
discussion of the methodology used in deriving the main results.

2.1 Some Useful Lemmas

In this section, some useful Lemmas shall be recalled that will be used later
in the derivation of the solution bounds for the algebraic Lyapunov and Ric-
cati equations.

Lemma 2.1[4]: For any symmetric matrices X and Y and 1 < 4,5 < n,
the following inequalities hold:

A,’.'_j_n(X + Y) Z AJ(X) + Az(Y) ’I,+] >n+ 1, (21)
)\,‘.,_j_l(X + Y) < )\J(X) -+ )\,(Y) ] +] <n+ 1. (22)

Lemma 2.2[4]: For any symmetric matrix X, the following inequality holds:
An(X) < X < M(X)I. (2.3)

Lemma 2.3[4]: For any positive (semi-) definite n x n matrices X and Y
such that X > Y > (=)0 and any matrix A € R"*™, the following inequality
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holds:
ATXA > ATY A (2.4)

with strict inequality if X and Y are positive definite and A is of full rank.

Lemma 2.4[33]: For matrices A, X,R,Y € V" with R > 0 and X >
Y > 0, the following inequality holds:

AT(I+ XR)7XA>ATI+YR)'YA (2.5)
with strict inequality if A is nonsingular and X > Y.

Lemma 2.5: If a; and b; are real non-negative constants, where i € S
and S is a finite set, then

Za’gb.‘ _<_ (Z a,,-) (E b.) . (26)
ies i€S icS
Proof: As in reference {20}, the proof is quite trivial, so it is omitted.
Lemma 2.6: For the CCARE (1.10), we have the following result:
3> diP < (s—1) max {d;}) P (2.7)

i€S A LJES 7 ics

Proof: The proof is rather easy, so it is omitted.
Lemma 2.7: For the DCARE (1.12), we have the following result:
3 Y eiP < (s—1) max {e5}> P (2.8)

ieS jAi 1IES ics

Proof: Like the proof of Lemma 2.6, the proof of this lemma is also quite
easy, and is hence omitted.

Lemma 2.8[68]: For any X,Y € ™", one has:
M(XY) = MY X) (2.9)

fori=1,2,...,n.
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Lemma 2.9[68]: For any X,Y € R**", one has:

tr(X +Y) = tr(X) + tr(Y), (2.10)
tr(XY) = tr(Y X), (2.11)
tr(XT) = tr(X). (2.12)

Lemma 2.10[4]: Let X,Y € R"*" with Y a symmetric positive semidefinite
matrix. Then

1
(X + XTYix(Y) S tr(XY) < %,\1 (X + XT)e(Y)  (2.13)
From (2.3) and (2.11), one can also deduce that for any X = X7 >0 € R
tr(X?) < [tr(X))2. (2.14)

Lemma 2.11[26]: For matrices A, X, R € ®"*" with R > 0 and X > 0, one
has that
ATI+XR)"'XA< ATR'A (2.15)

with strict inequality if A is nonsingular.

2.2 Discussion of the Solution Bounds De-
rived so far for a Deterministic Nominal
System

Viewing the existing results in the literature, it appears that most of the
proposed lower bounds for the CARE have to asswme that @ is nonsingular
for them to be able to work [10,45,50,51,57,58], otherwise the lower bounds
are not meaningful and/or the lower bounds yield the trivial bound of 0.

For the CALE, many of the existing solution bounds have been developed
under the assumptions that Q > 0, A+ AT < 0 and AQ + QAT < 0, namely
[10,28,39,48,50,51,56,60,78]. Reference [64] developed a lower and an upper
matrix bound for the CALE which are valid under the assumption that A is
a diagonalizable matrix. References [72,86] also developed concise lower and
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upper matrix bounds for the solution of the CALE. These bounds are always
calculated if the solution of the CALE exists and they do not involve any tun-
ing parameter or matrix, although computation of these bounds seem very
heavy and complicated. Furthermore, references [77,79,80] also presented so-
lution bounds for the CALE, some of which are also always calculable if the
CALE solution exists. In particular, the upper bounds proposed in [80] do
not involve any tuning parameter or matrix.

For the DARE, many of the existing solution bounds have been developed
under the assumptions that Q and BBT are nonsingular [43,47,53,57]. Some
bounds have been developed under assumptions such as A is nonsingular
[9], A is a d-stable matrix [33], or some inequality involving the eigenvalues
and/or singular values of the systems matrices must be satisfied, such as in
[26,52,63,67]. However, a lower matrix bound was developed for the DARE
in [33] which does not need any condition for satisfaction, except for the
usual existence conditions for the DARE solution.

In particular, the assumptions @ > 0 and BBT > 0 are not common in
many control problems because the number of state variables is greater than
the number of inputs, and @ is generally a positive semi-definite matrix,
rather than a positive definite matrix.

Following the above analysis of the literature, the following conclusions can
be drawn for the algebraic Lyapunov and Riccati matrix equations arising
from deterministic nominal systems:

(i) No lower and upper matrix bounds for the CALE exist that are always
calculated when its solution exists and which are also efficient in their calcu-
lations.

(ii) It appears that all existing lower matrix bounds derived for the CARE in
the literature have to assume that @ > 0 for them to work. This is restric-
tive, since @ is generally a positive semidefinite matrix. As such, the lower
matrix bounds reported in [10,45,50,51,57,58] cannot work for this case.
(iii) All upper matrix bounds for the DARE have been developed under as-
sumptions additional to the usual existence conditions for its solution.

Following this survey of the literature, the thesis addresses:

(i) The derivation of the lower and upper matrix bounds for the CALE that
not only always work when its solution exists, but are also more concise and

19



less computationally complex to calculate,

(ii) The derivation of lower matrix bounds for the CARE that can be applied
to the case when @ is positive semidefinite, as well as when @ is positive
definite,

(iii) The derivation of an upper matrix bound(s) for the DARE that always
works if its solution exists. This bound(s) may be tightened successively by
Fsmg] )t)he DARE (after applying the matrix inversion Lemma (see for example
4.261)).

2.3 Discussion of the Solution Bounds De-
rived so far for Deterministic Perturbed
Systems

Fewer works have focused on the estimation of solution bounds for the ma-
trix equations with perturbations in the coefficients than that for nominal
systems. There are a number of papers in the literature (such as [87] and the
references therein) that study the sensitivity of the solutions of Lyapunov
and Riccati equations when their coefficients undergo small perturbations;
however, these works merely assess how much the perturbations effect the
solution, rather than what the perturbation of the solution is. In this work,
we are interested in seeking bounds on the perturbation of the solution of
the equation, like that which has been done in [81-84]. Often in practical
situations involving these equations, only rough values of the coefficient ma-
trices are available, so they are perturbed versions of their actual values.
Because of this, the solution matrix is also perturbed. References [81-84]
derived some solution bounds of the Riccati equations when their coefficients
undergo small perturbations, but have to assume that the perturbation AP
is symmetric non-negative definite, which is restrictive, because although P
and P+ AP are symmetric non-negative definite, it does not imply that AP
is symmetric non-negative definite, only that it is symmetric. Furthermore,
it seems that nearly all of the proposed bounds are norm bounds, whilst
[82,83] present some trace bounds.

Therefore, this thesis derives new solution bounds for the matrix equations

under perturbations in the coefficients without the need for the assumption
that AP is non-negative definite, only that it is symmetric.
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2.4 Discussion of the Solution Bounds De-
rived so Far for Stochastic Nominal Sys-
tems

Surveying the literature, there appear to be very few works that focus on
the estimation problem for Lyapunov-type and Riccati-type matrix equa-
tions arising from stochastic systems. In fact, it appears that only references
[13,14,25,61] have focused on this problem. Unlike the Lyapunov and Riccati
matrix equations for a deterministic system, these equations are a system
of matrix equations. In [13], lower bounds for the eigenvalues and a lower
bound for the solution matrix of the unified coupled Riccati equation are
presented. In the limiting cases, bounds for the CCARE and DCARE are
then obtained. The trivial bound P, > 0 is obtained for the CCARE, whilst
a nontrivial lower matrix bound is obtained for the DCARE, which has to
assume that 1 — ez > 0. In [25], a lower and an upper matrix bound are
obtained for the UCARE. Using these bounds for the UCARE, bounds for
the CCARE and DCARE are obtained as limiting cases of the UCARE. The
trivial bounds P; > 0 and P; < ool are reported for the CCARE. For the
DCARE, a nontrivial lower matrix bound is developed, and an upper matrix
bound for the DCARE is developed, but has to assume that matrix B;B7
is nonsingular for all i € S. Recently, an improved lower matrix bound was
proposed in [61]. For the DCARE, a lower matrix bound is obtained which
improves the assumption of [13], but it seems that the bound only works if
Q; is positive definite or if 02(A;) > 1, which contradicts the authors’ claim
that the bound is improved, since a less restrictive bound for the DCARE
already exists in [25], which does not need any condition for satisfaction and
is also more straightforward in its calculation. However, one advantage of
this work is that a lower matrix bound for the CCARE is developed which
is nontrivial when @; > 0, but not nontrivial when @ > 0. In [14], upper
bounds for the maximal eigenvalue and eigenvalue summations are derived
for the UCARE, which are then used to infer upper bounds for the CCARE
and DCARE. The drawback of these bounds is that it has to be assumed that
B;BT is nonsingular. Also, the calculation of the bounds derived in [13,14]
seem somewhat complicated.

For the CCALE and DCALE, it appears that the only existing solution
bounds for their solution are those bounds which already exist for the CCARE
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and DCALE, since the Lyapunov equations are special cases of the Riccati
equations with B; = 0. The lower matrix bounds proposed in [13] and [14]
give the trivial lower bound P; > 0 for the CCALE. The lower matrix bound
for the CCALE derivable from the CCARE in [61] is meaningless, as is the
lower bound for the DCALE. Furthermore, the upper bounds for the CCALE
and DCALE obtainable from the upper bounds for the CCARE and DCARE
in [14] become meaningless, since we then have B; = 0.

Following the above examination of existing results, the following conclu-
sions can be drawn for the coupled Lyapunov and Riccati equations:

(i) only one nontrivial lower bound exists for the CCARE, and is only non-
trivial when @; > 0,

(ii) no nontrivial upper matrix bound exists for the CCARE,

(iii) only one nontrivial upper matrix bound exists for the DCARE, which
has to assume that B;B7 is nonsingular,

(iv) only two upper eigenvalue bounds exist for the CCARE and DCARE,
both of which have to assume that B;BY is nonsingular,

(v) there does not exist any nontrivial lower matrix bound for the CCALE,
(vi) there do not exist any upper solution bounds for the CCALE and
DCALE.

Therefore, the thesis presents a:

(i) derivation of a nontrivial lower matrix bounds for the CCARE when
Q@ >0, and when Q > 0,

(i) derivation of nontrivial upper matrix bounds for the CCARE,

(iii) derivation of less restrictive upper solution bounds for the DCARE,

(iv) derivation of further upper eigenvalue bounds for the CCARE and DCARE,
which are possibly tighter, possibly less restrictive, and more concise (and
possibly easier to calculate),

(v) derivation of nontrivial lower matrix bounds for the CCALE,

(vi) derivation of upper solution bounds for the CCARE and DCARE.
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2.5 Discussion of the Solution Bounds De-
rived so far for Stochastic Perturbed Sys-
tems

Like the deterministic counterpart, often only estimates for the values of the
system matrices are available, so the system matrices we obtain are per-
turbed versions of the actual ones. As such, the coefficient matrices of the
coupled Lyapunov and Riccati equations also become perturbed, and as a
result their solution matrices also become perturbed. Viewing the literature,
it seems that no works have discussed bounds for the solutions of coupled
algebraic Lyapunov and Riccati equations when their coefficients are subject
to small perturbations.

Therefore, the thesis derives some simple solution bounds for the coupled
algebraic Lyapunov and Riccati equations when their coefficients undergo
small perturbations.

2.6 Methodology

Solution bounds for the matrix equations take the form of matrix and eigen-
values inequalities. As such, matrix theory and inequalities regarding sym-
metric and non-negative definite matrices will be used to aid in deriving the
solution bounds proposed in this thesis. In some case, some additional scalar
inequalities and facts will also be used. These have been discussed in the
first section of this chapter. Furthermore, nearly all proposed bounds in this
thesis will be matrix bounds, since they are the most general type of bound
and can immediately imply all types of eigenvalue bounds.

2.7 Solution Bounds by means of the Unified
Approach

In the literature, there are a number of works that have derived solution
bounds of Lyapunov and Riccati matrix equations for deterministic and

stochastic systems by means of a unified approach. Examples of such works
can be found in [11-14,25,44,57,59-61]. Basically, the corresponding equations
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(e.g., the continuous and discrete Lyapunov equations for a deterministic sys-
tem) are unified by a single equation. For the Lyapunov equations (1.3) and
(1.5), the following unified algebraic Lyapunov equation (UALE) has been
utilized [60]:

ATP 4+ PA+AATPA+Q =0 (2.16)

where A is a constant. When A = 0, the UALE (2.16) becomes the CALE
(1.3). When A = 1 and A is replaced by A — I, the UALE (2.9) becomes
the DALE (1.5). In addition, solution bounds for the CALE and DALE have
also been obtained as limiting cases of the so-called ‘generalized Lyapunov
equations’ in [56,66].

Similarly, the following unified algebraic Riccati equation (UARE) has been
employed [57,59] in the past:

ATP+PA+AATPA—(AA+I'PB(I+ABTPB)'BTP(AA+I)+Q =0

(2.17)
The CARE and DARE are unified by the UARE (2.17) in the same way
that the CALE and DALE are unified by the UALE (2.17) respectively. In
the literature [57,59,60], it has been seen that the UALE and UARE have
provided solution bounds for both the continuous and discrete Lyapunov and
Riccati equations that already existed in the literature, as well as being able
to provide some new results in some cases [57,60]. However, the use of this
approach has resulted in some somewhat conservative results for the CARE
(and for the CCARE in the stochastic case), as can be seen in [13,25,57,61].
As such, this approach will not be used in the derivation of the main, con-
tributable results; instead the continuous and discrete equations will be dealt
with separately.

24



Chapter 3

Solution Bounds for Perturbed
Continuous and Discrete
Algebraic Riccati Equations

In this chapter, solution bounds for the continuous and discrete Riccati equa-
tions will be derived when their coefficient matrices undergo small pertur-
bations, with the perturbation in @ being symmetric. This problem is of
particular importance, since often in control problems involving the solution
of the Riccati equations, only approximate values of the coefficient matri-
ces are available, so they are perturbed versions of the actual ones. As a
consequence of these perturbations in the coefficient matrices, the solution
of the equation also becomes perturbed, so it becomes of interest to esti-
mate the disturbance range for the solution of the equation. Viewing the
literature, it appears that few works have been presented for deriving solu-
tion bounds of the Riccati equations when their coefficient matrices undergo
perturbations [81-84]. Furthermore, it seems all of the works in this field
have been concerned only with bounds for the norm of the perturbation in
the solution when the coefficient matrices are subject to small perturbations
subject to small perturbations, rather than bounds on the perturbations; see
for example [84] and the references therein. In this chapter, bounds for the
perturbation of the solution of the continuous and discrete Riccati equations
will be derived when their coefficient matrices undergo perturbations. The
obtained bounds will use the same ideas that have been used for a nominal
system by researchers in the past, i.e., what researchers did to get bounds for
nominal systems will be done to get bounds for perturbed systems. The con-
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tinuous and discrete Lyapunov equations will not be dealt with separately,
since they are special cases of the respective Riccati equations when B = 0
and A is stable. Finally, it is noted that the results obtained by other re-
searchers for Lyapunov and Riccati matrix equations for nominal systems are
not directly applicable to the case of perturbed systems.

3.1 Matrix Bounds for the Perturbed Con-
tinuous Algebraic Riccati Equation

In this section, upper matrix bounds for the perturbation of the solution of
the continuous algebraic Riccati equation are derived when one, or all of its
coefficient matrices undergo small perturbations. The bounds derived will
use the same ideas and approaches that other researchers used to get results
for the Lyapunov and Riccati equations for a nominal system. The results
that follow in this section can also be found in {15].

Consider the perturbed CARE:

(A+AA)T(P+AP)+(P+AP)(A+AA)—(P+AP)(R+AR)(P+AP) = —(Q+AQ)
3.1)

where R = BBT and AR = B(AB)T + (AB)BT + (AB)(AB)T. Matrices 4,

Q, R and P have the same meaning as the CARE for a nominal system. Here

AA is an n X n matrix which is the perturbation in AA, AB is n x m matrix

which is the perturbation in B, AQ is a n x n symmetric matrix which is

the perturbation in @, and AP is an n x n symmetric matrix which is the

perturbation in the solution P. Since AQ is a small perturbation, it will be

assumed, without loss of generality, that Q@ + AQ > 0.

Expanding out (3.1) and using the CARE (1.4) gives

LTAP + APL — AP(R+ AR)AP =-M (3.2)
where
L=A+AA-(R+AR)P (3.3)
and
M = (AA)TP + P(AA) — P(AR)P + AQ. (3.4)
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It is noted that @ + AQ > (=)0 implies P + AP > (=)0, but not neces-
sarily that AP > (=)0. However, AP is a symmetric matrix. Since the
perturbations are small, it is also assumed, without loss of generality, that
(A+AA, B+AB) is a stabilizable pair, (A+AA, (C+AC)'/?) is a detectable
pair, and A+ AA — (R+ AR)(P + AP) is an asymptotically stable matrix,
so the solution P+ AP of (3.1) is a unique, non-negative definite, symmetric
stabilizing solution. As such, the solution AP of (3.2) will also be unique, as
AP = (P+ AP) — P. If, in addition, M is non-negative definite then AP is
also non-negative definite, where M is defined by (3.4).

In the following theorem, derive an upper matrix bound for the perturbation
AP in the solution of the perturbed CARE (3.2) will be derived.

Theorem 3.1: Define
Wi=L—-a(R+AR)-1 (3.5)

where « is a positive constant and L is defined by (3.3). Let AP be the
symmetric solution of the perturbed CARE (3.2). If there exists a scalar a
such that

L+ LT <2a(R+ AR) (3.6)

then AP has the upper bound
AP < WiT (w[(Wh + D)Wy + D)+ I+ M + (R + AR)) Wi = OPeur
(3.7)
where the constant 1 is defined by
M{WTIM + o?(R+ AR)W; '}
1= M{WT (W + YW + D+ W}

w (3.8)

1l

Proof: Define a positive semi-definite matrix ¢; as:

&1 = (AP — aI)(R+ AR)(AP — al)
= AP(R+ AR)AP — aAP(R+ AR) — (R+ AR)AP + o*(R+ AR) > 0.
(3.9)

Substituting the perturbed CARE (3.2) into (3.9) leads to:
[L - a(R+ AR)]JAP + AP|L—a(R+ AR)|+ M +o*(R+AR) 2 0. (3.10)
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Via the matrix identity
WTAPW, = (Wi + DT AP(W +1)~[L—a( R+ AR)AP-AP[L-a( H+AR)|+A)
where W, is defined by (3.5), (3.10) can be rewritten as

WTAPW, < (Wi +I)TAP(W, + 1)+ AP+ M +o*(R+ AR).  (3.11)

Along the lines of the proof of Theorem 1 of [59], it is seen that if the condition
(3.6) is met, then V is nonsingular, and we then have from (3.11) that

AP s WTT[(Wi + DTAPW + 1) + AP + M + o*(R+ AR)W. (3.12)
Applying (2.3) to (3.12) gives
AP < Wi [(Wh + DT(Wy + I) + I WA (APH+WIT [M + o*(R + AR)| Wi,

(3.13)
Introducing (2.2) to (3.13) gives

M(AP) < M {WiT [(Wh+ DT (W + 1) + 1| W (AP)
+WiT [M +o*(R+ AR)| Wi}
< 0 {WrT (W + DT (Wh+ 1) + 1wt} am(AP)+
M {WiT [M +o*(R+ AR)| Wi} (3.14)
From (3.14), one has

MAP) [1 =2 (W7 [+ DT W+ D+ W] <
M {W;T [M + (R + AR)] Wi ‘} -
(3.15)

To ensure that we obtain a valid upper bound, we require

M A{WT (W + DT W+ 1) + Nwih <1

= WiT[Wi+DTWi+1)+ Nwit<I
= (Wl +I)T(W1 +I) +I< W1TW1
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= WIWi+Wi+WT+1+1<wWiw,
L—-af(R+AR)—I+ LT —a(R+AR)—1+2I<0
L+ LT < 20(R+ AR).

Therefore, it can be seen that if the condition (3.6) is met, then
M{WTT [(Wh+ DT Wi+ D+ I Wit} < 1
As such, it is found from (3.15) that

M {WrT M + o*(R+ AR Wi}

MAPY SR (WiT Wi+ IFWa+ D+ QW)

(3.16)

Substituting (3.16) into (3.13) results in the upper bound (3.7). This com-
pletes the proof of the theorem.

Following Theorem 3.1, an iterative algorithm can be proposed for obtaining
tighter upper matrix bounds.

Corollary 3.1: The following algorithm can obtain tighter upper matrix
bounds for the perturbation in the solution of the perturbed CARE (3.2).

Step 1: Set Xp = AP,,;, where AP, is defined by.
Step 2: Compute

Xirr = Wi T (W1 + DT X (Wh + 1) + X+ M + (R + AR) W k=0,1,.
Then X; are also upper bounds for the solution of the perturbed CARE((:;12’;)
Proof: Setting k = 0 in (3.17) gives
X, =Wy T (Wh+ DT Xo(Wh + I) + Xo+ M + o*(R+ AR))Wit. (3.18)
Applying (2.3) to (3.18) gives
Xi < WiT (W + DT(Wh + 1) + [ (Xo) + M + o*(R+ AR)) W(;l. |
3.19
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By employing the definition Xy = A#,;, the expression for w; in Theorem
3.1 and (2.2), it is found from (3.19) that

M(Xo) < M (W™ (wnl(Wh + )T (W + I) + I+ o*(R+ AR) + M) Wi}
< M {WET ([0 + DTWa + D + D) Wit o+ M {WiT [03(R + AR) + M| Wy}

= {1 _M{WTIM + AR+ ARV}

wh

} wi+ M {WT T [M+a?(R+AR) W'} = wy.

(3.20)
Using (3.20), (3.19) becomes

X1 < WT ([(Wh + DT(Wh + 1) + Dwy + M + o*(R+ AR)) Wi = Xo.
Now, assume that X; < X;_;. Then

X1 = Wi ([(Wh + DT Xe(Wy + 1) + Xi] + M + o*(R+ AR)) Wi
< Wi ([(Wh + DT Xeea(Wh + I) + Xea] + M + o*(R+ AR)) Wi = X,

By mathematical induction, it can be concluded that X, < X3 < ... <
X1 < Xp- This completes the proof.

Remark 3.1: Theorem 3.1 gives an upper matrix bound for the pertur-
bation of the solution of the CARE when all coefficient matrices undergo
perturbations. For the cases when only one of the coefficient matrices un-
dergo a perturbation, the corresponding perturbed CARE is obtained from
(3.2) by setting the perturbations in the other coefficient matrices equal to
zero. Then, the upper matrix bound is obtained in the same way. For the
case when only the matrix A has a perturbation, the perturbed CARE is

NTAP + APNT — APRAP+ 5, =0 (3.21)

where Ny = A+ AA— RP and §; = (AA)TP + P(AA). Define W; =
N; — aR — I, where « is a positive constant. If S; > 0 and there exists some
a such that

N; + N]T < 2aR

then the solution AP of (3.21) has the upper bound
AP < W;T (wn|(Wa+ 1T (Wa + D) + I+ o’R + S1)W;'= APy
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where the positive constant ws is defined by:

= M {Wz—T [S1 + o*(R+ AR)] W2-1}
TN (W (W + DFWa + D+ W5}

a2

Also, Corollary 3.1 gives an iterative algorithm which can obtain tighter up-
per matrix bounds for the perturbation in the solution of the CARE when all
coefficient matrices are subject to small perturbations. For the cases when
only one of the coefficient matrices undergo a perturbation, the iterative al-
gorithm for the case is obtained by setting the perturbations in the other
coefficient matrices equal to zero. For the case when only the matrix A has
a perturbation, the iterative algorithm for obtaining more precise estimates
is as follows:

Step 1: Set Xo = Pul-
Step 2: Compute

Xenn =Wy T (Wa + DTXe(Wa+ 1)+ Xe + 0?R+ ) Wyt k=0,1,...
Then X are also upper bounds for the solution of (3.21).

For the individual cases of R or @ only having perturbations, the corre-
sponding matrix bounds and algorithms are obtained from the general case
for all perturbations in the same way that the matrix bound and algorithm
are obtained for the case when only A has a perturbation.

Corollary 3.2: When R = 0 and A is a stable matrix, the CARE (1.4)
becomes the CALE (1.3). By setting R = 0 and AR = 0 in (3.2), the
perturbed CALE is:

(A+ AA)TAP + AP(A+ AA) + (AA)TP+ P(AA) + AQ =0. (322)

Upon setting R = 0 and AR = 0 in (3.7), we have the following upper matrix
bound for the solution of the perturbed CALE (3.21) when both coefficient
matrices A and @ are subject to small perturbations:

AP < (A+AA-I)T (wsl(A+ DAY (A+ AA) + 11+ (AA)TP + P(AA)+
AQ)(A+AA -1}
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where the constant wg is defined by
M {(A+AA-D)T[(AATP + P(AA) + AQ] (A+AA-I)}
T1-M{A+AA-DT[(A+AAT(A+ AA) + I (A+AA-I)1}

This bound exists if A+ AT + AA+ (AA)T < 0. Since AA is a small pertur-
bation in A, it may be assumed, without loss of any generality, that A + AA
is also stable.

w3

Similarly, setting B = 0 and AR = 0 in the iterative algorithm of Corol-
lary 3.1 gives an iterative algorithm that can be used to obtain tighter upper
matrix bounds for the perturbed CALE.

Following the above results, a different upper matrix bound for AP is ob-
tained as follows.

Theorem 3.2: If there exists a positive constant a such that condition
(3.6) is met, then the solution AP of the perturbed CARE (3.2) satisfies the
inequality

AP < Wi (wy(Wh +2D)T(Wh + 21) +2[M + o*(R+ AR)) W' = APous
(3.23)
where the constant w; is defined by (3.8).

Proof: Using the definition of W, (3.10) can be rewritten as
Wy + I\TAP + AP(Wy+ 1)+ M +o*(R+AR) 2 0

= WTAP+APW,+2AP+ M +d*(R+AR) >0
= 2WIAP 4 2APW,+4AP+2[M +o*(R+AR)] 20 (3.24)
Adding WT PW, to both sides of (3.24) gives

WTPW, < WIPW,+2WT AP+2APW,+4AP+2[M+a?*(R+AR)] (3.25)
Using the matrix identity

(W, + 21T AP(W, + 21) = W] PW, + 2W[ AP + 20 PW) +44AP
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(3.25) becomes
WIAPW, < (W, + 2I)TAP(W, + 2I) + 2[M + o*(R + AR)]  (3.26)

With the satisfaction of (3.6), W; is nonsingular, and we have from (3.26)
that

AP S WiT (Wi + 2D)TAP(W, + 2I) + 2[M + o*(R+ AR)) Wit (3.27)
Introduction of (2.3) to (3.27) gives:

AP < WiT (M (APYW; + 21T (W + 21) + 2[M + o®(R + AR)])) Wyt
(3.28)
Application of (2.2) to (3.28) gives:
M{AP} < M {WrT (M(AP)Y Wy + 2I)T(W; + 21) + 2[M + o*(R + AR)) W'}
<A\ (AP)Al{Wl_—T(Wl + 2I)T(W1 + ZI)WI_I} + 2A1{W1—T[M + aZ(R + AR)]WI_I}
(3.29)
From (3.29), it is found that

M(AP) 1=\ {W T +2D)T (Wi +2DW Y < 220 {W T [M+a?(R+AR)W; !}
(3.30)
To ensure that valid upper bound is obtained, it is required that

M{WTTW + 20T (Wh +2D)W 1 < 1
= WTWi+2D)TW, +2DW;T < I
W{IW, + 2W; + 2WT + 41 < WTW,
L+ LT <2a(R+ AR)

Therefore, it can be seen that if condition (3.6) is satisfied, then A\, {W; (W, +

2T (W, + 2D)Wi'} < 1.

Therefore, (3.30) implies that

2M{WiTIM + o*(R+ AR)W; '}
MW T (Wh + 20T (W, + 2DWi T}
M AWTT M + o?(R+ AR Wi}

= = W

1= WoT (W + DTW + D+ W'}

M(AP) <

(3.31)
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Substituting (3.31) into (3.28) leads to the upper bound (3.23). This com-
pletes the proof of the theorem.

Following Theorem 3.2, the following iterative algorithm can be proposed

for obtaining tighter upper matrix bounds for the solution of the perturbed
CARE (3.2).

Corollary 3.3: The following algorithm can obtain tighter upper matrix
bounds for the solution of the perturbed CARE (3.2).

Step 1: Set Xg = AP, where AP, is defined by (3.23).
Step 2: Calculate

X1 = WT[(W1+2D)T X (Wi +2D)+2(M+o2(R+AR)WT! k=0,1,2,...

Then X} are also upper bounds for the solution of the perturbed CARE
(3.2).

The proof of this algorithm is similar to that of the first algorithm, and is
therefore omitted.

Remark 3.2: Theorem 3.2 and Corollary 3.2 give respectively an upper
matrix bound and an iterative algorithm for the perturbation of the so-
lution of the CARE (3.2) when all its coefficient matrices undergo small
perturbations. For the case when only one coefficient matrix undergoes a
perturbation, the corresponding perturbed CARE, upper matrix bound, and
iterative algorithm for obtaining better bounds, is obtained in the same way
as in Corollary 3.1.

Remark 3.3: Theorem 3.2 and Corollary 3.2 give respectively an upper
matrix bound and an iterative algorithm for the solution of the perturbed
CARE (3.2) when all its coefficient matrices undergo small perturbations.
When R =0, AR =0, and A is a stable matrix, an upper matrix bound and
an iterative algorithm for the solution of the perturbed CALE (3.21) when
both of its coefficient matrices undergo small perturbations are obtained from
Theorem 3.2 and Corollary 3.2 respectively.
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Remark 3.4: It is seen from (3.7) and (3.23) that

APoruz = Wi Tlun (W + NT(Wy + )T + M + 02 (R + AR) + wy,(WT + W, + 2I)
+M + (R + AR)W;?
= APory1 + Wi T[wn (W + Wy + 2I) + o*(R + AR) + MWt

As such, if [wi (W] + Wi +2I) + 0?(R+ AR) + M] > 0 then the bound (3.7)
is tighter than the bound (3.23), whereas if [wy (WT + W, + 2I) + o2(R +
AR) + M] < 0, then the bound (3.23) is more precise than the bound 3.7).

Remark 3.5: If R > 0 and AR is a small perturbation, without loss of
any generality, we still assume that R+ AR > 0. If R+ AR > 0 then there
must always exist some positive value of a such that condition (3.6) holds,
and so the bounds will always exist when R + AR > 0. The bounds will
also work for the case when R+ AR > 0, if the condition (3.6) is fulfilled.
Viewing the literature, there appear to be no available matrix bounds for the
solution of the CARE when its coefficient matrices undergo perturbations.
It should also be noted, for the case of perturbation bounds, that matrix
bounds are the most general type of solution bound, since they can offer
all other types of solution bounds. Therefore, this work is an improvement
over existing works on the topic of solution bounds for the perturbed CARE.
These bounds can also provide a supplement to existing works.

Remark 3.6: The following procedure can be used to test the satisfac-
tion of the condition (3.6).

Step 1: Select a to be a sufficiently small positive constant and 3 to be a
suitable positive constant.

Step 2: Compute \;(20(R+ AR) ~ L ~LT) fori=1,2,...,n.

Step 3: If \;(2a(R+ AR)— L — LT) > 0 for all i, then the condition (3.6) is
met and this procedure can then be stopped; otherwise, set a = a + 8 and
go to Step 4.

Step 4: If « is sufficiently large, then stop and give up this procedure, else
go to Step 2.

An alternative way of testing the positive definiteness of the matrix 2a(R +
AR)— L~ LT to the above procedure is to use the determinant criterion [68]
for a positive (semi)definite matrix. Furthermore, to reduce computational
efforts, one may choose a = 1 for checking the condition (3.6) and computing
the bounds (3.7) and (3.23).
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3.1.1 Numerical Example

In this section, a numerical example will be given to show the effectiveness
of the obtained bounds and algorithms for the perturbation of the solution
of the perturbed CARE (3.2).

Consider the CARE (1.4) and perturbed CARE (3.2) with (adapted from
[54, Example 1}):

e[t ] o=[3] 0= 5]

_[ oo008 o _ [ 0.0023 _[-0002¢ 0
A’4‘[—0.0012 0.0015]’ AB“[ 0 ] AQ‘[ 0 —0.0032]

Then the positive definite solution of the CARE (1.4) is:

p [ 1.3938 0.2456
exact = | 02456 1.1758

With a = 1, the condition (3.6) is satisfied, and the bounds AP.,; and AP,
provide the following upper matrix bounds for the solution AP of (3.2):

APm:[ 02192 —0.0034 0.2914 —-0.0066]

—0.0034 0.2011 ] AF °’"“2=[—0.0066 0.1824

For this case, it is seen that AF,,; is tighter than AF,,;. Using three iter-
ations of the algorithm of Corollary 3.3 leads to the following tighter upper
matrix bounds for the solution AP:

¥ _ | 02836 —0.0109 ]
7| —0.0109 0.1515 |’

%, . | 02768 -0.0141 ]
27| —0.0141 01259 |’

[ 0.2708 —0.0164 ]
| —0.0164 0.1046 |-

Clearly, as more iterations are carried out, the bounds become tighter.

X =
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3.2 Matrix Bounds for the Perturbed Dis-
crete Algebraic Riccati Equation

In this section, derive matrix bounds for the perturbation of the solution
of the discrete algebraic Riccati equation are derived when one, or all of its
coefficient matrices undergo small perturbations. The bounds derived will
use the same ideas and approaches that other researchers used to get results
for the Lyapunov and Riccati equations for a nominal system.

Consider the perturbed DARE:
P+ AP = (A+ AA)T[I + (P + AP)(B + AB)(B + ABYT]"{(P + AP)

x(A+AA)+(Q+AQ) (3.32)

where each coefficient matrix involved has the same meaning as for the per-
turbed CARE in section 3.1. Here, this equation cannot be as simply ex-
panded as in the perturbed CARE, because the equation is more complicated.
Instead, the perturbed DARE (3.32) will be dealt with in its present form.
Since AQ is a small perturbation, it will be assumed, without loss of gen-
erality, that Q + AQ > 0. Also, it is noted that @ + AQ > 0 implies that
P+ AP > 0. By extending the method of [67], an upper matrix bound
for the perturbation AP in (3.32) will be derived as follows. Following this,
a lower matrix bound for the perturbation of the solution in the DARE is
presented by following the approach of [33].

For brevity throughout, we shall denote A; = A+ AA, D, = (B+AB)(B+
AB)T and @, = Q + AQ.

Theorem 3.3: Let P + AP be the positive semidefinite solution of the
perturbed DARE (3.32). If b, > 0, then AP has the upper bound

P+ AP =AT[I + (P + APyD)|"Y(P+ AP) A, + @, (3.33)
where the positive semidefinite matrix AP, is defined by
(P+ AP), = AT|o7' T+ D1t A1+ @y (3.34)

and the positive constant a; is defined by

a; = f(ah b1, C1)
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with
a; = 1-—- A]_[A{Al + AI(DI)QIL
by = 2\[AT(B + AB)(I + A(Q1) D))~ (B + AB)Ay]
a = 2M(Q1)
Proof: Applying (2.3) and (2.5) to (3.32) gives
P+AP S MP+APYATL + M (P + APYD A + @ (3.35)

Application of (2.3) and (2.5) to (3.35) leads to

P+ AP < ) (P + AP)AT{I — \(P + AP)(B + AB)[I + \,(P)(B + AB)”
(B+ AB)|"Y(B+ AB)T}A: + @1
= AP+ APYATA, — X}(P + AP)AT(B + AB)[I + \(P + AP)(B+ AB)T

(B+AB)| Y (B+AB)TA; +@Q: (3.36)

Using the fact that (B + AB)T(B + AB) < 0%(B + AB)I from (2.3), it is
found from (3.36) that

P+ AP < M\ (P+ AP)ATA; — X3P + AP)ATB[1 + M (P + AP)o?(B+ AB)] ™

(B+AB) A, + @ (3.37)
Multiplying both sides of (3.37) by [1 + Ai(P)o?(B)] results in

(P + AP)1 + M(P + AP)o(B + AB)) < M (P + AP)[1+ M(P + AP)
03(B + AB)|ATA; — X3(P + AP)AT D1 Ay + [1 + Mi(P + AP)o}(B + AB)jQ: (3.38)

Introducing (2.1) to (3.38) leads to
(63(B + AB) — Mi[0}(B+ AB)AT A; — ATDiA)) (P + AP) + [t — M[AT A+

o}(B+ AB)Qi|M(P+AP) — \(@Q1) £0 (3.39)
Solving the inequality (3.39) leads to

/\1(P+ AP) < f(a1,b1,61) if b1 >0 (340)
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Substituting (3.40) into (3.35) and subtracting P leads to (3.34). Substitut-
ing (3.34) into (3.32) and subtracting P from both sides results in the bound
(3.33). This completes the derivation of the bound, and hence the proof of
the theorem.

Reference [33] proposed a lower matrix bound for the solution of the DARE
(1.6) which is always computable if its solution exists. Here, the work of
[33] will be extended to derive a similar lower matrix bound when the coeffi-
cient matrices of the DARE undergoes small perturbations. Since the matrix
(A+AA)T[I4(P+AP)B+AB)(B+AB)T|"(P+AP)(A+AA) is positive
semi-definite, one has from (3.32) that P + AP > Q + AQ. Combining this
fact with (2.5) leads to the following lower matrix bound for the solution
P + AP of the perturbed DARE (3.32):

P+ AP > (A+ AA)T(I + (Q + AQ)(B + AB)(B + AB)T]"Y(Q + AQ)(A + AA)

+HQ+AQ)=(P+ AP)41 (3.41)

The following algorithm can obtain tighter lower matrix bounds for the so-
lution of the perturbed DARE:

Algorithm 3.3:
Step 1: Set Xo = (P + AP);.
Step 2: Calculate

Xir1 = (A+AA)TI+X(B+AB)(B+AB)T) X (A+AA)+Q+AQ), k=0,1,...

Then X, are also lower bounds for the solution of the perturbed DARE
(3.32). At each iteration, AP > X — P.

Remark 3.3: When B = 0 and A is a stable matrix, the DARE (1.6)
becomes the DALE (1.5). As such, the bounds (3.33) and (3.41) becomes
the following solution bounds for the DALE when its coefficient matrices are
subject to small perturbations:

M(Q+ AQ) T _
AP < 1—0?(A+AA)(A+AA) (A+AA)+Q+ AQ - P,

AP > (A+AA)T(Q+AQ)A+AA)+(Q+AQ)~-P.
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3.2.1 Numerical Example for the Perturbed DARE

In this subsection, a numerical example is considered to show the eflective-
ness of the obtained lower bound when the coefficient matrices of the DARE
undergo small perturbations.

Consider the perturbed DARE (3.32) with (Example 1 from [67]):

1 01 02 0.5 50 1
A=]03 0 -01|,B=|1]|,Q=]|041

0 04 01 1 113
[ —0.002 0.0002 0.0004 0.0007
AA=|-00004 0  —-00003|, AB=| —0.005 |,
| 0 —0.0005 0.0005 —0.004
—0.006 0  0.0004
AQ = 0  —0.005 0.0003
0.0004 0.0003 —0.002

The positive definite solution P of the DARE with the above nominal coef-
ficient matrices is

0.3209 4.2557 1.1042

10.2483 0.3209 2.3770
P =
2.3770 1.1042 3.3883

The bound (3.41) gives:

AP > | —0.180177 —0.029057 0.051716

—0.634634 0.051716 —0.134289

Using 2 iterations of Algorithm 3.3 gives the following tighter lower matrix
bounds for AP respectively:

[ —0.782429 —0.077029 —0.322591 ]
AP > | —-0.077029 -0.018274 0.080765
| —0.322591 0.080765 —0.050848 |

[ —0.140878 —0.033672 —0.467599 ]
AP > | —0.033672 —0.017999 0.062609
| —0.467599 0.062609 —0.074143 |

Clearly, as more iterations are carried out, the bounds become tighter.

—1.958472 —0.180177 -0.634634}
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3.3 Summary

In this chapter, matrix bounds have been successfully derived for the per-
turbations in the solutions of the CARE and DARE when their coefficient
matrices were subject to small perturbations. These results extend the works
of others to the case of small perturbations. Following each bound derivation,
iterative methods were proposed for finding more precise estimates. Finally,
numerical examples were given to show the effectiveness of the results ob-
tained in this chapter.
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Chapter 4

Matrix Bounds for the
Continuous Algebraic
Lyapunov Equation

In this chapter, new solution bounds for the CALE which are less restrictive
than existing results will be derived. The new matrix bounds always exist if
the CALE solution exists. The lower matrix bounds developed in this chap-
ter can also be found in reference [18].

Throughout this chapter, consider the CALE (1.3)
ATP+ PA=-Q

with @ > 0 and P > 0.

4.1 Lower Matrix Bounds for the CALE

In this section, two new lower matrix bounds for the CALE will be derived,
which are less restrictive than many existing results, as well as being com-
putationally more efficient. Firstly, a lower matrix bound for the CALE is
derived as follows.

Theorem 4.1: Define
U=A~—al (4.1)
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where a is a positive constant. Let P be the positive semidefinite solution of
the CALE (1.3). Then P has the lower bound

P > U-T[ATPoA + 02Po + (IQ](]-l = PCLLI (42)
where the positive semidefinite matrix Pp is defined by
Po=aU TQU . (4.3)

Proof: Using the definition of U from (4.1), the following matrix identity
can be defined

UTPU = ATPA — a(ATP + PA) + o?P. (4.4)
Substituting the CALE (1.3) into (4.4) gives
UTPU = ATPA + o®P + aQ. (4.5)

One has R(MA —al)) = R(A(A)) —al, where the fact M(X +cl) = MX) +c¢
has been used (see for example [60]). The stability of matrix A means that
R(A(A)) < 0, which implies that R(A(U)) < 0, so U is also a stable matrix,
and hence nonsingular for any value of the positive constant a. Then, pre-
and post-multiplying (4.5) by U~T and U~! respectively yields

P=UT[ATPA+a*P +aQ|U". (4.6)

From (4.6), it is found that P > Py, where P, is defined by (4.3). Substitut-
ing (4.3) into (4.6) leads to the lower bound (4.2). This completes the proof
of the theorem.

Following Theorem 4.1, the following iterative algorithm can be proposed
to obtain tighter solution estimates for the CALE.

Algorithm 4.1:
Step 1: Set My = F,, where P, is defined by (4.3).
Step 2: Calculate

M, =UTATM1A+®Mi_1 +aQIU™Y k=1,2,... (4.7)

Then M, are also lower bounds of the solution of the CALE (1.3). In fact, as
k — oo, M — P, where P is the positive semidefinite solution of the CALE.
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Proof: Firstly, P > aU"TQU ! = My,. Then, using (4.6) gives
P=UT(ATPA+a’P+aQ) U™
> U (ATMoA + a* Mo+ aQ) U™
= M, > aU"TQU™ = M, (4.8)

Now assume P > M;._; > M;_,. Then, by following the routine of (4.8) and
remembering (4.7), one finds that

P=UT(ATPA+0’P+aQ)U™!
> U (ATMio A+ oMoy + aQ) U™t = M
> U (ATMy_2A + 0®My_2+aQ) U™ = M.

By means of mathematical induction, it can be concluded that 0 < M, <
M < ... My < My <P fork=1,2... Since {My} is monotone
increasing and bounded (see for example [26]), there exists a matrix My, > 0
with M = limg_,o M}, such that

My = U"T[ATMoA + 0> My + aQIU . (4.9)

Here, (4.9) is equivalent to (4.6) with M., = P. As such, it can be concluded
that P = limy_,oo M. This concludes the proof.

A different lower bound is derived as follows.

Theorem 4.2: The solution P of the CALE (1.3) satisfies
P>UT2(A+ o) Po(A +al) +20QIU™" = Pepro (4.10)

where the positive semidefinite matrix P is defined by (4.3).

Proof: Using the definition of U from (4.1), the CALE (1.3) can be rewritten
as
(U+al)TP+PU+al)+Q=0

= UTP+2PU +4aP +2Q =0
= 2aUTP + 20PU + 46*P +2aQ = 0.
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= UTPU +2aUTP 4 2aPU + 402P + 2aQ = UTPU (4.11)
Using the matrix identity

(U +2al)TP(U + 2aI) = UTPU + 2aUTP + 2aPU + 4a?P
(4.11) can be rewritten as
UTPU = (U + 2a)TP(U + 2al) + 2aQ. (4.12)

Since U is nonsingular for any a > 0, pre- and post-multiplying (4.12) by
U-T and U~ respectively, leads to

P=UT[(A+al)TP(A+al) + 2aQ|U". (4.13)

From (4.13), it is seen that P > 2P,, where F, is defined by (4.3). Substi-
tuting this bound into (4.13) results in the bound (4.10). This finishes the
proof of the theorem.

Having completed the proof of Theorem 4.2, the following iterative algo-
rithm can be proposed to obtain tighter lower matrix bounds for the solution
of the CALE (1.3).

Algorithm 4.2:
Step 1: Set My = 2F,, where F, is defined by (4.3).
Step 2: Calculate

M, =UT[(A+a)"™™_1(A+al)+2aQU™' k=1,2,....

Then M, are also lower solution bounds of the CALE (1.3). In fact, as
k — oo, M — P, where P is the positive semidefinite solution of the CALE.

Proof: The proof of the correctness of this algorithm is similar to that
of Algorithm 4.1, and is therefore omitted.

Remark 4.1: It is obvious that the bounds (4.2) and (4.10) always exist
if the positive semidefinite solution of the CALE exists. Furthermore, these
bounds are also more concise than many of the existing lower matrix bounds
for the CALE that have been reported in the literature, and require no con-
dition for satisfaction of the coefficient matrices of the CALE (1.3).
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Remark 4.2: By using (4.3), it can be seen from (4.2) and (4.10) that

Pecria =UT[2(A + al)TPo(A + al) + 2aQU ™!

=U"TRATPyA + 2a(AT P, + PoA) + 202Py + 2aQJU !

=UT[ATRA+ &Py + aQ + ATP,A + a?Py + aQ + 20(AT Py + PAU?
= Fecr1 + U™T[(A + al)TPy(A + al) + a(AT Py + PoA) + aQJU~".

Therefore, if (A+al)T Po(A+al)+a(AT Py+ PoA)+aQ > 0, then Pocyy, is
tighter than Pccypr., whereas if (A+al)T Py(A+al)+a(ATPo+PoA)+aQ <
0, then Pccpy: is sharper than Pocpyo.

4.2 Upper Matrix Bounds for the CALE

In this section, two upper matrix bounds for the solution of the CALE will
be derived, each followed by an iterative algorithm that can obtain tighter
upper matrix bounds. The derivation of these results make use of the method
employed in [26]. After the bound developments, it will then be explained
why the proposed upper matrix bounds are always calculable if the CALE
solution exists.

Theorem 4.3: The solution P of the CALE (1.3) has the upper bound
P<UTATRA+a*R+aQlU™' < R= Poru; (4.14)
where the positive semidefinite matrix R is selected such that
ATR+ RA< —-Q. (4.15)
Proof: From (4.6), suppose that R is an upper bound for P such that
P<UTATRA+a’R+aQU ' <R. (4.16)
Using (2.4), (4.16) implies
ATRA+ a’R+aQ < UTRU. (4.17)

After some manipulations, (4.17) is equivalent to the condition (4.15). As
such, it is seen that satisfaction of the condition (4.15) ensures the validity
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of the upper bound (4.14). This ends the proof of the theorem.

Now that we have developed the upper matrix bound of Theorem 4.3, the
following iterative algorithm will be proposed, which can derive more precise
upper matrix bounds for the solution of the CALE (1.3).

Algorithm 4.3:
Step 1: Set Ny = R, where R is a positive semidefinite matrix satisfying
(4.15).
Step 2: Calculate
Ne =UT[ATN 1A+ 0®Niy +aQU™E, k=0,1,.... (4.18)

Then N, are also upper bounds for the solution of the CALE (1.3).

Proof: From (4.16), it is obvious that P < N; < Np. It is then found
from (4.18) that

P < U-T[ATNlA +02N1 +aQ]U'1 = NQ.

So far, P < N; < N; € Ny. Now assume that P < Nx_; £ Ni_2. Then,
another application of (4.18) gives

P < U T[ATN;_1A + &*Ni—y + aQlU™! = N,
< U-T[ATNi_2A+ a®’Ny_2 + aQU ™! = Ni_y.

By means of mathematical induction, it can be concluded that P < N <
Ni—y < ... < N; £ Np. Since N, = 0, it is obvious that N; is monotone
decreasing and bounded, so there exists Ny, = limg_.o Nk such that

Noo = UT[ATNA + a*Noo + aQIU 1. (4.19)

(4.19) is equivalent to (4.6) with Ny, = P, where P is the solution of the
CALE. This completes the proof of the correctness of this algorithm.

Another upper matrix bound is obtained as follows.

Theorem 4.4: The solution P of the CALE (1.3) satisfies
P<UT[(A+al)TR(A+al)+2aQU™" < R= Pcruz (4.20)
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zvhere the positive semidefinite matrix K is chosen to satisfy the condition
4.15).

Proof: From (4.12), suppose that P < R such that
P<UT[(A+al)TR(A + al) + 2aQ|U . (4.21)

By proceeding along the same lines as in the proof of Theorem 4.3, it is seen
that satisfaction of the condition (4.15) validates the existence upper matrix
bound (4.20). This completes the proof of the theorem.

Having finished the proof of Theorem 4.4, the following iterative algorithm

can be proposed to obtain sharper upper matrix bounds for the solution of
the CALE (1.3).

Algorithm 4.4:

Step 1: Set Ny = R, where R is a positive semidefinite matrix satisfying
(4.15).

Step 2: Calculate

Ne=UT[(A+al)TNy1(A+al)+2aQU™, k=0,1,...
Then N are also upper bounds for the solution of the CALE (1.3).

Proof: The proof of the correctness of this algorithm follows along the same
lines as that of Algorithm 4.3. Therefore, the proof is left out.

Remark 4.3: According to Lemma 2.1 of [34], any positive semidefinite
matrix R satisfying the condition (4.15) is an upper bound for the positive
semidefinite solution of the CALE. As such, one can always find such a ma-
trix R, so the upper bounds (4.14) and (4.20) are always computable if the
CALE has a symmetric positive semidefinite solution.

Remark 4.4: The following table summarizes lower and upper matrix solu-

tion bounds for the CALE that have been proposed in the respective litera-
ture:
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Bound Reference

P> S—I[S(Q M)S]WS 1= = Porrs [60]
P< :‘ﬂﬁ’;ﬂ"I Perus [60]
P<|[Q+ (A+ TPa(A+I)— ATP3Al = Perua [60]

P> 1E—1(EQE)1/2E 1= = Peorrs [10,60]

P> 1)»:/ 2@)A- 1QA_T)I/ = Pows [10,60]
P> RYRVE(Q — ATRAVRTVIARY? = Poyge [58]
Pepur = % <P<2=Pos [28]
Popres = A"(]\’TQN)N_T"V]V—1 <P<L Al(NTQN)N—TWN_l = Peorus [64]
Pcrrs = M(Gen)MMT < P < M(Gen)MoMT = Popyy [72]
Poreio = Mn(Gem)MpMT < P < M(Gem)Mo M = Forus (86]
P> -)*"-(flf FPeornm [44]
P>24Q -~ ATA]I/ 2= Poruiz [66]
P>1ip™ [F(K:Q Q VWF"*F'= Popis 56]
=2 [f‘—?fg;r] Porria [56]
Peorois = n(X Wo < P < M(X)Yo = Porys [78]

Table 4.1: Existing Matrix Bounds of the CALE

The matrix bounds summarised in Table 4.1 have the following notations:
S=(AMAT)?, E =(AQ'AT)?, F=(4QAT)'?
p=xq{-(ATQ+QA)Q},

o = M{—(ATQ + QA)Q'},
W = diag{1/[-2R(M(A)]}, A= NAN, A= diag{M(A)}

X =—(ATYo + YA)'Q, Yo=TR', A=TAT™, R= (ATA)~1/2
withl'=J or I’ = Q'/2,

Gm = {gij} c mnxn’

with o
9ij E/{; a;(t)a;(t) dt,

eATt = a1(t)I + aZ(t)AT + ... an(t)(AT)n—l’
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M, =[D,ATD,(AT)*D,..., (AT D),

where Q = DDT,
Gem = {9i;} € ™",

with o
9i; = /0 a;(t)a;(t) dt,

A"t = q, (O + a2(0)AT + . .. + a, (£)(AT)™ 1,
M, =[D,ATD,(ATyD,...,(ATy"1D],
where @ = DD”, and m is the degree of the minimal polynomial of A.

Remark 4.5: The bounds PCLL3, PC’L[A, PC'LL57 PCLLG and PCLL7 have
to assume that @ > 0 for them to work. The bound Pcrys and Porys have
to assume that @ > 0 and A + AT < 0 for them to work. The bound Pgys
has to assume that Q > 0 and o > 0 for it to be calculated. The bounds
Fcris and Porye have to assume that A is diagonalizable for them to be
evaluated. The bounds Pgy g, FPerrio, Perrir, Poryr and Popys need no
condition for satisfaction, and always work if the solution of the CALE exists.

For the bound Fc;rg3, the positive definite matrix M is chosen such that
Q > M. For the bound Pg 16, the positive definite matrix R; is chosen such
that @ > ATR, A.

In [60], it was shown that bounds Pgprr4 and Pgps are merely special cases
of bound Pgrrs. As such, only bounds Perps and Popre will be used, when
possible, as choices for the bound Pcrr 4 when the numerical examples are
performed later in this chapter. The bound P4 is derivable for the CALE
from [58]. In fact, by setting M = ATR; A in bound Pg 3, the bound Py
is obtained. Similarly, setting By = A"TMA~! in bound Py results in
the bound Fgpr3. It was also shown in [58] that the lower matrix bounds
for the CALE which are derivable from [50] and [51], and the lower matrix
bound (19) derived in [10], are special cases of the bound Pcr16. To ease the
calculation of this bound, some choices for the positive definite matrices R,
are listed in the table that follows.

The advantage of the presented bounds is that they can always be calculated
if the solution of the CALE exists. These bounds can be successively tight-
ened with the aid of the corresponding Algorithms 4.1 to 4.4. Of course, as
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R, Range of parameter

51 B> M(ATQ7A)

BR | 0<B< I (A"QAQY)
BRTI0<B< AN (ATQAQ™)

Table 4.2: Simple choices of R; and the corresponding range of parameter

mentioned above, the bounds Peyr9, Porrie, Porrit, Poryt and Popys need
no condition for satisfaction, and always work if the solution of the CALE
exists. However, when @ > 0, the bound Pg,; yields the trivial bound
P > 0. The calculation of the bounds Perrs, Porrio, Poryr and Popys seem
very complicated. In [86], the bounds Pcrri0 and Pgrys were reported to
reduce the computational burdens required in computing the bounds Py e
and Pcry7. However, the calculation of these bounds are still very complex.
Furthermore, the bounds may not be very tight, and no iterative procedure
exists to help tighten these bounds. The presented bounds can always be
calculated if the solution of the CALE exists, and are also more concise.

Reference [78] also developed a lower and an upper matrix bound which
assumes that ¢ > 0, or at least that the CALE has a positive definite solu-
tion. Additionally, a matrix bound improvement procedure was proposed in
[79] from which it is possible to derive tighter lower and upper matrix bounds
for P by using the lower and upper bounds P15 and Pgrye as initial ma-
trices. However, this procedure is only valid under some mild assumption,
whilst the presented algorithms always work. Besides, it seems that the cal-
culation of bounds Fp ;15 and FPoryg are rather complicated, and are not as
concise as the bounds Pgrp; and Porrs. Reference [79] extends the work of
[78] by using a singular value decomposition to obtain upper solution bounds
for the CALE which extend the set of Hurwitz stable matrices for which such
bounds are valid. This bound involves an external Lyapunov matrix (ELM)
in which a free variable is involved which is determined by some additional
procedure. Then, the works of [79] were extended further in [80], which
proposes an always valid upper matrix bound for the CALE. The estimate
takes the form of an internal Lyapunov Matrix (ILM) in which the bound
is expressed completely in terms of the coeflicient matrices of the CALE.
Examples of these internal matrix bounds, which will be used later in the
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comparison examples, are:
P < A]_[-Q(ATAA)-]']ATA = PC'LUIO; Ae H_,

P < M[—-Q(PA);Y P, = Porvn, P?P=ATA, AcH,
P> N[-Q(Py'A)Y Pyt = Porvie, Pi=AAT, AcH

Here, the matrix X, = X + X7 and the matrix sets H- and H are defined
by H- = {A : SC(A I)<0}andH—-{A F € H}. Here, Sc(A, Hh<o
means any matrix A such that A + AT < 0, and the set H is the set of
matrices with Hurwitz unitary parts. Here, one has H~ C H.

Remark 4.6: The tightness of the lower bounds proposed here depend on
the choice of the positive constant «, and the tightness of the upper bounds
proposed here depend on both the choice of the positive constant a and the
positive definite matrix R. It is difficult to say which choice of a gives the
best lower bounds, and which choice of a and R give the best upper bounds.
Therefore, this problem remains an open question. Besides, for any chosen
value of o, one could easily obtain tighter matrix solution bounds by using
Algorithms 4.1 to 4.4. It should be noted that, in the case A + AT < 0, a
simple choice of R = Py y3 will suffice in the calculation of the upper matrix
bounds (4.14) and (4.20). To see why this is true, consider the following
analysis, which makes use of (2.3):

ATR+RA+Q = :Xl—-)(\i%f)-(A+AT)+Q

A1
< —_,\R}%A_T_)MA +ADI+Q
=-M(@QM+Q < —M(@Q) + M(Q) =0.

Furthermore, it is found that the tightness between existing solution bounds
and the presented bounds is hard to be compared by any mathematical
method.

Remark 4.7: The only computational burden that may arise in calculating
the bounds Pgry; and Popg, is the inversion of the matrix U. However,
it seemns that many existing matrix bounds in the literature are even more
computationally expensive than these bounds. In particular, the bounds
Peris, Poris, Porwe, Porwi2, Porois, and Popys involve matrix inversion
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and matrix square roots, the bound Fcpss involves matrix inversion, ma~
trix eigenvalues and a matrix decomposition of matrix A, bounds Pg, .5 and
Pgpr114 involve matrix inversion, matrix square roots and matrix eigenval-
ues, and bounds Pgy 9 and Poppio involve a matrix decomposition, a matrix
exponential, evaluation of integrals which may be heavy, and a matrix eigen-
value. The bound FPgp.7 involves inversion of ¢ and a matrix eigenvalue,
while bound Pgrr1: involves a singular value and an eigenvalue. Further-
more, Pcopr1: seems somewhat conservative. Finally, the bounds Pppri5 and
Peoryg also require a number of computational strains such as the computa-
tional strains of bound Pgp14. Therefore, the present bounds are considered
to be the least heavy in terms of computational load. In a similar way, the
upper bounds Pory1 and Pepys are also considered to be the least in terms
of computational weight and complexity.

Remark 4.8: In light of Remarks 4.3 and 4.5, the upper bounds Fgryn
and Pcryiz may be chosen as the matrix R, and any value of the positive
constant o will suffice, since Ny and N both tend to P indefinitely.

4.3 Numerical Examples for the CALE

Two numerical examples will now be considered to show the effectiveness of
the derived results. The first example will focus on the case that @ is positive
semidefinite, whereas the second example will consider the case @ is positive
definite.

4.3.1 Example 1: Q is positive semidefinite and A+ AT
is not negative definite

Consider the CALE (1.3) with:

-1 2 11
a=[3 A e-[hi]
Then, the unique positive definite solution of (1.3) is:

05 1
Pexact=[ 1 2.5]'
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With o = 1 and B = Pgryya, where FPoryz is defined in Remark 4.5, the
lower and upper matrix bounds Pgz1, Porra, N1 and N, for the solution P
are found by Theorems 4.1 to 4.4, respectively, to be:

Py |0375 075 ], 05 1
CLit= | 075 1625 |0 “CL2T | 1 25>

1125 05 1
PCL”1=[1.25 4 J PC“”:[ 1 3.5]'

In fact, it can be seen that Porry = P,req- Since Q is singular, the matrix
bounds proposed in {2,5,6,8-10,12,15-17] cannot work here. The lower bound
Perr1 gives the trivial bound P > 0. Since the exact solution is found from
Foriz, Algorithm 4.2 need not be used, since it will only return the exact
solution at each iteration.

Using Algorithm 4.4 once, the following tighter upper matrix bound for P is

obtained: 05 1
7V2=[ 1 2.5]'

Here, N, is the same as the exact solution. The matrix A cannot be diag-
onalised, so the lower and upper matrix bounds Pcrrs and Peorye cannot
be applied here. Using the bounds Pp;19 and Pppy; provides the following
lower and upper matrix bounds:

0.0858 0 29142 0 ]_
P"LL":[ 0 O.OSSS]SPS[ 0 2.9142]=PCL”7

The matrix bounds Pcorynn and Pepyiz give the following upper solution

estimates:
5 -5
Peron=| _g 15 |-

15 15
Forrn = [ 1.5 45 ] '

The matrix A has no minimal polynomial, so the bounds Pc ;10 and Perys
give the same estimate as the bounds Pryr9 and Poryr. As it can be seen
from the above numerical experiments, the results proposed in this thesis are
advantageous over existing results in that they can always be applied.
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4.3.2 Example 2: Q is positive definite and A + A7 is
negative definite

Consider the CALE (1.3) with:

a=[ 2 4] e[ 9]

Then, the unique positive definite solution of the CALE (1.3) is:

0.5 0.1
Pexﬂct”[m 0.2]'

With a = 1 and R = Pgrys, where Pgorys is defined in Table 4.1, the lower
and upper matrix bounds Pcrr1, Porrz2, N1 and N, for the solution P are
found by Theorems 4.1 to 4.4, respectively, to be:

Prrrs = 0.3457 0.0818 P | 04983 0.1050
CLLY = | 90818 0.1226 |’ “C¢L£27 ) 0.1050 0.1848 |’

P _ [ 0.5320 0.0400 P _ | 0:5068 0.0801
cLur = | 60400 0.4327 | TCFU27 | 0.0801 0.3077 |-

It is seen that Poprs is the tighter lower matrix bound and N, is the tighter
upper matrix bound. Using 2 iterations of Theorem 4.4 gives the following
tighter lower matrix bounds for the solution of the CALE (1.3):

. = 0.4993 0.1013
27 10.1013 0.1952 |’

. = 0.4999 0.1003
37 10.1003 0.1986 |-

Using 2 iterations of Theorem 4.4 provides the following tighter upper matrix
bounds for the solution of the CALE (1.3):

o = 0.5007 0.0963
2% 1 0.0963 0.2304 |’

oo 0.5001 0.0993
3= 0.0993 0.2082 |-
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The bounds Peorra, Porre, Pores and Poppr yield, respectively:

01535 0 0.4811 0.0962
Perin = 0 01535 |* Feree=| gogez 0.1925 |’

P [ 03623 0.0264 P _[o209711 o0
CLLS = | 00264 0.1646 |® ~CLLT= 0 01485 |-

The upper bound Pgrys provides:

Ps[o.ssﬂs 0 ]

0 0.5578

Using the bounds Porys and Per 4, the bound Py, provides the following
upper solution estimate:

p [ 06334 —0.1728
CLUA= | _0.1728 2.1526

With v = 0.25, the lower matrix bound Pgy,2 gives:

P _ [ 0.3303 0.0162
CLL2 = | 00162 0.1522 |-

With &« = 2, the lower bounds Pcrr13 and Peorria result in the following
estimations respectively:

P [ 03227 0.0389 P _[o2r0 o
CLL1IZ = | 00389 0.1756 |’ ~CLL4— 0 0.1443 |-

The matrix bounds Pgrrs, Porve, Porrs and Poryry give the following esti-
mates:

0.1096 0.1096 11404 11404 | _
Feves = [ 0.1096 0.1827] sPs [ 1.1404 1.9007] = Forvs

0.031 —0.0124 5302 —21208 ] _
Fowe = [ ~0.0124 0.0372 ]SP = [ ~2.1208 6.3624 ]‘P cLur

The matrix A has no minimal polynomial, so bounds Pc; 10 and Pgorys are
the same as bounds Pgypze and Peryy.
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The bounds PC’LL15 and Pcwg yield

[ 00981 ~—0.019 0.5686 —0.1137] _ N
F C“““[—o.mge 0.1569 ]SP = [ —0.1137  0.9097 ]‘P cLve, withT =1,

[ 01667 —0.0333 0.6666 —0.1333
P C“ls“[—o.osas 0.1417 ]SP < [ ~0.1333  0.5667

The proposed bounds will now be compared with bound P¢ by using choices
of the matrix R, from Table 4.1. Using these choices of R, gives the following
lower bounds for the solution of the CALE (1.3):

Choice of Ry Resulting Bound
Ri=}landp=20 |p| 0208 0000
[ 0.3655 0.0216 |

Ri=pQand =004 | P2 | o016 01863

[ 0.2861 0.0118 ]
| 0.0118 0.1130

Table 4.3: Lower Matrix Bounds for the CALE using the bound Pcy6

R =0Q 'and 3=0.09| P>

The upper matrix bounds Pcryio, Poryin and Peopyiz provide the following
upper solution estimates:

P [ 24328 -1.2164
CLuic = | _192164 6.082 |’

P [ 21837 -—0.4377
CLuil =1 _04377 3.5019 |’

P [ 19232 0.3848
CLU12 = | 03848 1.4101 |-

Viewing these comparisons, it is seen that the presented bounds are tighter
than the majority of existing matrix bounds for this case. As more itera-
tions of Algorithms 4.2 and 4.4 are performed, the presented bounds become

tighter.
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4.4 Summary

In this chapter, the derivation of new lower and upper matrix bounds for
the CALE solution has been presented. These bounds are always valid if
the CALE solution exists, and are more concise than many existing parallel
bounds. The numerical examples suggest that the derived bounds may be
tighter than existing matrix bounds for the CALE proposed in the literature.
In particular, it is also believed that the matrix bounds are the lightest in
terms of computation.
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Chapter 5

Matrix Bounds for the
Continuous and Discrete
Algebraic Riccati Equations

In this chapter, the lower matrix bounds for the CARE and upper matrix
bounds for the DARE will be considered. These new bounds are always
computable if the solutions of the CARE and DARE exist.

5.1 Lower Matrix Bounds for the Solution of
the Continuous Algebraic Riccati Equa-
tion

Consider the CARE (1.4)

ATP + PA— PBBTP = -Q

with Q = QT > 0 and P = PT > 0. Viewing the literature, it appears that
nearly all lower matrix bounds for the CARE have to assume that Qis non-
singular for them to be computable. This is a very restrictive assumption,
because such an assumption is not common in control and estimation prob-
lems involving the solution of this equation. The only existing lower matrix
bound that can deal with this case is that of [44]. However, if Q is singular,
then \,(Q) = 0 and the lower matrix bound of [44} gives P > 0, which is triv-
ial. Therefore, this section develops three lower matrix bounds to improve
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this drawback, and give nontrivial lower solution estimates for the solution
of the CARE when Q is singular. It is not necessary to assume that Q is
nonsingular for these results. Following the derivation of each matrix bound,
an iterative algorithm is also proposed to obtain sharper solution estimates
for the CARE. The results of this section can also be found in reference [19].

Before developing the main results, we shall review the following useful result:

The CARE (1.4) has the following upper bound for the maximal eigenvalue
of its solution [34]:

M(P) S M(Pk) =1 (5.1)
where Px satisfies the linear equality
(A+BK) Py + Pk(A+BK)+Q+ KTK =0
and the matrix K € R™*" is chosen to make A+ BK a c-stable matrix. This
eigenvalue upper bound is always computable if the CARE solution exists.
Theorem 5.1: Define
VzA—al-1 (5.2)

where a is a positive constant. Let P be the positive semi-definite solution
of the CARE (1.4). If
A+ AT < \(BBT)nI (5.3)

where 7 is defined by (5.1), then P has the lower bound
P2V-T(pf(V+IT(V+D+(a+1-M(BB I+ Q)V™'=Pen

(5-4)
where the positive constant a is chosen so that
A+ AT < 2al (5.5)
and
2a+1> M(BB )y (5.6)

are satisfied, and the non-negative constant ¢; is defined by

_ A[VTQV Y
PETTVIVIWV DIV + 1) + (2a+ 1 — A (BBDp)I[V}
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Proof: The CARE (1.4) can be rewritten as:
P(A-al)+(A—-al)TP +2aP +Q = PBBTP (5.7)
where « is a positive constant.

Using the definition of V' from (5.2), the following matrix identity can be
defined

VIPV =WV +I)TP(V+I)—(A—al)TP-PA-al)+P (58)
Using (5.8), (5.7) can be rewritten as
(V+DTP(V+I)+(2a+1)P+Q = PBBTP+VTPV. (5.9)

From (2.1) we have BBT < A\ (BBT)I. Then, applying (2.4) to the term
PBBTP gives PBBTP < \,(BBT)P2.

Since 0 < P < M\ (P)I from (2.3), one can also have from (2.3) that
P? = PYV2ppPl/2 < [PAY(P)IP]V? = \(P)P. (5.10)
Combining (5.10) with the previous results for PBBT P gives
PBBTP < \(BBT)pP. (5.11)
Substituting (5.11) into (5.9) gives
(V+DTP(V + 1)+ (Q2a+1)P+Q < M(BBT)pP + VTPV

= VIPV>(V+DTP(V+D+Q2a+1-M(BBNP+Q. (512)

Since ReM(A — al) < u(A — aI) = 1M(A + AT — 2al), one can see that
choosing a to meet the condition (5.5) ensures the nonsingularity of V. Fur-
thermore, if o is chosen to meet condition (5.6), then the term (2o + 1 —
M(BBT)n)P is non-negative definite, from which the main result follows.
Therefore, (5.12) becomes

P>VT[V + TPV +I)+Qa+1—-MBBT)P+QV! (513)
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Application of (2.3) to (5.13) gives

P>vT ([(V + DTV + 1D+ (a+1 - \(BBT)NA(P) + Q) VL
Introducing (2.1) to (5.14) gives (514
A(P) 2 AV T ((V + DT (V + 1) + 22+ 1 =~ M(BBT ) Ia(P) + Q) V')
SA{VTIV+ DTV +ID)+ 2a+ 1= MBBOp)NVIMP)+ MV TEVY.
(5.15)
Using (2.9), it is found from (5.15) that

M{VTV+ DTV +1)+ (2a+1 - M(BBT)p)IIV-1}
=0{{(V+DTV +I)+ (2a+1 - M(BB)N|(VTV) 1}
= M{l(A - a)T(A - al) + Qa+ 1~ N(BBPI[(A —al - )T(A~-al —I)]'}

Let M = (A — al)T(A — aI). Then (5.15) can be rewritten as
M(P) 2 M{VT ([(V + DTV + D + 2a+ 1= M(BBIMI(P) + Q) V'}
= M{[M+(2a+1-2 (BBT)||M—(A—al)T—(A—al)+ 1" I (P} AV -TQV Y.
Since M > 0, it is seen that if condition (5.3) is met, then
AM{V-I(V+DT(V + 1) + Qa+1- M(BBO)V-1} < 1
It is then found from (5.15) that

AV TQV Y _
T VIV + DTV + D + Ca+ 1= M(BBOpIV-Y o
(5.16)
Substituting (5.16) into (5.14) leads to the lower bound (5.4). This completes

the proof of the theorem.

An(P) 2

Remark 5.1: Since I is a positive definite matrix of full rank and « is
a positive constant, there will always exist a positive constant o such that
the conditions (5.3), (5.5) and (5.6) are met. Hence, the lower bound (5.4)
is always computable if the CARE has a non-negative stabilizing solution.
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Having developed Theorem 5.1, the following iterative algorithm can be pro-
posed to derive sharper lower matrix bounds for the CARE (1.4).

Algorithm 5.1:
Step 1: Set Mo = Pe1, where Py is defined by (5.4).
Step 2: Calculate

M = VI[(V+D)T My (V4D +(2a+1-02(Bp) M1 +QIV k=1,2,....
(5.17)

Then M, are also lower bounds for the solution of the CARE (1.4).

Proof of Case 1, @ > 0: Set k =1 in (5.17) to get
Mi=VTV+ DMV + D+ (2a+1—-c3(Bn)Mg+Q]V~L (5.18)
Applying (2.5) to (5.18) gives

My 2 VT ([(V+ DTV + 1)+ 20+ 1 - o} (B Aa(Mo) + Q) V.
(5.19)
Since My = P, applying (2.1) to (5.4) results in
Mn(Mo) = A{VT (01l(V + DT(V + D + 20+ 1 - a}(BII + Q) V')
> VTV + DTV + 1)+ (2a+1 - 03BV} + M [VTQVT]

— {1 - i"[—v%‘i‘—/:l} +AVTQVY = oy, (5.20)

where (2.1) and (5.15) have been employed. Substituting (5.20) into (5.19)
leads. to-

My 2 VT ([(V+ PV + D)+ (2a+ 1 - o} (ByIlp + Q)V~=M,.
Now assume My_; > M;_5. Then
My =V TV +D)"Mp1(V +1) + e+ 1 — 0} (Byn)Mi—, +QIV™!

>VTV+D"My_o(V+ 1)+ (2a+1~c}(Byp)M_» + QIV!=M, ;.

By mathematical induction, it can be concluded that My > M, = ... =
M, > M,. This completes the proof of the algorithm for the case @ > 0.
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Proof of Case 2, Q > 0: Firstly, note that, for this case, My =
VTQV-l. Set k = 1 in (5.17) to get (5.18). Applying (2.1) to (5.18)
leads to (5.19). Since \,(Mj;) = O for this case, (5.19) becomes

M, >V TQV™! = M,.
Now assume M 3 > M 3. Then.
Me=VT((V + DTMe-i(V + 1) + (20 + 1 - 0} (BY) M- + QV ™

Z V_T[(V + I)TM];‘_Z(_V -+ I) -+ (26\! +1- U%(B)H)Mk_z <+ Q]_V—l = Pk.——l-

By mathematical induction, it can be concluded that My > M;_, > ... >
M, > M,. This completes the proof of the algorithm for the case Q > 0.

We now obtain a different lower matrix bound as follows.

Theorem 5.2: If the condition (5.11) is fulfilled, then the solution P of
the CARE (1.4) satisfies

P>V T (al(V+2D)7(V +2I) + (4a — 203(B))I] + 2Q) V™' = Py
(5.21)
where the positive constant « is chosen so as to satisfy the condition (5.5)

and the condition
2a > o2(B)p, (5.22)

and where the non-negative constant ¢, is defined by (5.16).

Proof: Using the definition of V' from (5.2), (5.7) can be rewritten as

PWV+I)+(V+DTP+20P+Q=PBBTP
= PV+VIP+2P+2aP+Q=PBBTP. (5.23)

Multiplying both sides of (5.23) by 2 and then adding VTPV to both sides
of (5.23) gives

VTPV + 2PV +2VTP + 4P + 4aP +2Q = VTPV +2PBBTP (5.24)
Using the matrix identity

(V+2DTP(V 4+ 2I)=VTPV + 2PV + 2VTP + 4P
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(5.24) becomes

(V + 2 TPV +2I) + 4aP +2Q = VTPV + 2PBBTP
< 203(BWP + VTPV. (5.25)

(5.25) becomes
VTPV > (V 4+ 2I)TP(V + 2I) + (4a — 203(B)n)P + 2Q. (5.26)
Since V is nonsingular under the satisfaction of condition (5.5), (5.26) gives
P>V T(V4+2D)TPV +2I) + (40 - 202 (B))P +2QIV™.  (5.27)
Application of (2.3) to (5.27) gives
P> VT ([(V +20)7(V + 2I) + (40 — 203 (BI)Ma(P) +2Q) V2. (5.28)
Using (2.1), (5.28) becomes
Ma(P) 2 M{VT ([(V +2D)T(V +2I) + (40 — 203(B))]Aa(P) +2Q) V'}

> M{V TV + 2DT(V + 2I) + (40 — 203(B)) IV I (P) + 20 [VTQV Y.
(5.29)

Following along the same lines as in Theorem 5.1, it can be seen that if
condition (5.2) is met, then

M{VT(V +2DT(V +2I) + (da - 203(B)p)IIV1} < 1.
Then, the following can be obtained from (5.29)

20, [V-TQV ]
1= M{V-T[V + 2DT(V + 21) + (da — 203(B)n)I]V 1}
- AnlVTQV Y -
ST VIV IV + D+ @a+1- N(BBDOpIIV} -~ ¥

Substituting (5.30) into (5.28) results in the lower bound (5.21).

An(P) 2

(5.30)

Remark 5.2: In fact, the above bound obtained in Theorem 5.2 has taken
into account the case when @ is positive definite. When @ is positive semidef-
inite, A\(Q) = 0. As such, V-TQV ! is also positive semi-definite, which
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implies that A\,(V-TQV ) = 0. In this case, ¢; = 0 and the lower bound
(5.22) becomes P > 2V-TQV ! = 2P.;;. Therefore, for the case when Q is
singular, Py, is always tighter than P.y,.

Following the derivation of the lower bound of Theorem 5.2, the following
iterative algorithm to obtain sharper solution estimates can be proposed.

Algorithm 5.2:

Step 1: Set Mg = Pupp, where Py, is defined by (5.22).
Step 2: Calculate

My = V-T[(V+2U) T My o(V+21)+(4a~203(BY) M +2QIV"Y, k=1,2,..
Then M), are also lower solution bounds of the CARE (1.4).

The proof of this algorithm is similar to that of Algorithm 5.1, and is there-
fore omitted.

Next, a third lower matrix bound will be derived for the solution of the
CARE (1.4).

Theorem 5.3: Define
W=A-p0I (5.31)

where 3 is a positive constant. Let # be the positive semi-definite solution
of the CARE (1.4). If the condition (5.2) is fulfilled, then P has the lower
bound

P>WT (wslATA+ (82— BoZ(BI)]| + BQ)W ™' =Ptz (5.32)

where the constant 3 is chosen such that

A+ AT < 281, (5.33)
8> ai(B)m, (5.34)
and the non-negative constant ¢, is defined by
B [W-TQW1]

¥2 = TN (W-T[ATA + (B — Bo(B) W1}
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Proof: Using the definition of W from (5.31), the following matrix iden-
tity can be defined:

WTPW = ATPA — B(ATP + PA) + (?P. (5.35)
Substituting the CARE (1.4) into (5.35) gives:
WTPW = ATPA -~ BPBBTP + 3Q + §?P. (5.36)

The proofs of Theorems 5.1 and 5.2 have shown that PBBTP < o¥(B)nP,
where 7) is defined by (5.1). With this in mind, (5.36) becomes

WTPW > ATPA + (8° ~ Boi(B)n)P + BQ. (5.37)
Under the satisfaction of (5.33), W is nonsingular, and (5.37) then gives
P>W-TIATPA + (8% — Boi(B)n)P + BRIW L. (5.38)
Application of (2.3) to (5.38) gives
P> W-T[(ATA+ (8% — Boi(BIn)I)A(P) + BQIW . (5.39)

where the condition (5.34) has been taken into account. Applying (2.1) to
(5.39) gives

Ml(P) 2 AW T(ATA+ (8% — Bo3(B))D)IW T }An(P) + BA]W TQW Y.

(5.40)
Along the same lines as in Theorem 5.1, it can be seen that if the condition
(5.2) is satisfied, then

A{WT((ATA + (87 — Bol(By) D)W} < 1.
From (5.40), one can then obtain

BAW-TQW 1| _
1 M {W-TIATA + (B2 — Bo3(B)yIW -1} ~ 7%

Substituting (5.41) into (5.39) results in the bound (5.32). This completes
the proof of the theorem.

An(P) > (5.41)
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Remark 5.3: In fact, the above bound in Theorem 5.3 has taken into ac-
count the case when Q is positive definite. As before, when Q is positive
semi-definite, the bound (5.34) becomes P > gW-TQW -1,

Following the development of Theorem 5.3, the following iterative algorithm
can be proposed to obtain more precise lower matrix bounds.

Algorithm 5.3:
Step 1: Set No = P,.3, where P.y3 is defined by (5.32).
Step 2: Calculate

Nepr =W TATNeA + (82 ~ Boi(BI)Ne + BRIW ™!, k=1,2,....
Then N are also lower bounds for the solution of the CARE (1.4).

Proof: The proof of this algorithm parallels that of Algorithms 5.1 and
5.2, and hence omitted.

Remark 5.4: From (5.4) and (5.22), it can be seen that

Pop=VT (‘Pl [(V+ DTV + D)+ (2a+1-M(BBTNI +Q + ¢ [(V + I)
+(V + DT + (2a - M(BBO)I+ Q) V~*
= Pty + VT (2[4 + AT = M(BB)qI] + Q) V.

As such, if ¢,[A + AT — A\ (BBT)nI] + Q > 0 then P.y, is tighter than Py,
whereas if p1[A + AT — A\ (BBT)nl] + Q < 0 then P,y is tighter than P,
It is find that the tightness between the bound P, and P.y; and P can-
not be compared mathematically. It is also easy to see that satisfaction of
condition (5.22) immediately implies the satisfaction of condition (5.6), so
both of the bounds P, and Py exist under the satisfaction of condition
(5.22).

Remark 5.5: Recently, the following lower matrix bound for the CARE
(1.4) has been proposed in [58]:

P>GG(Q - ATRIAG)YV?G = Py (5.42)
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where the positive definite matrix K, is chosen such that Q > ATHK; A, and
the positive definite matrix G is defined by G = (BBT + R{')Y/2. It was
shown in [58] that, with suitable choices of R;, the lower bound (5.42) is
tighter than existing lower matrix bounds proposed in {10,45,50,51,57,58]
and the corresponding eigenvalue bounds are also sharper than most previ-
ous bounds. In [12], some choices of the matrix R, were listed to simplify the
calculation of (5.42). Some of these choices are re-listed in the table in the
2nd numerical example. It was earlier noted that nearly all existing lower
matrix bounds for the CARE have to assume that @ is nonsingular. This
assumption is very conservative. Under the satisfaction of the conditions for
the bounds, our bounds can always work for the case of ¢ being singular and
nonsingular. Therefore, this work improves the assumption. Also, it is found
that the tightness between existing lower matrix bounds and those presented
here cannot be compared by any mathematical method. However, they can
supplement each other.

Remark 5.6: An iterative technique for solving the CARE (1.4) was pro-
posed in [36]. this technique will be stated as follows: Choose a positive
(senu)deﬁmte matrix Po such that A — BBTPO is a stable matrix. Also, let
B, be the solution of the following Lyapunov-type matrix equation:

P(A-BBTPB_)+(A-BBTP,_,)" P, = —(Q+P._,BBTP, 1), k=1,2,...

Then, limy_, P, = P, where P is the unique positive semi-definite solution
of the CARE (1.4). If the matricess A — BBTP,;;, A— BBTP, or A —
BBTP,,; are stable, then the proposed lower bounds Peui, Pert2 OF Periz can
be chosen as the initial matrix P, and solve the CARE (1.4) by the above
iterative algorithm. This too is an application of the solution bounds of the
CARE.

5.1.1 Numerical Examples

In this subsection, two numerical examples are given to demonstrate the
effectiveness of the derived bounds. The first example will be for the case
when Q is singular. The second example will be for the case when Q is
nonsingular. Comparisons will be made with existing results when possible.

69



Example 1: Q is singular
Consider the CARE (1.4) with:

111 10 111
=[5 2] e (1] e-[11]
For these system matrices, the unique positive definite solution of the CARE
(1.4) is:
P | 0.4142 0.4142
exact = | 04142 4.4142 |-

Since the matrix @ is singular and A is not in the range space of @, the
lower matrix bounds proposed in [10,45,50,51,57,58] cannot work for this
case. However, the bounds of Theorems 5.1, 5.2 and 5.3 can work, and give
tighter results than [9]. With 5 = 5.6754 and o = 3, the lower matrix bounds
for the solution P of the CARE (1.4) are found by Theorems 5.1 and 5.2,
respectively, to be:

p, [00400 01200) _ ., ~_ [00800 02400
eril = 1 0.1200 0.3600 eri2 = 1 0.2400 0.7200

With 3 = 6, the lower matrix bound P.3 is found by Theorem 5.3 to be:

P, - | 01224 0.2448
o3 = | 0.2448 0.4898

Using two iterations of Algorithm 5.2, the following tighter lower bounds for
the solution of the CARE (1.4) can be obtained:

7. — | 0-1109 02470
' 02470 0.8562

M, = [ 0.1228 0.2442 }

0.2442 0.8801

It can be seen that as more iterations of the algorithm are carried out, the
bounds become tighter.
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Example 2: Q is nonsingular [54, Example 1]
Consider the CARE (1.4) with:

105 0 12 110
=% 2s] 2-[8] e-[o3]
For these system matrices, the unique positive definite solution of the CARE
(1.4) is:
P 106989 0.1228
exact = | 01228 0.5879 |

The minimal and maximal eigenvalues, trace and determinant of the ex-
act solution of the CARE with the above data are A,(Pepes) = 0.5081,
M(Pezact) = 0.7767, tr(Pegees) = 0.5081, and det(P.yeq) = 0.3946 respec-
tively. With n = 0.8871 and a = 1.5, the lower matrix bound P, for the
solution P of the CARE (1.4) is found by Theorem 5.1 to be

p. - | 03390 0.0490
el = 1 0.0490 0.2229 |-

With a = 2, the lower matrix bound P, is found by Theorem 5.2 to be

P = [ 0.4081 0.0590
2= 1 0.0590 0.3165 |

With 3 = 3.5, the lower matrix bound P,.3 is found by Theorem 5.3 to be

[ 0.4733 0.0778 |

Ferta = | 00778 03475

Using two iterations of Algorithm 5.3, the following tighter lower matrix
bounds for the solution of the CARE (1.4) can be obtained:

N, — | 05140 0.0719
1= 100719 0.3625 |’

N. = | 0-5201 0.0708
27 1 0.0708 0.3655 |-

The lower bound derived in [45] gives:

0.1651 0 ]

p Z[ 0 01651
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The lower bound proposed in [57] gives:

0.1710 0
P?-[ 0 0.1710]'
The bounds will now be compared with the lower bound F.;4 proposed in
[58]. Some choices of the tuning matrix R, were listed in [58] to allow simpli-
fied calculation of the bound P,.4. These choices are re-listed in the following
table:

R, G Range of parameter ¢
(21-BBT)" 1 0 < € < ATH(BBT + AQ—1AT)
(tQ- BBT)_I 1Q 0<e< A (BBT + AQ1AT)QY

(1AAT - BBT) 2. AAT 0 < e < A\TY[(BBT 4+ AQ1AT)(AAT)™ ]

17 (BBT + D' € > M(A7Q7'A)

Q (BBT +1@-1)"" 0 < e < ATHATQAQ™)

Q! BBT + Q)" 0 < e < ATHATQ1AQ™Y)
Q :
(AAT)! (BBT +1447)"" 0<e<M(Q)
e(AQAT) (BBT +14QAT) " 0< e < X2(Q)

Table 5.1: Simple choices of R; together with the corresponding matrices G
of Pc,-14
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With R, = (LI — BBT) " and ¢ = 0.1, P has the lower bound Pers given

by
0.2911 0.0322
Pz [0.0322 0.4863]'

With R = (%Q - BBT) ™ and € = 0.1, P has the lower bound P, given

0.1964 0.0100
Pz [0.0100 0.1849]'

With R; = (14A7 ~ BB”)" and ¢ = 0.02, P has the lower bound Poru
given by: )

0.6473 —0.0454 |
| —0.0454 00367 |

With R, = 11 and € = 4, P has the lower bound Py given by:

P>

[ 0.3419 —0.0255 |
| —0.0255 0.5436 |

With R; = eQ and € = 0.1, P has the lower bound P, given by:

[ 0.2031 0.1709 ]
| 0.1709 0.4620 |-

P>

P2

With R; = eQ ! and € = 0.5, P has the lower bound P, given by:

[ 0.3348 0.0771 ]
| 0.0771 0.5661 |

Pz

With R, = ¢(AAT)"! and € = 0.5, P has the lower bound P4 given by:

0.3358 —0.0186 ]

Pz [ ~0.0186 0.4164
With R, = ¢(AQAT)™! and € = 0.5, P has the lower bound ¥4 given by:

0.3342 —0.0075 ]

Pz [ ~0.0075  0.2680

From the above numerical results, one can see that the presented lower
bounds are tighter than many existing results for some cases.
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5.2 New Upper Matrix Bounds for the So-
lution of the Discrete Algebraic Riccati
Equation

Consider the DARE (1.8)

P =AT(I + PBBT) 'PA+Q

with @ a given positive semidefinite matrix. Viewing the literature, there
appear to be many upper matrix bounds available for the solution of the
DARE [9,26,33,43,47,52,53,57,63,67]. However, these upper hounds are only
valid under conditions which are more conservative than the fundamental
existence conditions for the solution of the DARE. Therefore, this section
develops an upper matrix bound for the solution of the DARE which is al-
ways calculated if its solution exists. The derivation of these bounds make
use of the fact that if (4, B) is a controllable (or stabilizable) pair, then there
should always exist a matrix K such that A+ BK is a d-stable matrix. This
is a well-known fact in control theory, and has been employed in the solution
of a number of control problems in the literature; one particular example is
in [34], where this idea has been used to derive an upper matrix-type bound
for the CARE which always works if its solution exists. The results derived
in this section can also be found in [16].

Theorem 5.4: Let £ be the positive semi-definite solution of the DARE
(1.6). If 02(A + BK) < 1 then P has the upper bound

P<k(A+BK)Y(A+BK)+Q+ KTK = Py, (5.43)
where the positive constant & is defined by

A(@Q + KTK)
1-0%(A+ BK)

and the matrix K € ™" is chosen to stabilize A + BK.

(5.44)

K

Proof: Define a positive semi-definite matrix A as

A=[K+ I+ BTPB)'BTPA|"(I + BTPB)[K + (I + BTPB)' BT PA]

=KT'K + KT"BTPBK + ATPBK + KTBTPA + ATPB(I + BTPB)'BTPA >0
(5.45)
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where K € R™*", Using the DARE (1.6), (5.45) becomes
P < ATPA+ K"K + KTBTPBK + ATPBK + KTBTPA+Q (5.46)
By use of the matrix identity
(A+ BK)TP(A+ BK) = ATPA+ ATPBK + KTBTPA+ KTBTPBK
(5.46) becomes

P<(A+BK)P(A+BK)+Q+ KK (5.47)
By making use of (2.3), (5.47) becomes
P < \(PYA+BK)(A+BK)+ Q@+ K"K (5.48)

Introducing (2.1) to (5.48) gives

M(P) € M{M(PYA+BK)T(A+BK)+Q+ KTK}
< o} (A+BK)\(P)+ M (Q + KTK) (5.49)

If 02(A+ BK) < 1 then (5.49) infers A\;(P) < k, where & is defined by (5.44).

Substituting (5.44) into (5.48) results in the bound (5.43). This completes
the proof of the theorem.

Having developed the upper bound Py of Theorem 5.1, the following iter-
ative algorithm to derive tighter upper matrix bounds for the solution of the
DARE (1.6) is suggested. Before doing so, first consider the modified DARE
(1.8). Using this transformed DARE, together with (2.5), provides the fol-
lowing iterative algorithm to obtain sharper upper matrix solution bounds
of the DARE (1.6).

Algorithm 5.4:
Step 1: Set My = Py, where Py, is defined by (5.43).
Step 2: Calculate

M, = AT(I + Mk_lBBT)_le_lA +Q k=12,... (5.50)

Then M, are upper solution bounds of the DARE (1.6). In fact, as k — oo,
M1 = My and My = limg_,0o My, = P, where P is the positive semidefinite
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solution of the DARE (1.6).

—

Proof: Firstly, it will be shown that M; < M,. Setting k = 1 in (5.50)

gives:
M, = AT(I + MyBBT) 'MuA + Q (5.51)
Applying (2.3) and (2.5) to (5.51) gives
My € M(M)AT[I + A (Mo)BBT|"1A+ Q@ (5.52)

Now, let N = AY>(My)I1. By Applying the matrix inversion formula ((2) in
[26]) to (5.52), and following along the lines of the proof of Theorem 5.4, itis
found that

My < AT(M\(Mo))A — M (Mo)ATNB[I + BTN?B]"'BTNA+Q
= ATN2A — ATNzB[I+ BTNZB]—IBTN2A+Q
= ATN?A —~ [K 4+ (I + BTN?B)"'BTN?A|"(I + BTN?B)[K+
(I+BTN?B)'BTN2A]+ KTK+KTBTN?BK+ATN?BK +KTBTN%A
< (A+ BK)'N*(A+ BK)+(Q + KTK)
= M(Mp)(A+ BK) (A + BK) + (@ + KTK). (5.53)
Application of (2.1) to (5.53) gives

< ko}(A+ BK)+ \(Q + KTK)

=n{l—w}+z\l(Q+KTK)=n (5.54)
where the condition ¢2(A + BK) < 1 and (5.44) have been employed. Sub-
stituting (5.54) into (5.53) gives

M; < k(A+ BK)Y(A+BK)+ (Q+ KTK)= M,

Therefore, it has been completely proven that M; < M,. Assume now that
M;_1 < Mj_3. By (5.50) and use of (2.5), it is implied that

M, = AT(I + Mk_lBBT)-le_lA +@Q
< AT(I 4 My_2BBT) "M A+ Q = M;_;.
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One can conclude, by means of induction, that M, < My_; < ... < M; <
M. Clearly, we have M, > 0 for any k. Along the lines of Theorem 1 in
[26], it can be seen that Mj is monotone decreasing and bounded, so there
exists M, > 0, with My, = limy_,o M}, such that

Moo = AT(I + MooBBT) "M A+ Q.

Here, M, is merely the DARE solution with P replaced by M,,. Hence, it
can be concluded that this algorithm can obtain the exact solution of the
DARE.

Even though K is chosen to stabilize A + BK, it is not always possible
to fulfill the condition ¢2(A + BK) < 1. To get around this problem, a free
matrix D will be utilized in the following theorem and corollary.

Firstly, the DARE (1.6) is modified, using the similarity transformation,
to obtain the following modified DARE:

P=ATPA-APBUI+B PB)"B'PA+Q (5.55)
where P = D"TPD"!, A = DAD™', B= DB and Q = D"TQD™!, and D
is a nonsingular matrix.
Theorem 5.5: The solution P of the DARE (1.6) has the following up-
per matrix bound on its solution:
P < u(A+ BK)YYDTD(A+ BK)+ Q+ K"K = Pju> (5.56)

where K is chosen to stabilize A + BK, the nonsingular matrix D is chosen
so that 0[D(A + BK)D!] < 1, and the positive constant y is defined by

M[DT(Q+ KTK)D™Y]

1—oAD(A+ BK)DY|’ (5.57)

i

u

Proof: By applying the method of Theorem 5.4 to the modified DARE
(5.55), the following upper bound for P can be obtained:
P<uA+BR)TA+BR)+@+EKK) (5.58)

where p is defined by (5.57), and K = KD~!. Reverting to the original
matrices in (5.58) and then applying (2.4) leads to the upper bound (5.56).
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This finishes the proof of the theorem.

Corollary 5.1: Based on the analysis of Theorem 5.5, the following up-
per eigenvalue bounds for the solution of the DARE (1.6) are obtained:

M(P) < M{u(A+ BK)TDTD(A+ BK)+Q+ KK}, i=1,2,...,n

tr(P) < tr{u(A+ BK)"D"D(A + BK) + Q@ + KTK},
det(P) < det{u(A+ BK)"DTD(A+ BK) + Q + KTK}.

Following the development of Theorem 5.5, the following iterative algorithm

is suggested to derive more accurate upper matrix solution bounds of the
DARE.

Algorithm 5.5:
Step 1: Set My = Py.2, where Py, is defined by (5.56).
Step 2: Calculate

My=AT(I+M, «BBY)*M;_1A+Q k=12,...

Then M; are upper solution bounds of the DARE (1.6). In fact, as k — oo,
M1 = My and M, = limy_o M = P, where P is the positive semidefi-
nite solution of the DARE (1.6).

Step 3: If M,,, = M, then stop this procedure, and take M, as the
more precise estimate.

Proof: The proof of this algorithm parallels that of Algorithm 5.4, and
is therefore omitted.

Remark 5.7: When A is stable, X = 0 and D = I, the results obtained in
this chapter decompose into the upper matrix bounds for the DARE reported
in [33]. Therefore, this work can be considered to be a generalization of the
upper matrix bounds presented in [33].

The following upper bound was reported in [53]:

A(Q)
P<i— o7 &3) e A)ATA +Q (5.59)
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where = \(AT[Q* + BBT|"'A + Q). The caleulation of bound (5.59)
has to assume that @ is nonsingular and (i) BB7T is nonsingular and 1 +
no2(B) > o3(A) or (ii) BB7 is singular and 0?(A4) < 1. It can be seen that
when K = 0 and D = I, the bound (5.56) is identical to the bound (5.59)
when BBT is singular. In these cases, the resulting bounds only work when
02(A) < 1. Furthermore, when K = 0 and D = [ in (5.56), and when BBT is
nonsingular, the bounds (5.56) and (5.61) become, respectively, the bounds
Py, and Py,, where:

))
Py = T_—‘%ATA +Q

_ A(@) T
= T -a@m” At e
In this case, we have Py, < Py, so the bound (5.59) gives the tighter solu-
tion estimate than the bound (5.58) for this case. Furthermore, we have, for
this case, that the bound Py; only works when 02(A) < 1, whilst the bound
Py2 only works when 1 + no2(B) > 02(A) and Q is nonsingular. Of course,
non-zero values of the matrices K and D can still be used to deal with the
cases that 07(A) < 1 and 0?(A + BK) < 1 are not satisfied.

When BBT is nonsingular, one can choose K = —BT(BBT) 1A and D=1
in the bound (5.56), which results in the following upper matrix bound for
the DARE:

P < AT(BBT) 1A+ Q. (5.60)

The bound (5.60) is the same as the upper matrix bound (25) for the DARE
proposed in [43]. Hence, the bound (5.62) can be considered to be a special
case of the upper matrix bounds (5.45) and (5.58) for these particular choices
of K and D. For this particular case it can also be seen that the remaining
upper matrix bounds in the literature [9,26,47,52,57,63,67] are tighter than
the bounds Py and Pz, provided that the restrictions for validity are ful-
filled for these bounds. A general comparison of the bounds Py.,; and P2
with Pj.3 is not possible by any mathematical method, due to the type of
bound, the involvement of the matrices K and D, and the assumptions re-
quired to calculate these bounds.

For the remaining upper matrix bounds existing in the literature [9,26,47,52,
57,63,67], one can see that the presented bounds in this chapter also cannot be
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compared with these existing ones by any mathematical method. However,
comparison via a numerical example is always possible. Such comparisons
are given, when possible, in the numerical examples that follow later in this
section.

Remark 5.8: The condition 02[D(A + BK)D™!] < 1 is equivalent to
M[DT(A+ BK)TDTD(A+ BK)D™] < 1, which is equivalent to

DT(A+ BK)Y"'DTD(A+ BK)D ! < I. (5.61)
Using (2.4), (5.61) is equivalent to the condition
(A+ BK)'Pp(A+ BK) < Pp (5.62)

where Pp = DTD. Since the pair (A, B) is assumed to be controllable,
there will always exist a matrix K stabilizing A + BK. Then, since A+ BK
is stable, there will always exist a symmetric matrix Pp yielding (5.62) by
the Stein Theorem [68]. Therefore, the upper bounds of Theorem 5.5 and
Corollary 5.1 are always calculated if the solution of the DARE exists. In
fact, such a free matrix D may be constructed via the following procedure:
Step 1: Choose a matrix K such that A+ BK is stable.

Step 2: Select a positive definite matrix Pp satisfying the inequality:

(A+ BK)TPp(A+ BK) < Pp. (5.63)

In a similar way to [34], one way of choosing such a matrix Pp to yield (5.63)
is to use an LMI satisfying

(A+ BK)TPp(A+ BK) — Pp < —M

where M is a positive definite matrix.

Step 3: Having selected a positive definite matrix Pp which satisfies (5.63),
the constant x and upper bound Py, defined by (5.57) and (5.56) respec-
tively, are:

B M[DT(Q+ KTK)D™
K =1_"N[D7(A+ BK)YDTD(A+ BK)D-1]

B M[DD-T(Q + KTK))
= 1-n[D-DT(A+ BK)TDTD(A + BK))
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_ M{(DTD)1(Q + KTK)]

~ 1= M[(DTD)-Y(A + BK)TDTD(A + BK)]
_ M[P5(Q + KTK))
T 1-M[PpN(A+ BK)TPp(A + BK)]

and
P < u(A+ BK) Pp(A+BK)+Q+ K"K

where (2.9) and the fact [68] that (XY) = Y~!X~! for nonsingular X,Y
have been taken into account.

Having chosen a matrix K to stabilize A+ BK, one, other method for finding
such a matrix D is to let D be symmetric, find an expression for Pp = DT D,
and then use trial-and-error to see which possibilities of D satisfy the inequal-
ity Pp— (A+BK)TPp(A+ BK) > 0. One can use the determinant criterion
{68] for a positive definite matrix to aid one in finding such a possibility of D.

Remark 5.9: The tightness of the upper bounds developed here depend
on the choice of the matrices K and D. It is hard to say which choice of K
and D give the best upper bound for the DARE (1.6). Therefore, the choice
of matrices K and D which give the optimal upper bound remains an open
question. However, the choice of K and D which give the optimal bounds
could be considered as an optimization problem. Besides, for a matrix K
chosen to stabilize A + BK and a matrix Pp selected to yield the condition
(5.63), one may easily obtain tighter upper matrix bounds by successive use
of Algorithms 5.4 or 5.5. It should also be noted that if 0?(A + BK) < 1
is satisfied for a matrix K chosen to stabilize A + BK, then a simple choice
of D = I will suffice in the calculation of the bounds, and Theorem 5.4 can
be used. Furthermore, when A is a stable matrix and 02(A) < 1, the upper
matrix bounds reported in {33] may be referred to.

Remark 5.10: In the literature, there exists many methods to construct
a matrix K such that the matrix A + BK has arbitrarily assigned eigen-
values. For example, one may use pole placement techniques to stabilize
A + BK, which are discussed, for example, in [73].

Remark 5.11: When B = 0 and A is a d-stable matrix, the DARE be-
comes the DALE (1.5). Then, with K = 0, the bounds (5.43) and (5.56)
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become the following upper matrix bounds for the DALE, respectively:

M(Q)
M(DTQD™Y)
P<i—m (DA D_I)ATDTDA +Q. (5.65)

The bound (5.64) is the same as the bound (11) proposed in [47]. The bound
(5.65) is a generalisation of the bound (5.64) with the free matrix D involved.
The bound (5.64) is valid if 02(A) < 1, whilst the bound (5.65) requires the
condition ATDTDA < DTD for a nonsingular matrix D, as defined above.
This second condition is always satisfied.

Remark 5.12: A possible alternative to computing the bounds (5.43) and
(5.56) is to consider the following discrete Lyapunov-type equation:

Pgx =(A+ BK)TPx(A+ BK)+Q+ KTK. (5.66)
Subtracting (5.47) from (5.66) gives
Px — P > (A+ BK)T(Px — P)(A + BK) (5.67)
(5.67) implies
Pk —P=(A+BK)T(Px - PY(A+BK)+ M (5.68)

where M is a positive semidefinite matrix. Since A+ BK isstableand M > 0,
(5.68) has a positive semidefinite solution by the Stein Theorem [68,73]. As
such, we have Px — P > 0, which implies that Px > P, i.e., Pk is an upper
matrix bound for the solution of the DARE. However, this approach may
require solving high order linear algebraic equations like the DALE, in which
case the bounds (5.43) and (5.56) may be preferrable, as in the case of the
DALE. Furthermore, Px may be used as the initial matrix for Algorithm 5.4.

5.2.1 Numerical Examples

In this subsection, numerical examples are given to demonstrate the effec-
tiveness of the upper matrix bounds, and make comparisons, when possible,
with existing results.

82



Example 1 (Example 1, [9])
Consider the DARE (1.6) with:

_[145 —0.45 _[1 _[o025 019
‘4“[ 10 ] B‘[o]’ Q“[o.w 0.1444]'

Then, the unique positive definite solution of the DARE (1.6) is:

P [ 1.5989 —0.1802]
exact = .

—0.1802 0.2690

with A(Pegat) = 0.2450, A\ (Pugae) = 1.6229, tr(Prser) = 1.8679 and
det(Pepact) = 0.3976.

When K = [ -1 04 ], the upper bounds Py for the solution of the DARE
(1.6) is found from (5.66) to be

p. - | 16879 —0.0559
K=1 -00559 0308 |-

Using one iteration of Algorithm 5.4 gives the following tighter upper matrix
solution bound for the DARE:

M, =[ 1.6035 —0.1803}

—0.1803 0.2716

For M,, we have A\n(M;) = 0.2476, A\, (M) = 1.6275, tr(M;) = 1.8751 and
det(M;) = 0.4030. The resulting bounds are very close to the real values.

Since the matrix BBT is singular for this case, the upper matrix bounds
of [43,47,57] cannot work for this case. Since o2(B) = 0 and o3(4) > 1,
the upper matrix bound of [53] cannot work either. Since A\.(Q) = 0 and
02(A) < 1, the upper matrix bound of [52] cannot work here. Because
7= M{AT[1 — BOATH{Q)! + BTB)~1BT]|A} > 1, the upper matrix bound of
[63] also cannot work for this case. For this example, the matrix A is not sta-
ble, so the upper matrix bound of [33] cannot be applied here. Furthermore,
by = 20%(B) — 2\ [03(B)ATA — ATBBT A] = 0, so the upper matrix bound
of [67] also cannot be used. Since the results of [9] are merely a special case
of those in [26] with M = al, where a is a positive constant, only consider
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the results of [26] will be considered.

With M = [ 041 g; ], the upper matrix bound proposed in [26] gives:
249 -0.341
P= [ ~0.341 0.3064 ]

if there exists a positive semi-definite matrix M such that AT(I4+MBBT)"'M A+
QM.

Example 2 (Example from [59])
Consider the DARE (1.6) with:

1.1 0 2 31
A"[o.l o]’ B“[o]’ Q‘[1 4]'
Then, the unique positive definite solution of the DARE (1.6) is:

3.3340 1
Paact = | 5% 1]

with An(Pozact) = 2.6130, Ai(Pesact) = 4,7210, tr(Pegact) = 7.3340 and
det(Prgoce) = 12.336.

When K = [ -0.5 0.1 ], the upper bounds Py for the solution of the
DARE (1.6) is found from (5.66) to be

P = 3.3456 1.0377
K= 11.0377 4.1438

Using one iteration of Algorithm 5.4 gives the following tighter upper matrix
solution bound for the DARE:

33358 1
=[]

For M,, we have A\, (M;) = 0.2476, A\ (M;) = 1.6275, tr(M,;) = 1.8751 and
det(M;) = 0.4030. The resulting bounds are very close to the exact values.
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By using Algorithm 5.4 again, the following tighter bound for the solution
of the DARE is determined:

P5M2=[3’3340 1]

1 4

which is the same as the exact solution of the DARE (1.6). Further use of
Algorithm 5.4 will only give the exact solution of the DARE, so the iterations
can be terminated.

For this example, the matrix BBT is singular, so the upper matrix bounds of
[43,47,57] cannot work. Also, 0(A4) > 1, so the upper matrix bound of [53]
also cannot work. The matrix A is not stable for this example, so the upper
matrix bounds of [33] cannot be applied here. Furthermore, since the matrix
A is singular, the upper matrix bounds of [9] cannot work either. However, it
is found that the upper matrix bounds of [26,52,63,67] can work for this case.

For this case, the upper matrix bound derived in [52] gives:

3.3341 1 }

Ps[l 4

The upper matrix bound proposed in [63] gives the estimate:

33377 1 ]

Ps[l 4

For this example, the upper matrix bound presented in [67] gives:

3.3349 1
pefsno 1]
3.5

WithM=[ 1

l ], the upper matrix bound proposed in [26] gives:

Ps[3'4133 1].

1 4

if there exists a positive semi-definite matrix M such that AT(I+MBBT)"'M A+
Q<M.
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5.3 Summary

The successful derivation of new matrix bounds for the continuous and dis-
crete Riccati matrix equations have been addressed in this chapter. More
precisely, the following results have been obtained:

(1) New lower matrix bounds for the CARE solution. These bounds always
exist if the CARE has a unique non-negative definite stabilizing solution, and
overcome the restriction of nearly all existing lower matrix bounds, that is
that @ is positive definite. A comparison in the second numerical example
suggests that these bounds can be tighter than some lower matrix bounds
existing in the literature, although the examples also suggest it may be pos-
sible and worthwhile seeking to improve the tightness of such bounds.

(2) New upper matrix bounds for the DARE solution. The upper bounds
of Theorem 5.5 and Corollary 5.1 always exist if the DARE has a unique
non-negative definite stabilizing solution, whilst all upper matrix bounds for
the DARE reported in the literature [9,26,33,43,47,52,53,57,63,67] are only
valid under assumptions in addition to the usual existence conditions for the
DARE solution.
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Chapter 6

Matrix Bounds of the
Continuous Coupled Algebraic
Lyapunov and Riccati
Equations

In this chapter, the estimation problem of solution bounds for coupled Lya-~
punov and Riccati matrix equations arising from the analysis and design of
stochastic control systems will be considered. Many of the techniques em-
ployed for Lyapunov and Riccati equations from a deterministic system shall
be applied to the stochastic counterpart here.

6.1 Lower Matrix Bounds for the Continuous
Coupled Algebraic Lyapunov Equation

Consider the CCALE (1.9)

ATP,+ PA; + Y di; P = —Q;
i
with Q; = QT >0, Vi, i € S and S = {1,2,...}. Recall that the constants
d;; are such that di; < 0, di; > 0 for i # j, and T jegdi; = 0. Viewing
the literature, the only available lower matrix bounds for the CCALE are
those which are derivable from the lower matrix bounds for the CCARE
(1.10) when B; = 0, Vi. The lower matrix bounds proposed in [13] and [25]
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yield the trivial lower bound F; > 0. Recently, an improved lower matrix
bound was reparted in [61] which yields a nontrivial lower matrix bound for
the CCARE when @; > 0; for the case of the CCALE when B; = 0, this
bound becomes meaningless. Therefore, it appears that no nontrivial lower
matrix bound exists for the CCALE. By extension of the method of Section
5.1, this section therefore presents two nontrivial lower matrix bounds to im-
prove this drawback and yield nontrivial lower matrix bounds for the solution
of the CCALE. The bounds do not require any condition on the coefficient
matrices for them to work, other than that the solution of the CCALE exists.

Theorem 6.1: Define matrices V; by
where ¢; are positive constants. Let P; be the positive semi-definite solutions
of the CCALE (1.9) for i = 1,2,...,n. Then P; has the lower bound

P>vT (A:’rpioAi + ;Y di;Pjo+o?Pp+ aiQi) Vit = Pyceorw (6.2)

J#i
where the positive semi-definite matrix P is defined by
Po=aVTQiV (6.3)

Proof: Using the definition of the matrix V; from (6.1), the following matrix
identity can be defined

VIPV; = ATP.A; — as(AT P + PA) + o} P; (6.4)
Using the CCALE (1.9), (6.4) becomes
VIPV: = ATPA; + ;Y diP; + 0P + i Qs (6.5)
J#i

Pre- and post-multiplying both sides of (6.5) by V;”T and V;™! respectively
gives
P = ‘/;T (ATRA, + o; Z d,'ij “+ a,ZR “+ a,'Q,') ‘/,-_1. (6.6)
J#i
From (6.6), one has P; > P, where Py is defined by (6.3). Substituting
(6.3) into (6.6) results in the bound (6.2). This completes the proof of the
theorem.
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Following the development of Theorem 6.1, we can develop the following
computational algorithm to derive sharper lower matrix bounds for the so-
lution of the CCALE (1.9).

Algorithm 6.1:
Step 1: Set S,-(o) = Py, where F; is defined by (6.3).
Step 2: Calculate
S® =y T (A?S.?*“l’m +ai 3 diS T + af s 4+ aiQ,-) Vil k=12,
J#i
(6.7)

Then S{¥ are also lower bounds for the solution of the CCALE (1.9). In

fact, as k — oo, S¥ — P, where P, is the positive semidefinite solution of
the CCALE.

Proof: Firstly, P, > a;V;7Q;V; ' = S®. Then, using (6.7), we have
P=V" (A,TP,-Az- +a; Y di; P+ o} P + a.'Q,-) Vit
J#Ft
v (A,-Ts,f")Ai +a Y diS0 + oS + a.-Qi) V=50 > 5 (6.8)
J#Fi

Now assume F; > S,v(k”l) > S,-(k*z). Then, by following the routine of (6.8)
and remembering (6.7), we get

P=VT (A,'TRAi +a:; Y diPj+aiPi + a,-Q,-) Vit
J#i

>V (A,rs,i’“‘”A,- +oy Y dS Y + oS + a,-Q,-) Vit=s®
J#Fi

>V, (A,.T SE DA+ 00 Y S + afSED + aiQ.-) Vil= gl
i

By means of mathematical induction, it can be concluded that 0 < SO <

SM <. <8% V<M< Pfori=12,...,sand k=1,23,.... Since
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S*) is monotone increasing and bounded, there exists S such that
58 =y, T (A,-Ts.!""’A.- + i Y di S + ol S + a.er) vVl (6.9)
J#i

(6.9) is equivalent to (6.6) with S©° = P, so it can be concluded that
P; =limg oo S,-(k'). This finishes the proof of the algorithm.

A different lower bound is obteined as follows.

Theorem 6.2: The positive semi-definite solution P; of the CCALE (1.9)
has the following lower bound

P2VvT (Z(Vi + 20T Pio(V + 20:1) + 40; ¥ dij Pjo + 204Q; | V™! = Pryeorrz

I#
(6.10)
where the matrix V; is defined by (6.1) and the positive semi-definite matrix
Py is defined by (6.3).

Proof: Using the definition of V; from (6.1), the CCALE (1.9) can be rewrit-
ten as

(Vi+ al)TR + P(Vi+ ad) + 3 diiF + Qi =0
i
‘/,-TP,' + BV, + 2a;P; + Zdﬁ})j +Q:;=0 (6.11)
#i

Multiplying both sides of (6.11) by 2; and adding VT BV gives

VIPV;+20,PV;+20;VT P+ 402 P+ 20; Y di; P +20;Q; = VI PV; (6.12)
i

By realizing that
(Vi + 20:D)TP(V; + 2a:1) = Vi PV + 20:PV; + 205V i+ 402 P,
(6.12) becomes

VIPV, = (Vi + 20: )T B(Vi + 20: 1) + 20, 3 dij Py + 205Q; (6.13)
J#e
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Pre- and post-multiplying both sides of (6.13) by ¥;™T and V;™! respectively
leads to

P = V'-"T ((V; + 2a,I)TP.(V. + Za.-I) + 20 2 d,'j})j + 2&,‘Qf) ‘/i—l. (614)
2z

From (6.14) we obtain P; > 2a;V;"7Q,V;” = 2P,, where Py is defined by
(6.3). Substituting this bound into (6.14) leads to the bound (6.10). This
finishes the proof of the theorem.

Having completed the proof of Theorem 6.2, the following computational
algorithm can be developed for deriving more precise lower solution bounds
of the CCALE (1.9).

Algorithm 6.2:
Step 1: Set 5 = 2P, where Py is defined by (6.3).
Step 2: Calculate

:S'—gk) = V;-—T ((A, + aiI)T-S_gk—l) (A. + a.-I) + 204 Z dijgg-k_l) + 2aiQ,-) V,-_l,
i#]

k=1,2,3,...

Then gfk) are also lower solution bounds for the CCALE (1.9). In fact, as

k — oo, _S—Ek) — P,, where P, is the positive semidefinite solution of the

CCALE.

The proof of this algorithm is similar to that of Algorithm 6.1, and is there-
fore omitted.

Remark 6.1: The only existing meaningful lower matrix bound for the
CCALE seems to be P, > 0. This is trivial, and the least sharp bound pos-
sible. Our bounds for the CCALE are always calculated if the solutions of
the CCALE exist, and always yield nontrivial lower matrix bounds for the
CCALE, even when @; > 0. Also, these bounds are always tighter than
P; > 0, and are concise.
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Remark 6.2: From (6.2) and (6.10), it can be seen that

Pycerra =Vi'T (A?PiOA:‘ +a;Y_di;Pjo+ o P + aiQi + A] PoAs + ai Y di; Pjo+
px Py
20;(AT Py + P A;) + a2 Pp + a‘x’Qi) vi?

= Pycorn + V7 ((A-' + a;I)T Pio(A;i + o) + o (A.Tﬂo + PoAi+ Qi+ d-'ijo)) Vit
i#j

Therefore, if (A;+a;I)T Po(Ai+a;I)+au (A,TP,'o + PioAi + Qi + Ty d{jf)jo) >

0, then .P(,')CCLLQ is tighter than <P(i)CCLL1, whereas if (A; + aiI)TI)iO(Ai +

a;I) + ai(AT Pio + PioAi + Qi + iz dij Pjo) < 0, then Pyyccrry is sharper
than PuccoLis-

6.1.1 Numerical Example for the CCALE

In this subsection, a numerical example is given to show the effectiveness of
the derived lower matrix bounds for the solution of the CCALE, and when
possible, give comparisons with existing bounds.

Consider the CCALE (1.9) with:

-2 1 -3 0 ~05 05
Al:[ 0 —3]’ A2={ 1 —4]’ (dfﬂ')"JGS:[ 0.5 —0.5]

6 05 13 26.5 _
Ql:[o.s 12]’ Q2=[26.5 62.5]’ §=1{12

Then the exact solutions Piezect and Phezac: of the CCALE with these system
matrices are:

21 4 5
Ple:vact=[1 3]7 and PZGW:[5 8]

The only available lower matrix bounds for the solution of the CCALE is,
to the best of our knowledge, P; > 0. This is a trivial bound. However, the
bounds P;; and P;; can be applied to this case to give nontrivial solution
estimates. By Theorem 6.1 the bound Py ccrr is found, for P, and P, to

be:
1.1277 0.4152

2.5808 3.1499
>
P12[0.4152 1.2023] and PZ-[ ]

3.1499 4.2088
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By Theorem 6.2 the bound Fyyccrrz is found, for £ and £, to be:

1.6627 0.6198

bz [0.6198 2.0602

] and P, > [3.7861 4.7848]

4.7848 6.8175

For this case, it is seen that Py, gives the better solution estimate for both
P, and P,. Using 2 iterations of Algorithm 6.2, the following tighter lower
matrix bounds for the solution matrices P, and P, are obtained:

5@ _ [ 1.9388 0.9315
' T 09315 2.7347
@ _ [ 3.9233 4.9780
2 T {49780 7.5367
5@ _ [ 1.9847 0.9880
' 7] 0.9880 2.9130
5@ _ [ 3.9722 5.0151
? T | 50151 7.8226

From the above calculations, it can be seen that as more iterations are per-
formed, the bounds become tighter.

6.2 Lower Matrix Bound for the Continuous
Coupled Algebraic Riccati Equation

Consider the CCARE (1.10)

ATP,+ PA;— PBBTP + Y dii Py = —Q;
#

with Q; = QT >0, Vi € S, and S = {1,2,...}. Recall that the constants d;;
are such that d;; < 0, dy; > 0 for i # j, and 3¢5 dij = 0. In [13] and [25], the
lower bound P; > 0 was reported for the CCARE (1.10), which is obvious.
Recently, an improved lower matrix bound for the CCARE was reported in
[61], which provides a nontrivial lower matrix bound for the CCARE (1.10)
when Q; > 0. In this section, Lee’s method [55] is extended to derive a less
conservative, possibly sharper lower matrix bound for the CCARE which is
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always calculated if Q; > 0. A numerical example is then given to demon-
strate the effectiveness of the derived bound, and a comparison is also made
with the lower bound derived in [61].

Theorem 6.3: Let P; be the positive definite solutions of the CCARE (1.10).
Then P, has the lower bound

1/2
P> G',-—1 [Gi (E dij?(j)o + Qi — A,-TR,‘A,') G,] G:!' = Pocri (6.15)
J#i

where the symmetric positive definite matrix R; is chosen such that Q; >
ATR;A;, and the positive definite matrices P;o and G; are defined by
Po = GYGH(Q: — ATR:A)GiY*G Y, (6.16)

G: = <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>