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Abstract. We study the strong and strutter trace distances on Markov
chains (MCs). Our interest in these metrics is motivated by their relation
to the probabilistic LTL-model checking problem: we prove that they
correspond to the maximal differences in the probability of satisfying the
same LTL and LTL-x (LTL without next operator) formulas, respectively.
The threshold problem for these distances (whether their value exceeds
a given threshold) is NP-hard and not known to be decidable. Neverthe-
less, we provide an approximation schema where each lower and upper-
approximant is computable in polynomial time in the size of the MC.
The upper-approximants are Kantorovich-like pseudometrics, i.e. branch-
ing-time distances, that converge point-wise to the linear-time metrics.
This convergence is interesting in itself, since it reveals a nontrivial re-
lation between branching and linear-time metric-based semantics that
does not hold in the case of equivalence-based semantics.

1 Introduction

The growing interest in quantitative systems, e.g. probabilistic and real-time
systems, motivated the introduction of new techniques for studying their oper-
ational semantics. For the comparison of their behaviour, metrics are preferred
to equivalences since the latter are not robust with respect to small variations of
the numerical values. Behavioral metrics generalize the concept of equivalence
by measuring the behavioral dissimilarities of two states.

Several proposals of behavioral distances [10, 12, 8, 20, 13] measure the differ-
ence according to this general schema: d(u, v) = supφ∈Φ |φ(u)−φ(v)|, where Φ is
a suitable set of properties of interest and φ(u) denotes the value of the property
φ evaluated at state u. A logical characterization as above is desirable in particu-
lar when the distances are defined in a different way (e.g., as a fixed-point [10, 8,
13], a Hausdorff lifting [8] or games [9]) because it relates them in terms of a set
Φ of expressible properties. Many logical characterizations in the literature use
quantitative logics, whose semantics is given in terms of real-valued functions.
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Such real-valued logics are not supported by quantitative model checking tools
(e.g., PRISM [15] and Uppaal [4]). Therefore, it is desirable to also have logical
characterizations relating the distances to the logics adopted by these tools.

In this work we are interested in the relation with the probabilistic model
checking problem for LTL [21] against Markov chains (MCs). In particular we
provide two logical characterizations. The first relates the trace distance δt, which
generalizes trace equivalence, to the probabilistic LTL-model checking problem
as δt(u, v) = supϕ∈LTL |P(u)(JϕK) − P(v)(JϕK)|, where P(u)(JϕK) is the proba-
bility of executing a run from u satisfying the formula ϕ. The second relates the
strutter trace distance δst, which generalizes stutter trace equivalence, to LTL-x

(LTL without next operator) as δst(u, v) = supϕ∈LTL-x |P(u)(JϕK) − P(v)(JϕK)|.
An immediate application is that P(u)(JϕK) (i.e., probabilistically model check-
ing ϕ at u) can be approximated by P(v)(JϕK) with an error bounded by δt(u, v),
for any ϕ ∈ LTL. This may lead to savings in the overall cost of model checking.

This further motivates the study of efficient methods for computing these
distances. Unfortunately, in [19, 6] the threshold problem for the trace distance is
proven to be NP-hard and, to the best of our knowledge, its decidability is still an
open problem. Nevertheless, in [6] it is shown that the problem of approximating
this distance with arbitrary precision is decidable. This is done by providing two
effective sequences that converge from below and above to the trace distance.
In this paper we provide an alternative approximation schema that, differently
from [6], is formed by sequences of lower and upper-approximants that are shown
to be computable in polynomial time in the size of the MC. With respect to [6],
our approach is more general with the nice consequence that the same result is
obtained for the problem of approximating the stutter trace distance.

Notably, in our construction the upper-approximants are Kantorovich-like
pseudometrics, i.e., branching-time distances. These metrics form a net —a con-
cept used in topology that generalizes infinite sequences— that converges point-
wise to the linear-time metrics. The result is interesting in itself, since it reveals a
nontrivial link (by means of a converging net) between branching and linear-time
metric-based semantics that does not hold when a more standard equivalence-
based semantics on MCs is used instead. This opens new perspectives in the
study of the operational behavior of quantitative systems, and suggests relat-
ing behavioral distances by means of converging nets rather than the standard
‘greater than or equal to’ relation, commonly used in the literature (e.g., in [8]).

The technical contributions of the paper can be summarized as follows.

1. We provide a logical characterization of the trace distance terms of LTL.
This result, differently from previous proposals (e.g. [8, 10]), explicitly relates
the trace distance to the probabilistic model checking problem of LTL formulas.
We show that a similar characterization holds also for the stutter trace distance
on the fragment of LTL without next operator.

2. We construct two nets of bisimilarity-like distances that converge to the
strong and stutter trace distance. This construction leverages on a classical dual-
ity result that characterizes the total variation distance between two measures as
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the minimal discrepancy associated with their couplings. To do so we generalize
and improve two important results in [5], namely Theorem 8 and Corollary 11.

3. We demonstrate that each element of the proposed converging nets is com-
putable in polynomial time in the size of the MC. Moreover, we provide other
two sequences of pseudometrics that, respectively, converges from below to the
two linear distances. Also the lower approximants are proven to be polynomially
computable. The pairs of converging sequences of upper and lower approximants
form the approximation schemata for the problem of computing the strong and
stutter trace distances. The approximation schema for the trace distance im-
proves the one proposed in [6].

2 Preliminaries and Notation

The set of functions from X to Y is denoted by Y X . Any preorder v on Y
is extended to Y X as f v g iff f(x) v g(x), for all x ∈ X. For f ∈ Y X , let
≡f = {(x, x′) | f(x) = f(x′)}. For R ⊆ X×X an equivalence relation, X/R is the
quotient set, [x]R the R-equivalence class of x, and for A ⊆ X, [A]R =

⋃
x∈A[x]R.

Measure theory. A field over a set X is a nonempty family Σ ⊆ 2X closed
under complement and finite union. Σ is a σ-algebra if, in addition, it is closed
under countable union; in this case (X,Σ) is called a measurable space and the
elements of Σ measurable sets. For F ⊆ 2X , σ(Σ) denotes the smallest σ-algebra
containing F . For (X,Σ),(Y,Θ) measurable spaces, f : X → Y is measurable if
for all E ∈ Θ, f−1(E) = {x | f(x) ∈ E} ∈ Σ. The product space, (X,Σ)⊗(Y,Θ),
is the measurable space (X×Y,Σ⊗Θ), where Σ⊗Θ is the σ-algebra generated by
the rectangles E×F , for E ∈ Σ and F ∈ Θ. A measure on (X,Σ) is a σ-additive
function µ : Σ → R+, i.e., µ(

⋃
i∈NEi) =

∑
i∈N µ(Ei) for all of pairwise disjoint

Ei ∈ Σ; it is a probability measure if, in addition, µ(X) = 1. Hereafter ∆(X,Σ)
denotes the set of probability measures on (X,Σ). Given a measurable function
f : (X,Σ)→ (Y,Θ), any measure µ on (X,Σ) defines a measure µ[f ] on (Y,Θ)
by µ[f ](E) = µ(f−1(E)), for all E ∈ Θ; it is called the push forward of µ under
f . A measure ω on (X,Σ) ⊗ (Y,Θ) is a coupling for (µ, ν) if for all E ∈ Σ and
F ∈ Θ, ω(E × Y ) = µ(E) and ω(X × F ) = ν(F ) (i.e., µ is the left and ν the
right marginal of ω). Ω(µ, ν) denotes the set of couplings for (µ, ν).

Metric spaces. For a set X, d : X × X → R+ is a pseudometric on X if for
any x, y, z ∈ X, d(x, x) = 0, d(x, y) = d(y, x) and d(x, y) + d(y, z) ≥ d(x, z); d is
a metric if, in addition, d(x, y) = 0 implies x = y. If d is a (pseudo)metric on X,
(X, d) is called a (pseudo)metric space. We define ker(d) = {(u, v) | d(u, v) = 0}.
For (X,Σ) a measurable space, ∆(X,Σ) can be metrized by the total variation
distance ‖µ − ν‖ = supE∈Σ |µ(E) − ν(E)|. A (pseudo-)metric d : X ×X → R+

is lifted to ∆(X,Σ) by means of the Kantorovich (pseudo-)metric, defined as
K(d)(µ, ν) = min

{∫
d dω | ω ∈ Ω(µ, ν)

}
.

The space of words. Let Xn be the set of words on X of length n ∈ N,
X∗ =

⋃
n∈NX

n, AB = {ab ∈ X∗ | a ∈ A, b ∈ B} (A,B ⊆ X∗) and X+ = XX∗.
An infinite word π = x0x1 . . . over X is an element in Xω. For i ∈ N, define

π[i] = xi, π|i = x0 . . . xi−1 ∈ Xi, and π|i = xixi+1 . . . ∈ Xω. For A ⊆ Xn, the
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Fig. 1. (Left) u and v are stutter trace equivalent but neither bisimilar nor trace equiv-
alent; (Right) δt(u, v) =

√
2/4 (see [6]) and δb(u, v) = 1/2. States are labeled by colors.

cylinder set for A (of rank n) is defined as C(A) = {π ∈ Xω | π|n ∈ A} ⊆ Xω.
For an arbitrary family F ⊆ 2X , let Cn(F) = {C(X1 · · ·Xn) | Xi ∈ F}, for n ≥ 1,
and C(F) =

⋃
n≥1 C

n(F).

If (X,Σ) is a measurable space, (X,Σ)
n

denotes the product space over Xn,
and (X,Σ)

ω
the measurable space over Xω with σ-algebra generated by C(Σ)

(i.e., the smallest s.t., for all n ∈ N, the prefix (·)|n and tail (·)|n functions are
measurable). Note that, the stepwise extension fω : Xω → Y ω of the function
f : X → Y is measurable if f is so. Often, Xn and Xω will also denote (X, 2X)

n

and (X, 2X)
ω

, respectively.

3 Markov Chains and Linear-time Equivalences

In this section we recall discrete-time Markov chains and the notions of strong
and stutter probabilistic trace equivalences on them.

In what follows we fix a finite set A of atomic propositions.

Definition 1. A Markov chain is a tupleM = (S, τ, `) consisting of a countable
set S of states, a transition probability function τ : S → ∆(S) and a labeling
function ` : S → 2A.

Intuitively, if M is in the state u, it moves to a state v ∈ S with probability
τ(u)(v). We say that p ∈ A holds in u if p ∈ `(u). We will use M = (S, τ, `) to
range over the class of MCs and we will refer to it and its constituents implicitly.

An MC can be thought of as a stochastic process that, from an initial state u,
emits execution runs distributed according to the probability P(u) given below.

Definition 2. Let P : S → ∆(Sω) be such that, for all u ∈ S, P(u) is the unique
probability measure1 on Sω such that, for all n ≥ 1 and Ui ⊆ S (i = 0..n)

P(u)(C(U0 · · ·Un)) = 1U0(u) ·
∫

P(·)(C(U1 · · ·Un)) dτ(u) ,

where 1A denotes the indicator function for a set A.

Intuitively, P(u)(E) is the probability that, starting from u, the MC executes a

run in E ⊆ Sω. For example, P(u)(C(u0..un)) = 1u0
(u) ·

∏n−1
i=0 τ(ui)(ui+1).

1 Existence and uniqueness follows by the Hahn-Kolmogorov extension theorem.
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Remark 3. In Definition 2, since C(U0) = C(U0S), the case P(u)(C(U0)) is cov-
ered implicitly. Indeed, P(u)(C(U0S)) = 1U0

(u) ·
∫

P(·)(C(S)) dτ(u) = 1U0
(u) ·∫

1 dτ(u) = 1U0(u), since for all v ∈ S, P(v) is a probability measure. ut
Two states of an MC are considered equivalent if they exhibit the same

“observable behaviour”. In this work we focus on linear-time properties. In this
respect, we recall the most used linear-time equivalences on MCs: strong and
stutter probabilistic trace equivalences.

Definition 4. Two states u, v ∈ S are probabilistic trace equivalent, written
u ∼t v, if for all T ∈ C(S/≡`

), P(u)(T ) = P(v)(T ).

Intuitively, ∼t tests two states w.r.t. all linear-time events, considered up to
label equivalence. This is in accordance to the fact that the only things that
we observe in a state are the atomic properties (labels). Hereafter, T denotes
C(S/≡`

) and its elements are called trace cylinders.

The stutter (or weak) variant of the probabilistic trace equivalence considers
a transition step as “visible” only when a change of the current behavior occurs.
The guiding idea to define stutter events is to replace the notion of “step” with
that of “stutter step”. Formally, this corresponds to change the definitions of
the tail (i.e., the “next step”) and prefix functions over infinite words. Let X
be a set and R ⊆ X ×X equivalence. For n ≥ 1, define the n-th R-stutter tail
function tlnR : Xω → Xω, by induction on n, as follows

tl1R(π) =

{
π|j if ∃j s.t. (π[0], π[j]) /∈ R and ∀i < j, (π[0], π[i]) ∈ R
π otherwise (i.e., π is R-constant) ,

tln+1
R (π) = tl1R(tlnR(π)) .

Intuitively, tl1R seeks for the first tail whose head is not R-equivalent to π[0] (if it
exists!) and tlnR(π) is the n-th composition of it. For example, let π = aaabbbcω,
then tl1=(π) = bbbcω and, for all n > 1, tln=(π) = cω. The n-th R-stutter prefix
function pfnR : Xω → Xn is defined, by induction on n ≥ 1, as pf1R(π) = π[0] and
pfn+1
R (π) = π[0]pfnR(tl1R(π)).

Now, the standard definition of cylinder set for A ⊆ Xn can be turned to that
of R-stutter cylinder set for A (of rank n) as CR(A) = {π ∈ Xω | pfnR(π) ∈ A}.
For a family F ⊆ 2X , denote by CnR(F) = {CR(E1 · · ·En) | Ei ∈ F} the set of
all R-stutter cylinders of rank n over F and CR(F) =

⋃
n≥1 C

n
R(F). If (X,Σ) a

measurable space, we denote by (X,Σ)
ω
R the measurable space of infinite words

over X with σ-algebra generated by σ(CR(Σ)) (i.e., the smallest σ-algebra such
that, for all n ≥ 1, the n-th R-stutter prefix and tail functions are measurable).

Definition 5. Two states u, v ∈ S are probabilistic stutter trace equivalent,
written u ∼st v, if for all T ∈ C≡`

(S/≡`
), P(u)(T ) = P(v)(T ).

Intuitively, ∼st equates the states that have the same probability on all the
≡`-stutter linear-time events, considered up to label equivalence. Hereafter, ST
denotes C≡`

(S/≡`
) and its elements will be called stutter trace cylinders.

By σ-additivity of the measures P(u), for all u ∈ S, it is easy to show that
∼t ⊆ ∼st. Note that, ∼st 6⊆ ∼t (see Fig. 1(left) for a counterexample).
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4 Trace Distances and Probabilistic Model Checking

We give the definitions of strong and stutter trace distances and provide logical
characterizations to both of them in terms of suitable fragments of LTL, relating
the two behavioral distances to the probabilistic model checking problem.

Linear Distances. The strong and stutter probabilistic trace equivalences on
MCs are naturally lifted to pseudometrics δt, δst : S × S → [0, 1] as follows

δt(u, v) = supE∈σ(T ) |P(u)(E)− P(v)(E)| , (strong trace distance)

δst(u, v) = supE∈σ(ST ) |P(u)(E)− P(v)(E)| . (stutter trace distance)

Observe that two states u, v ∈ S are strong (resp. stutter) trace equivalent iff
δt(u, v) = 0 (resp. δst(u, v) = 0). Moreover, by σ(ST ) ⊆ σ(T ), it holds δst ≤ δt.

Note that, the above distances are total variation distances between two mea-
sures, namely the restriction of P(u) and P(v), on σ(T ) and σ(ST ), respectively.

Linear Temporal Logic (LTL) is a formalism for reasoning about sequences
of events [21]. The LTL formulas are generated by the following grammar

ϕ ::= p | ⊥ | ϕ→ ϕ | Xϕ | ϕ U ϕ , where p ∈ A .

Let LTL-u and LTL-x be the fragments, respectively, built without until (U)
and next (X) operators. The semantics of the formulas is given by means of a
satisfiability relation defined, for an MC M and π ∈ Sω, as follows

M, π |= p if p ∈ `(π[0]) ,

M, π |= ⊥ never ,

M, π |= ϕ→ ψ if M, π |= ψ whenever M, π |= ϕ ,

M, π |= Xϕ if M, π|1 |= ϕ ,

M, π |= ϕ U ψ if ∃i ≥ 0 s.t. M, π|i |= ψ, and ∀ 0 ≤ j < i, M, π|j |= ϕ .

Define JϕK = {π | M, π |= ϕ} and JLK = {JϕK | ϕ ∈ L}, for any L ⊆ LTL. The
probabilistic model checking problem for MCs against LTL formulas consists in
determining the probability P(u)(JϕK) for an initial state u and ϕ ∈ LTL. For
any L ⊆ LTL, the pseudometric

δL(u, v) = supϕ∈L |P(u)(JϕK)− P(v)(JϕK)|

measures the maximal difference that can be observed between the states u and v
by model checking them over a set L of linear temporal logic formulas of interest.

In the rest of the section we characterize δt and δst respectively as δLTL (or
δLTL-u) and δLTL-x . We do this by exploiting the following result.

Lemma 6 ([2]). Let µ and ν be two finite measures on a measurable space
(X,Σ). If Σ is generated by a field F , then ‖µ− ν‖ = supE∈F |µ(E)− ν(E)|.

By Lemma 6, to provide a logical characterization for δt it suffices to show
that the σ-algebra σ(T ) is generated by JLTLK (or JLTL-uK).
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Theorem 7. (i) σ(T ) = σ(JLTLK) = σ(JLTL-uK), (ii) δt = δLTL = δLTL-u .

Remark 8. δt = δLTL is not trival. Fig. 1(right) shows an MC from [6, Ex. 1]2

where it is proven that δt(u, x) is obtained on a maximizing event in σ(T ) that
is not ω-regular, hence it cannot be expressed by a single LTL formula. ut

In Theorem 7, the proof of σ(T ) ⊆ σ(JLTLK) uses the measurability of the n-
th tail function (·)|n w.r.t. σ(T ). However, (·)|n is not measurable w.r.t. σ(ST ),
so the logical characterization does not carry over easily to the stutter case.

We solve this problem by giving a coinductive characterization to Lamport’s
stutter equivalence [16] (for a standard definition see e.g. [3, §7.7.1]). For a rela-
tion R ⊆ Sω × Sω, π ∈ Sω is said R-constant if, for all i ∈ N, π R π|i.
Definition 9. A relation R ⊆ Sω × Sω is a stutter relation if whenever π R ρ

(i) π[0] ≡` ρ[0];
(ii) π is R-constant iff ρ is R-constant;

(iii) π|1 R ρ or π R ρ|1 or π|1 R ρ|1.

Two traces π, ρ ∈ Sω are stutter equivalent, written π ' ρ, if they are related
by some stutter relation.

Stutter relations are closed under union and reflexive/symmetric/transitive clo-
sure, therefore ' is an equivalence and a stutter relation.

Proposition 10. π ' ρ iff ∀ϕ ∈ LTL-x. (M, π |= ϕ⇔M, ρ |= ϕ).

The above states that ' characterizes the logical equivalence w.r.t. LTL-x. Def-
inition 9 and Proposition 10 are essential to prove the next result.

Theorem 11. (i) σ(ST ) = σ(JLTL-xK), (ii) δst = δLTL-x .

Proof. We prove (i), then (ii) follows by Lemma 6. (⊇) We prove JϕK ∈ σ(ST )
by induction on ϕ. We show the case ϕ = φ U ψ. Define q : Sω → Sω, as q(π) =
pf1≡`

(π)q(tl1≡`
(π))3. The function q is idempotent, moreover, it is σ(ST )–σ(T )

measurable, i.e., for all E ∈ σ(T ), q−1(E) ∈ σ(ST ). It can be shown that
R={(π, ρ) | q(π) ≡`ω q(ρ)} is a stutter relation. Therefore, by q(π) ≡`ω q(q(π)),
we get π R q(π), hence π ' q(π). Then, the following hold:

Jφ U ψK = {π | ∃i ≥ 0. q(π)|i ∈ JψK, ∀0 ≤ j < i. q(π)|j ∈ JφK} (J·K & Prop. 10)

=
⋃
i≥0

⋂
0≤j<i(((·)|i ◦ q)−1(JψK) ∩ ((·)|j ◦ q)−1(JφK)) . (preimage)

By inductive hypothesis on φ, ψ and σ(ST )-measurability of (·)|k ◦ q, for any
k ∈ N, it follows that JφUψK ∈ σ(ST ). (⊆) The σ-algebra σ(ST ) is alternatively
generated by the family F =

{
C≡`

(C1 · · ·Cn) ∈ ST | Ci 6= Ci+1

}
. Hence, it suf-

fices to show F ⊆ σ(JLTL-xK). Define B : F → LTL-x by induction as follows,

B(C≡`
(C1)) =

∧
p∈AA(p, C1) ,

B(C≡`
(C1 · · ·Cn+1)) =

(
B(C≡`

(C1)) ∧ ¬B(C≡`
(C2)

)
U B(C≡`

(C2 · · ·Cn+1)) ,

where A(p, C) = p if there exists s ∈ C s.t. p ∈ `(s), otherwise A(p, C) = ¬p.
For T ∈ F one can prove that JB(T )K = T . ut
2 The MC has been adapted to the case of labeled states, instead of labeled transitions.
3 Note that q = limn≥1 pf

n
≡`

, i.e., it is the unique map s.t., for all n ≥ 1, pfn≡`
= (·)|n◦q.
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5 Convergence from Branching to Linear Distances

We provide two nets of pseudometrics that converge, respectively, to the strong
and stutter trace distances. The pseudometrics are shown to be liftings of multi-
step extensions of probabilistic bisimilarity and a suitable stutter variant of it.

Our construction is inspired by [5, Cor. 11], where the bisimilarity pseudo-
metric δb of Desharnais et al. [11] is shown to be an upper bound for the trace
distance δt. Their result is based on an alternative characterization of δb by means
of the notion of “coupling structure” [5, Th. 8]. The proof of δt ≤ δb uses a classic
duality result asserting that the total variation of two measures coincides to the
minimal discrepancy measured among all their couplings (Lemma 12). Formally,
given µ, ν ∈ ∆(X,Σ), the discrepancy of ω ∈ Ω(µ, ν) is the value ω(6∼=Σ), where
∼=Σ =

⋂
{E × E | E ∈ Σ} is the inseparability relation w.r.t. Σ.

Lemma 12 ([18, Th.5.2]). Let µ, ν be probability measures on (X,Σ). Then,
provided that ∼=Σ is measurable in Σ⊗Σ, ‖µ−ν‖ = min {ω(6∼=Σ) | ω ∈ Ω(µ, ν)}.

Along the way to obtain our construction, we nontrivially extend (and im-
prove the proofs of) both Corollary 11 and Theorem 8 in [5]. Moreover, this con-
struction reveals a nontrivial relation between branching and linear-time metric-
based semantics (by means of a convergence of the observable behaviors) that
does not hold by using the standard equivalence-based semantics.

5.1 The Strong Case

We start by introducing a multi-step generalization of probabilistic bisimulation.

Definition 13. Let k ≥ 1. An equivalence relation R ⊆ S×S is a k-probabilistic
bisimulation on M if whenever u R v, then, for all Ei ∈ S/≡`

and C ∈ S/R,

P(u)(C(E0 · · ·Ek−1C)) = P(v)(C(E0 · · ·Ek−1C)) .

Two states u, v ∈ S are k-probabilistic bisimilar, written u ∼kb v, if they are
related by some k-probabilistic bisimulation.

The notion of k-bisimulation weakens that of probabilistic bisimulation of Larsen
and Skou [17] by equating states that have the same probability to move to the
same k-bisimilarity class after having observed the same labels within k-steps.
Note that∼1

b coincides with Larsen and Skou bisimilarity. Moreover, for all k ≥ 1,
∼kb is a k-bisimulation and, by σ-additivity of the measures, ∼1

b ⊆ ∼kb ⊆ ∼t.

Remark 14. Clearly,
⋃
k≥1∼kb ⊆ ∼t. How-

ever, the converse inclusion does not hold.
A counterexample is shown in the picture
aside, where states are labeled by colors.
It is easy to see that u and v are probabilistic
trace equivalent, but they are not probabilis-
tic k-bisimilar for any k ≥ 1. ut
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Remark 15. Differently from what one may
expect, the k-bisimilarities do not necessar-
ily get weaker by increasing k, i.e., for an ar-
bitrary k ≥ 1, it does not hold ∼kb ⊆ ∼

k+1
b .

An example is shown aside where u ∼4
b v but

u 6∼5
b v, hence ∼4

b 6⊆ ∼5
b . ut

u

x

y z

1

1
2

1
2

1 1

v

a b

c d

1
2

1
2

1
2

1
21 1

Next we show how to “lift” the above equivalences to behavioral pseudomet-
rics. A pseudometric that lifts bisimilarity is δb [11], defined as the least fixed
point of the following operator on 1-bounded pseudometrics d : S × S → [0, 1]

Θ(d)(u, v) =

{
1 if u 6≡` v
K(d)(τ(u), τ(v)) otherwise .

(Kantorovich Operator)

Intuitively, two states are incomparable if they have different labels, otherwise
the difference is given by Kantorovich distance of their transition probabilities.

Analogously, for k ≥ 1, define the k-steps transition probability function
τk : S → ∆(Sk) as the function such that τk(u) is the unique probability mea-
sure on Sk that, for all Ui ⊆ S (i = 1..k), τk(u)(U1 · · ·Uk) = P(u)(C(uU1 · · ·Uk))
(i.e., τk(u) = P(u)[(·)|k ◦ (·)|1]). Note that, τ = τ1. Then Θ is generalized by

Θk(d)(u, v)

{
1 if u 6≡` v
K(Λk(d))(τk(u), τk(v)) otherwise .

where Λk(d)(u1..uk, v1..vk) = 1 if ui 6≡` vi for some i = 1..k, otherwise d(uk, vk).
We call the above k-Kantorovich operator. It is easy to see that Θk is monotonic,
so that, by Tarski fixed point theorem, it has least fixed point, hereafter denoted
by δkb . Note that δ1

b = δb, moreover the following hold.

Lemma 16 (k-Bisimilarity Distance). u ∼kb v iff δkb (u, v) = 0.

Due to the above result we call δkb the k-bisimilarity pseudometric.
Next we characterize δkb by means of the notion of coupling structure of rank

k. A coupling structure may be thought of as a stochastic process generating of
infinite traces of pairs of states starting from a distinguished initial pair (u, v)
and distributed according to a coupling in Ω(P(u),P(v)). The traces of pairs of
states are generated by multi-steps of length k.

Definition 17 (Coupling Structure). A function C : S×S → ∆(Sk ⊗Sk) is
a coupling structure of rank k ≥ 1 if for all u, v ∈ S, C(u, v) ∈ Ω(τk(u), τk(v)).

The set of coupling structures of rank k is denoted by Ck.

Definition 18. For k ≥ 1 and C ∈ Ck, let PC : S × S → ∆(Sω ⊗ Sω) be such
that, for all u, v ∈ S, PC(u, v) is the unique probability measure on Sω⊗Sω such
that, for all, n ≥ 1 and Ui, Vi ⊆ S (i = 0..nk)

PC(u, v)(C(U0,nk)×C(V0,nk)) = 1U0×V0
(u, v) ·

∫
PC(·)(C(Uk,nk)× C(Vk,nk)) dω ,
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where, Ui,j = Ui · · ·Uj (similarly for V )4 and ω is the unique (subprobability)
measure on S⊗S s.t., for all A,B ⊆ S , ω(A×B) = C(u, v)(U1,k−1A×V1,k−1B).

The following lemma extends [5, Th. 8] to k-bisimilarity pseudometrics and
provides the alternative characterization of δkb in terms of coupling structures.

Lemma 19 (Coupling Lemma). δkb (u, v) = inf {PC(u, v)( 6≡`ω ) | C ∈ Ck}.

Thanks to Lemma 19 and the next result we can show that the k-bisimilarity
pseudometrics δkb form a net that converges point-wise to the trace distance δt.

Recall that a poset is directed if all its finite subsets have an upper bound.
A net over a topological space X is a function from a directed poset to X. We
denote a net as (xi)i∈D, meaning that i ∈ D is mapped to xi. A net (xi)i∈D over
X converges to x ∈ X, written (xi)i∈D → x, if for every open subset A ⊆ X
such that x ∈ A, there exits h ∈ D such that, for all j � h, xj ∈ A.

Theorem 20. Let (X,Σ) be a measurable space s.t. ∼=Σ ∈ Σ⊗Σ, µ, ν be prob-
ability measures on it, (D,�) be a directed poset and Ω : D → 2Ω(µ,ν) be a
monotone map such that

⋃
i∈D Ω(i) is dense in Ω(µ, ν) w.r.t. the total variation

distance. Then, the net (ui)i∈D over R+ defined by ui = inf {ω(6∼=Σ) | ω ∈ Ω(i)},
converges to ‖µ− ν‖.

Proof. By Lemma 12, for all i ∈ D, ui ≥ ‖µ − ν‖. Moreover, by monotonicity
of Ω, i � j implies ui ≤ uj . Therefore, to prove (ui)i∈D → ‖µ − ν‖, it suffices
to show infi∈D ui = ‖µ − ν‖. Recall that for Y 6= ∅ and f : Y → R bounded
and continuous, if D ⊆ Y is dense then inf f(D) = inf f(Y ). By hypothesis⋃
i∈D Ω(i) ⊆ Ω(µ, ν) is dense; moreover, µ × ν ∈ Ω(µ, ν) 6= ∅. We show that

ev 6∼= : Ω(µ, ν) → R, defined by ev 6∼=(ω) = ω( 6∼=) is bounded and continuous. It is
bounded since all ω ∈ Ω(µ, ν) are probability measures. It is continuous because
‖ω − ω′‖ ≥ |ω(6∼=)− ω′(6∼=)| = |ev 6∼=(ω)− ev 6∼=(ω′)| (1-Lipschitz continuity). Now,
applying Lemma 12, we derive our result. ut

Recall that, δt(u, v) is the total variation distance between P(u) and P(v)
restricted on σ(T ). Observe that the inseparability relation w.r.t. σ(T ) is ≡`ω ,
which is easily seen to be measurable in σ(T )⊗ σ(T ). Therefore, by Lemma 12,

δt(u, v) = min {ω(6≡`ω ) | ω ∈ Ω(P(u),P(v))} .

The next lemma shows that (i) a coupling structure C induces a measure
PC(u, v) which is a proper coupling for the pair (P(u),P(v)); (ii) the set of
couplings constructed via the coupling structures grows by multiples of the rank
k; and (iii) their union is dense in Ω(P(u),P(v)).

Lemma 21. Let u, v ∈ S be a pair of states of an MC M. Then,

i. for k ≥ 1 and C ∈ Ck, PC(u, v) ∈ Ω(P(u),P(v));
ii. for k, h ≥ 1, {PC(u, v) | C ∈ Ck} ⊆ {PC(u, v) | C ∈ Chk};

iii.
⋃
k≥1 {PC(u, v) | C ∈ Ck} is dense in Ω(P(u),P(v)) w.r.t. the total variation.

4 We assume that Ui,j = {ε} whenever i > j.
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Proof. (sketch) (i) It follows directly by definition of PC and the definitional
conditions of coupling structures. (ii) Let k, h ≥ 1 and C ∈ Ck. Define D(u, v) as
the unique measure on Shk ⊗ Shk such that, for all E,F ⊆ Shk,

D(u, v)(E × F ) = PC(C(SE)× C(SF )).

Then, D ∈ Chk and PC(u, v) = PD(u, v). (iii) Let Ω =
⋃
k≥1 {PC(u, v) | C ∈ Ck}.

Note that
⋃
n∈N {C(E)× C(F ) | E,F ⊆ Sn} is a field generating the σ-algebra

of Sω⊗Sω. To prove that Ω is dense w.r.t. the total variation it suffices to show
that, for all µ ∈ Ω(P(u),P(v)), n ∈ N and E,F ⊆ Sn, there exists ω ∈ Ω s.t.
ω(C(E) × C(F )) = µ(C(E) × C(F )) (consequence of [2, Lemma 5]). One can
check that this equality holds for ω = PC(u, v) and C ∈ Cn s.t. C(u, v) = µ[f ] is
the push forward of µ along f : Sω → Sn, defined as f(π, ρ) = (π|1|n, ρ|1|n). ut

Note that Lemmas 19 and 21(i) imply that, for all k ≥ 1, δkb ≥ δt. This
generalizes [5, Cor. 11] to arbitrary k-bisimilarity distances.

Denote by K the poset over N \ {0} with partial order n � m iff there exists
k ∈ N such that m = nk. It is easy to see that K is directed. According to
Theorem 20, Lemmas 19 and 21 suffice to prove the following net-convergence.

Theorem 22 (Convergence). The net (δkb )k∈K converges point-wise to δt.

Remark 23. The use of the preorder � in the definition of the directed poset K
is essential in Theorem 22. Indeed, if � is replaced by the standard total order
≤ over natural numbers, the net-convergence does not hold (by Lemma 16, the
MC shown in Remark 15 provides a counterexample). ut

Remark 24 (Equivalence vs Metric-based semantics). Although
⋃
k≥1∼kb 6= ∼b

(see Remark 14), by Theorem 22, we have that infk≥1 δ
k
b = δt. Note that this is

not in contradiction with Lemma 16. Actually it shows how much an equivalence
and a metric-based semantics may differ. The explanation is topological, and it is
due to the fact that equivalences (interpreted as functions) differ from 1-bounded
pseudometrics by mapping pairs of states to the two-point space {0, 1} (with the
discrete topology) which is disconnected, whereas [0, 1] is connected. ut

5.2 The Stutter Case

We show how the construction that led to Theorem 22 can be easily adapted to
obtain a net that converges to the strutter trace distance δst. This proves that
the method is general enough to accommodate nontrivial convergence results.

Definition 25. Let k ≥ 1. An equivalence relation R ⊆ S × S is a ≡`-stutter
k-probabilistic bisimulation on M if whenever u R v, then, for all Ei ∈ S/≡`

and C ∈ S/R,

P(u)(C≡`
(E0 · · ·Ek−1C)) = P(v)(C≡`

(E0 · · ·Ek−1C)) .

Two states u, v ∈ S are ≡`-stutter k-probabilistic bisimilar, written u ∼ksb v, if
they are related by some ≡`-stutter k-probabilistic bisimulation.
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The above definition weakens that of k-probabilistic bisimulation by restricting
the events to be tested only to those that are ≡`-stutter invariant.

It is easy to show that, for all k ≥ 1, ∼kb ⊆ ∼ksb. Note that, ∼ksb 6⊆ ∼kb (in
Fig. 1(left), u ∼1

sb v but u 6∼1
b v). In analogy with the strong case, for all k ≥ 1,

∼ksb is a ≡`-stutter k-bisimulation, ∼1
sb ⊆ ∼ksb ⊆ ∼st.

Now we lift these equivalences to pseudometrics by means of a Kantorivich-
like operator. For k ≥ 1, define the ≡`-stuttered k-steps transition probability
function τks : S → ∆(Sk) as the function s.t., τks (u) is the unique probability
measure on Sk that, for all Ui ⊆ S , τks (u)(U1 · · ·Uk) = P(u)(C≡`

(uU1 · · ·Uk))

(i.e., τks (u) = P(u)[pfk≡`
◦ tl1≡`

]). Define, for d : S × S → [0, 1] pseudometric,

Ψk(d)(u, v) =

{
1 if u 6≡` v
K(Λk(d))(τks (u), τks (v)) otherwise .

The above extends to the stutter case the k-Kantorovich operator. Clearly, Ψk

is monotonic, so that, by Tarski fixed point theorem, it has a least fixed point,
denoted by δksb.

Due to the following result we call δksb the ≡`-stutter k-bisimilarity distance.

Lemma 26 (Stutter k-Bisimilarity Distance). u ∼ksb v iff δksb(u, v) = 0.

Next we provide a characterization of δksb by means of the notion of coupling
structure, now modified to accommodate the notion of ≡`-stutter step.

Definition 27. A function C : S×S → ∆(Sk⊗Sk) is a stutter coupling struc-
ture of rank k ≥ 1 if, for all u, v ∈ S, C(u, v) ∈ Ω(τks (u), τks (v)).

Hereafter, Csk denotes the set of stutter coupling structures of rank k.
Denote by st(Sω) the measurable space over Sω with σ-algebra σ(C≡`

(2S)).
The stutter coupling structures are used to define measures in the product space
st(Sω)⊗ st(Sω).

Definition 28. For k ≥ 1 and C ∈ Csk, let PC : S × S → ∆(st(Sω) ⊗ st(Sω))
be such that, for all u, v ∈ S, PC(u, v) is the unique probability measure on
st(Sω)⊗ st(Sω) such that, for all, n ≥ 1 and Ui, Vi ⊆ S (i = 0..nk)

PC(u, v)(C≡`
(U0,nk)×C≡`

(V0,nk)) = 1U0×V0(u, v) ·
∫

PC(·)(C≡`
(Uk,nk)×C≡`

(Vk,nk)) dω ,

where, Ui,j = Ui · · ·Uj (similarly for V ) and ω is the unique (subprobability)
measure on S⊗S s.t., for all A,B ⊆ S , ω(A×B) = C(u, v)(U1,k−1A×V1,k−1B).

The following gives a characterization of the k-stutter bisimilarity pseudo-
metric δksb in terms of stutter coupling structures. Note that, by Proposition 10,
' is the inseparability relation w.r.t. σ(ST ) and, since LTL-x is countable, it
holds ' ∈ σ(ST )⊗ σ(ST ).

Lemma 29 (Coupling Lemma). δksb(u, v) = inf {PC(u, v)( 6') | C ∈ Csk}.

According to Theorem 20 what follows suffices to prove the convergence.
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Lemma 30. Let u, v ∈ S be a pair of states of an MC M. Then,

i. for k ≥ 1 and C ∈ Csk, PC(u, v) ∈ Ω(P(u),P(v));
ii. for k, h ≥ 1, {PC(u, v) | C ∈ Csk} ⊆ {PC(u, v) | C ∈ Cshk};

iii.
⋃
k≥1 {PC(u, v) | C ∈ Csk} is dense in Ω(P(u),P(v)) w.r.t. the total variation,

where P(u) is assumed to be restricted on the sub-σ-algebra σ(C≡`
(2S)).

The next result is a direct consequence of Theorem 20, Lemmas 29, and 30.

Theorem 31 (Convergence). The net (δksb)k∈K converges point-wise to δst.

6 Approximation Schema for the Linear Distances

In this section we provide each of the two trace distances (strong and stutter)
with an approximation schema, that is, a pair of sequences of pseudometrics that
converges from below and above to them. We show that each lower- and upper-
approximant is computable in polynomial time in the size of the MC.

In the following, we assume thatM has a finite set of states and its transition
probabilities are rational (i.e., τ(u)(v) ∈ Q∩ [0, 1]). The size ofM is determined
by the sum of the size of the binary representation of its components. Under this
restrictions the pseudometrics proposed in this section have finite domain and
image in Q. They are computable if they can be computed on all their domain.

6.1 The Strong Case

Lower-Approximants. The sequence of lower-approximants will be defined
by restricting the set of measurable sets over which δt evaluates the differences
in the probabilities. Formally, for k ≥ 1, let Ek be the set of all finite unions of
cylinders in Ck(S/≡`

). We define the pseudometrics lk : S ×S → [0, 1] as follows

lk(u, v) = maxE∈Ek |P(u)(E)− P(v)(E)|

The following lemma states that the sequence (lk)k≥1 is increasing and that
converges point-wise to the trace distance δt.

Lemma 32. For all k ≥ 1, lk ≤ lk+1 and δt = supk≥1 l
k.

Proof. lk ≤ lk+1 follows by Ek ⊆ Ek+1. The equality δt = supk≥1 l
k is a conse-

quence of [2, Theorem 6] and the fact that
⋃
k≥1 Ek is a field generating σ(T ). ut

By looking at its definition, it is not clear whether lk can be computed in
polynomial time in the size ofM. Indeed, the maximum ranges over a set whose
cardinality may be exponential in |Sk| in the worst case. The following charac-
terization shows that to compute lk we do not need to evaluate the probabilities
on all the elements of Ek but only on the thin cylinders of rank k.

Proposition 33. lk(u, v) = 1
2

∑
C∈Ck(S) |P(u)(C)− P(v)(C))|.
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Proof. Note that Ek is finite and closed under complement. Let F be the family of
cylinders C ∈ Ck(S) s.t. P(u)(C) ≥ P(v)(C). By Hahn decomposition theorem,
for F =

⋃
F we have P(u)(F )−P(v)(F ) = maxE∈Ek |P(u)(E)−P(v)(E)|. Then

2 · lk(u, v) = 2 ·
∑
F∈F P(u)(F )− P(v)(F ) (σ-additive)

=
∑
F∈F (P(u)(F )− P(v)(F )) + (P(v)(F c)− P(u)(F c)) (compl.)

=
∑
C∈Ck(S) |P(u)(C)− P(v)(C))| , (F ∪ Fc = Ck(S))

where the second equality holds since P(v)(F c) = 1− P(v)(F ). ut

Note that the cylinders in Ck(S) are all those of the form C(u1..uk), for

some ui ∈ S (i = 1..k), and P(u)(C(u1..uk)) = 1u1(u) ·
∏k−1
i=1 τ(ui)(ui+1). Then,

by Proposition 33, to compute lk(u, v) we need only 2kSk multiplications, Sk

subtractions and Sk − 1 summations. Hence lk can be computed in O(kS2+k).

Theorem 34. lk can be computed in polynomial time in the size of M.

Upper-Approximants. The decreasing sequence (uk)k≥1 of upper-approxi-
mants converging to δt simply derives from the net of k-bisimilarity pseudomet-

rics presented in Section 5. and is defined by uk = δ2k−1

b (actually, any infinite
subsequence of (δk)k∈K is fine). The actual contribution of this section is to
show that, for all k ≥ 1, the k-bisimilarity distance δkb can be characterized as
the optimal solution of a linear program that can be constructed and solved in
polynomial time in the size of the MC.

Our linear program characterization leverages on a dual linear program char-
acterization of the Kantorovich distance. For X finite, d : X×X → [0, 1] a pseu-
dometric and µ, ν ∈ ∆(X), the value of K(d)(µ, ν) coincides with the optimal
value of the following linear programs.

Primal Dual

min
ω

∑
x,y∈X d(x, y) · ωx,y∑
y ωx,y = µ(x) ∀x ∈ X∑
x ωx,y = ν(y) ∀y ∈ X

ωx,y ≥ 0 ∀x, y ∈ X

max
α

∑
x∈X(µ(x)− ν(x)) · αx

αx − αy ≤ d(x, y) ∀x, y ∈ X

Consider the linear program in Figure 2, hereafter denoted by D. Note that
for an optimal solution of D the value of the unknown d ∈ RS×S is maximized at
each component. Therefore, for an optimal solution of D it holds that, if u ≡` v
and u 6∼kb v, the maximal value of du,v is achieved at K(Λk(d))(τk(u), τk(v)).
Otherwise, du,v = 1 when u 6≡` v, and du,v = 0 when u ∼kb v. Thus, any
optimal solution of D induces a fixed point for Θk whose kernel coincides with
∼kb . In fact, an optimal solution of D characterizes the greatest fixed point of
the operator Υ k : [0, 1]S×S → [0, 1]S×S defined by Υ k(d)(u, v) = 0 if u ∼kb v,
otherwise Υ k(d)(u, v) = Θk(d)(u, v).

Lemma 35. Υ k has a unique fixed point that coincides with δkb .
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argmax
d,α

∑
u,v∈S du,v

du,v = 0 ∀u, v ∈ S. u ∼kb v
du,v = 1 ∀u, v ∈ S. u 6≡` v

du,v =
∑
x∈Sk

(
τk(u)(x)− τk(v)(x)

)
αu,vx ∀u, v ∈ S. u ≡` v and u 6∼kb v

αu,vx − αu,vy ≤ dxk,yk ∀u, v ∈ S ∀x, y ∈ Sk.∀i. xi ≡` yi
αu,vx − αu,vy ≤ 1 ∀u, v ∈ S ∀x, y ∈ Sk.∃i. xi 6≡` yi

Fig. 2. Linear program characterization of the k-bisimilarity distance δkb .

This implies that for any optimal solution of D, du,v = δkb (u, v), for all u, v ∈ S.
Note that D has a number of constraints bounded by O(|S|2 + |S|2k+2) and

a number of unknowns bounded by O(|S|2 + |S|k+2). Moreover, the following
lemma ensures that the linear program D can be constructed in polynomial time,
provided that k is a constant.

Lemma 36. ∼kb can be computed in polynomial time in the size of M.

Theorem 37. δkb can be computed in polynomial time in the size of M.

Proof. (sketch) By Lemma 36, D can be constructed in polynomial time. Since
the number of constraints and unknowns in D are bounded by a polynomial in
the size ofM, D can be solved in polynomial time with the ellipsoid method. ut

6.2 The Stutter Case

As one may expect, the sequences (lkst)k≥1 and (ukst)k≥1 of lower- and upper-
approximants for the stutter trace distance δsb can be defined similarly to those
we have shown in the previous section for the strong case. Specifically, for k ≥ 1

lkst(u, v) = maxE∈Sk |P(u)(E)− P(v)(E)| and ukst(u, v) = δ2k−1

st ,

where Sk is the set of all finite unions of stutter trace cylinders in Ck≡`
(S/≡`

).
Convergence and (anti)monotonicity of the sequences follow exactly as before.

However, what is not immediate is the proof that, for all k ≥ 1, lkst and ukst can
actually be computed in polynomial time. The first difficulty arises, when for
computing lkst, we try to apply the characterization provided by Lemma 32:

lk(u, v) = 1
2

∑
C∈Ck

≡`
(S) |P(u)(C)− P(v)(C))| .

The thin cylinders in Ck≡`
(S) are of the form C(w), for some w ∈ A∗1 · · ·A∗k and

Ai ∈ S/≡`
(i = 1..k), hence Ck≡`

(S) is not finite (the word w can be arbitrar-

ily long). Similarly, as for computing ukst, if we tried to apply directly the LP
characterization in Figure 2 we would have an infinite number of constraints.
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To cope with this problem, we propose a reduction from the stutter to the
strong case. Formally, we show that, for k ≥ 1, the problem of computing
P(u)(C≡`

(u1..uk)) and the k-stutter bisimilarity distance δksb for an MC M can

be reduced to computing P(u)(C(u1..uk)) and δkb for an MC N derived fromM.
The following states that N is obtained by replacing the probability transi-

tion function τ in M with the (1-)stutter probability transition function τ1
s .

Lemma 38. Let M = (S, τ, `) and N = (S, τ1
s , `). Then, for all k ≥ 1,

(i) Ui ⊆ S, PM(u)(C≡`
(U1 · · ·Uk)) = PN (u)(C(U1 · · ·Uk));

(ii) ΨkM = ΘkN .

Next we show that N can be constructed in polynomial time and its size is
polynomial in the size of M. Consider the problem of computing τ1

s (u)(v).
We consider two possible cases:

Case u 6≡` v. By definition τ1
s (u)(v) = PM(u)(C([u]+≡`

v)). This is the probabil-
ity of reaching the state v starting from u visiting only states in [u]≡`

prior to
reaching v. Using LTL-like notations, this can be written as PM(u)([u]≡`

U
{v}). This is a well studied probabilistic model checking problem that can
be solved in polynomial time in the size of M as the solution of a linear
system of equations (see e.g. [3, §10.1.1 p.762]).

Case u ≡` v. By definition τ1
s (u)(v) = PM(u)(uv[v]ω≡`

). This corresponds to
the probability of making a transition from u to v and, from v, generat-
ing an infinite run that never escapes from the ≡`-equivalence class of v,
i.e., τ(u)(v) · P(v)([v]ω≡`

). The probability PM(v)([v]ω≡`
) can be conveniently

computed as 1−
∑
x 6≡`u

τ1
s (v)(x), reusing the probabilities computed in the

previous case.

Therefore N can be constructed in polynomial time in the size of M.

Lemma 39. N = (S, τ1
s , `) has size polynomial in the size of M.

Proof. It suffices to show that τ1
s is rational of size polynomial in the size of

M. Let u, v ∈ S. If u 6≡` v then τ1
s (u)(v) = PM(u)([u]≡`

U {v}). Its value
is the solution of a system of linear equations where the coefficients are some
transition probabilities taken fromM (or a sum of them). Therefore τ1

s (u)(v) is
an intersection of hyperplanes given by some equalities with rational coefficients
whose size is bounded in the size of M. Thus, we conclude that τ1

s (u)(v) is
rational of size polynomial in size ofM. The case u 6≡` v follows by the previous
one since τ1

s (u)(v) = τ(u)(v) · (1−
∑
x6≡`u

τ1
s (v)(x)).

By Lemmas 38 and 39, and Theorems 34 and 37, the following holds.

Theorem 40. lksb and δksb can be computed in polynomial time in the size ofM.

Remark 41. Theorems 37 and 40 do not contradict the fact that the problem of
approximating the trace distances up to a given precision ε > 0 is NP-hard [7].
Indeed, this requires one to compute the lower and upper approximants lk∗ and
δk∗ (∗ ∈ {b, sb}), for increasing values of k, until δk∗ − lk∗ < ε. Note that the time-
complexity of this procedure increases exponentially in the value of k. ut
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7 Conclusions and Future Work

In this paper we provided the strong and stutter trace distances with a logical
characterization in terms of LTL and LTL-x formulas, respectively. These char-
acterizations, differently from other proposals, relate these behavioral distances
to the probabilistic model checking problem over MCs.

Then, we proposed a family of behavioral equivalences, namely probabilis-
tic k-bisimilarities, that weaken probabilistic bisimilarity of Larsen and Skou
on MCs. This equivalences are in turn generalized to pseudometrics by means
of a fixed point definition that uses a generalized Kantorovich operator. These
pseudometrics are shown to form a net that converges point-wise to the trace
distance. Remarkably, to prove this convergence we extended and improved two
important results in [5], namely, Theorem 8 and Corollary 11. The proposed
construction is shown to be general enough to accommodate a second nontrivial
convergence result between a net of suitable stutter variants of k-bisimilarities
pseudometrics and the stutter trace distance. These convergences are interest-
ing because they reveal a nontrivial relation between branching and linear-time
metric-based semantics that in Remark 14 is shown not hold when the standard
equivalence-based semantics on MCs are used instead.

The above distances are then used to provide the strong and stutter trace
distances with an approximation schema, that is, two sequences of pseudometrics
that converge from above and below to the two respective linear distances. Each
of these lower and under-approximants are shown to be computable in polyno-
mial time in the size of the MC. Notably, for this proof the under-approximants
of the trace distance (i.e., the k-bisimilarity pseudometrics) are given a char-
acterization in terms of optimal solutions of a linear program that have size
polynomial in the MC. The one we proposed generalizes and improves the linear
program characterization given in [5, Eq. 8] for the (undiscounted) bisimilarity
pseudometric of Desharnais et al. that, in contrast, has a number of constraints
exponential in the size of the MC. Moreover, our approximation schema im-
proves that in [6] both for the generality of its applicability and in terms of
computational complexity.

Natural questions are (i) to see if the on-the-fly algorithm for the computation
of bisimilarity distance in [1] can be used to compute the k-bisimilarity distances
and their stutter variants; (ii) whether this approximation technique carries over
to models with non-determinism, such as MDPs (where a recent result by Fu [14]
gives new insight on how to obtain minimal information in case the distance is not
a bisimilarity metric, and where the PSPACE-complexity results is sharpened
to NP∩ coNP); (iii) whether a similar construction can be applied to stochastic
models with continuous time, such as CTMCs.
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Game Relations and Metrics. In LICS, pages 99–108, July 2007.

10. Josee Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden.
Metrics for Labeled Markov Systems. In CONCUR, volume 1664 of LNCS, pages
258–273. Springer, 1999.

11. Josee Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panan-
gaden. Metrics for labelled Markov processes. Theoretical Compututer Science,
318(3):323–354, 2004.

12. Josee Desharnais, Radha Jagadeesan, Vineet Gupta, and Prakash Panangaden.
The Metric Analogue of Weak Bisimulation for Probabilistic Processes. In LICS,
pages 413–422. IEEE Computer Society, 2002.

13. Norm Ferns, Doina Precup, and Sophia Knight. Bisimulation for Markov Decision
Processes through Families of Functional Expressions. In Horizons of the Mind. A
Tribute to Prakash Panangaden, volume 8464 of LNCS, pages 319–342, 2014.

14. Hongfei Fu. Computing game metrics on markov decision processes. In ICALP,
volume 7392 of LNCS, pages 227–238, 2012.

15. M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of proba-
bilistic real-time systems. In CAV, volume 6806 of LNCS, pages 585–591. Springer,
2011.

16. Leslie Lamport. What good is temporal logic? In IFIP, pages 657–668, 1983.
17. Kim Guldstrand Larsen and Arne Skou. Bisimulation through probabilistic testing.

Information and Computation, 94(1):1–28, 1991.
18. Torgny Lindvall. Lectures on the Coupling Method. Wiley Series in Probability

and Mathematical Statistics. John Wiley, New York, 1992.
19. Rune B. Lyngsø and Christian N.S. Pedersen. The consensus string problem and

the complexity of comparing hidden Markov models. Journal of Computer and
System Sciences, 65(3):545–569, 2002.

20. Matteo Mio. Upper-Expectation Bisimilarity and  Lukasiewicz µ-Calculus. In FoS-
SaCS, volume 8412 of LNCS, pages 335–350, 2014.

21. Amir Pnueli. The temporal logic of programs. In SFCS, pages 46–57. IEEE Com-
puter Society, 1977.



Converging from Branching to Linear Metrics on Markov Chains 19

A Trashed

This result opens for the study of effective methods for approximating both the
strong and the stutter trace distances.

It is known that computing the trace distance is NP-hard and its decidability
is still an open problem [6]. In this section we show how the above convergence
sequences can be useful for approximating the trace and the stutter-trace dis-
tances.

Here we show that the problem of computing the stutter-trace distance is
as hard as that of computing the trace distance. To this end we will reduce the
problem of computing the stutter trace distance on an MCM to the problem of
computing the stutter-trace distance on another MC M̄ constructed from M.

Given M = (S, τ, `), the MC M̄ is constructed as (S ] S̄, θ, l) where S̄ =
{ū | u ∈ S}, θ(u) = δū (the dirac measure at ū) if u ∈ S, and θ(ū) = τ(u) if
ū ∈ S̄, and l(u) = `(u) if u ∈ S, otherwise �, where � is a label that differs from
all the labels in M (see Figure 3).

w τ(w) w w̄ θ(w̄) = τ(w)
1

Fig. 3. (Left) A state in the original MC M; (Right) The MC M̄ constructed from
M. In M̄, each state w ∈ S moves to its counterpart w̄ ∈ S̄ that proceeds as m does
in M.

Intuitively, each run u0u1 . . . generated by M is emulated (with same prob-
ability) by a run u0ū0u1ū1 . . . in M̄ where each state ui ∈ S is followed by its
counterpart ūi ∈ S̄ (for all i ∈ N). It is worth noting that the underlying graph
of M̄ is bipartite and the labeling function l induces a 2-coloring for this graph.

Proposition 42. LetM be an MC. Then, for all u, v ∈ S, δMt (u, v) = δM̄st (u, v).

Proof. Let f : Sω → (S ] S̄)
ω

be defined as f(π) = uūf(π|i), where u = π[0].

(i) The following equality holds

sup
E∈σ(TM)

|PM̄(u)(E)−PM̄(v)(E)| = sup
E∈σ(TM̄)

|PM(u)(f−1(E))−PM(v)(f−1(E))|

(i)
(≥) follows by the fact that f is σ(TM)-σ(TM̄) measurable. (≤) since for
all T ∈ TM there exists T̄ ∈ TM̄ such that f−1(T̄ ) = T . Thus σ(TM) ={
f−1(Ē) | Ē ∈ σ(TM̄)

}
.

(ii) The following equality holds

sup
E∈σ(TM̄)

|PM̄(u)(E)−PM̄(v)(E)| = sup
E∈σ(TM̄)

|PM(u)(f−1(E))−PM(v)(f−1(E))|

(ii)
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The above is proven showing that, for any u ∈ S, PM̄(u) = PM(u)[f ].
This is done by showing that for any cylinder set C(u0..un) ∈ C(2S]S̄)
(for n ∈ 2N + 1) it holds PM̄(u)(C(u0..un)) = PM(u)(f−1(C(u0..un))).
This can be done by cases.

(iii) The following equality holds

sup
E∈σ(TM̄)

|PM̄(u)(E)− PM̄(v)(E)| = sup
E∈σ(STM̄)

|PM̄(u)(E)− PM̄(v)(E)|

(iii)
(≥) immediate by σ(STM̄) ⊆ σ(TM̄). (≤) We first show that for all u ∈ S
and for all E ∈ σ(TM̄) there exists F ∈ σ(STM̄) such that E ⊆ F and
PM̄(u)(E) = PM̄(u)(F ). To this end it suffices to show that for an ar-
bitrary cylinder set C(u0..un) ⊆ C(2S]S̄), it holds PM̄(u)(C(u0..un)) =
PM̄(u)(C≡`

(u0..un)): (≤) follows by monotonicity of PM̄(u) and C(u0..un) ⊆
C≡`

(u0..un); (≥) follows from the fact that, for any v ∈ S and v̄ ∈ S̄,
l(v) 6= l(v̄) and θ(v)(S̄) = θ(v̄)(S) = 0.
Thus, coming back to (iii) we have that for arbitrary E ∈ σ(TM̄) the
following hold

|PM̄(u)(E)− PM̄(v)(E)| (w.l.o.g. we assume PM̄(u)(E) ≥ PM̄(v)(E))

= |PM̄(u)(E)− PM̄(v)(F )| (for some F ∈ σ(STM̄) s.t. E ⊆ F )

≤ |PM̄(u)(F )− PM̄(v)(F )| (monotonicity of PM̄(u))

This proves the inequality (≤) in (iii).

The thesis follows from (i), (ii) and (iii).

A direct consequence of Proposition 42 and [6, Proposition 9] is the following
result.

Theorem 43. Approximating the stutter-trace distance up to any ε whose size
polynomial in the given MC is NP-hard.

B Technical proofs

This section contains all the technical proofs that have been omitted or only
sketched in the paper.

Proposition 44. Let R ⊆ S × S be an equivalence such that whenever u R v,
then τ(u)(C) = τ(v)(C), for all C ∈ S/R. Then u R v iff P(u)(E) = P(v)(E),
for all E ∈ C(S/R).

Proof. (⇐) By contraposition. Let (u, v) /∈ R and C = [u]R ∈ S/R. Then u ∈ C
and v /∈ C. By def. of P, P(u)(C(C)) = 1C(u) = 1 and P(v)(C(C)) = 1C(v) = 0.
(⇒) By induction on the rank n ≥ 1 of the cylinders in C(S/R).

Base case (n = 1). P(u)(C(C1)) = 1C1(u) = 1C1(v) = P(v)(C(C1)).
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Inductive step (n ≥ 1). Let c2 ∈ C2.

P(u)(C(C1 . . . Cn)) = 1C1(u) ·
∫
C2

P(·)(C(C2 . . . Cn)) dτ(u) (def. P)

= 1C1(u) · P(c2)(C(C2 . . . Cn)) ·
∫
1C2 dτ(u) (ind. hp.)

= 1C1(u) · P(c2)(C(C2 . . . Cn)) · τ(u)(C2) (def.
∫

)

= 1C1(v) · P(c2)(C(C2 . . . Cn)) · τ(v)(C2) (u R v)

= P(v)(C(C1 . . . Cn)) . (def.
∫

+ ind. hp. + def. P)

ut

Proposition 45. u ∼b v iff for all E ∈ C(S/∼b
), P(u)(E) = P(v)(E).

Proof. (⇐) By contraposition. Assume u 6∼b v. Let C = [u]∼b
∈ S/∼b

, then
u ∈ C and v /∈ C. By def. of P, P(u)(C(C)) = 1C(u) = 1 and P(v)(C(C)) =
1C(v) = 0. (⇒) We proceed by induction on the rank n ≥ 1 of the cylinders in
C(S/∼b

).

Base case (n = 1). P(u)(C(C1)) = 1C1
(u) = 1C1

(v) = P(v)(C(C1)).
Inductive step (n ≥ 1). Let c2 ∈ C2.

P(u)(C(C1 . . . Cn)) = 1C1(u) ·
∫
C2

P(·)(C(C2 . . . Cn)) dτ(u) (def. P)

= 1C1(u) · P(c2)(C(C2 . . . Cn)) ·
∫
1C2 dτ(u) (ind. hp.)

= 1C1
(u) · P(c2)(C(C2 . . . Cn)) · τ(u)(C2) (def.

∫
)

= 1C1
(v) · P(c2)(C(C2 . . . Cn)) · τ(v)(C2) (u ∼b v)

= P(v)(C(C1 . . . Cn)) . (def.
∫

+ ind. hp. + def. P)

ut

Proposition 46. (i) ∼sb is a stutter bisimulation and (ii) ∼b ⊆ ∼sb.

Proof. Let M = (S, τ, `) be an MC. (i) Let B be the smallest equivalence that
contains all the stutter bisimulations on M. Explicitly, B =

⋃
n∈N Bn for

B0 =
⋃
{R | R stutter bisimulation on M} Bn+1 = Bn;Bn

where “;” denotes the relational composition. Clearly B ⊆ ≡`. We prove, by
induction on n ≥ 0 that whenever u Bn v, then P(u)(CB(CD)) = P(v)(CB(CD)),
for all C,D ∈ S/B. This suffices to show that B is a stutter bisimulation.

Base case (n = 0). If u B0 v, then u R v for some stutter bisimulation R. Let
C,D ∈ S/B. By R and B being equivalence relations and R ⊆ B, we have that C
and D can be represented as disjoint unions of R-equivalence classes: C =

⋃
C
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and D =
⋃
D, where C = {C ′ ∈ S/R | C ′ ⊆ C} and D = {D′ ∈ S/R | D′ ⊆ D}.

In particular CB(CD) =
⋃
A, for A = {CB(C ′D′) | C ′ ∈ C, D′ ∈ D}. Define

A′ = {A ∈ A | P(u)(A) > 0}. By u R v and R being a stutter bisimulation,
we also have A′ = {A ∈ A | P(v)(A) > 0}. By [?, Lemma 2.2], A′ is at most
countable, moreover its elements are all pairwise disjoint. Hence

P(u)(CB(CD)) = P(u)(
⋃
A′)

=
∑
A∈A′ P(u)(A) (σ-additivity)

=
∑
A∈A′ P(v)(A) (u R v)

= P(v)(
⋃
A′) = P(v)(CB(CD)) .

Inductive step (n > 0). If u Bn+1 v, then there exists some w ∈ S such that
u Bn w and w Bn v. Then, by applying the inductive hypothesis twice, we have
P(u)(CB(CD)) = P(w)(CB(CD)) = P(v)(CB(CD)), for all C,D ∈ S/B.

By definition, ∼sb = B0 ⊆ B. Since B is a stutter bisimulation we also have
B ⊆ ∼sb. This proves that ∼sb is a stutter bisimulation.

(ii) It suffices to show that ∼b is a stutter bisimulation. Clearly ∼b is an
equivalence relation, moreover ∼b ⊆ ≡`. Let u ∼b v and C,D ∈ S/∼b

, then

P(u)(C(CD)) = P(u)(C(C+D+)) (stutter cylinder)

= P(u)(C(C+D)) (C(C+D+) = C(C+D))

= P(u)(
⋃
n≥1 C(CnD)) (Kleene plus)

=
∑
n≥1 P(u)(C(CnD)) (σ-additivity)

=
∑
n≥1 P(v)(C(CnD)) (Prop. 45)

= P(v)(C(CD)) . (σ-additivity + Kleene plus)

Proof (of Theorem 7). (ii) Is a direct consequence of (i) and Lemma 6, since
both JLTLK and JLTL-uK are fields.

To prove (i) it suffices to show (a) JLTLK ⊆ σ(T ) and (b) T ⊆ σ(JLTL-uK).

(a) By structural induction on the syntax of ϕ ∈ LTL we prove that JϕK ∈ σ(T ).

Atomic prop. JpK =
⋃
{C([u]≡`

) | u ∈ S , p ∈ `(u)}. Since S is countable and
C([u]≡`

) ∈ T for all u ∈ S, then JpK ∈ σ(T ).

False. J⊥K = ∅ ∈ σ(T ).

Implication. Jφ → ψK = J¬φ ∨ ψK = JφKc ∪ JψK. By inductive hypothesis,
JφK, JψK ∈ σ(T ), therefore Jφ→ ψK ∈ σ(T ).

Next. Consider Xφ. The following hold

JXIφK = {π | M, π|1 |= φ} (by def. of X)

= {π | π|1 ∈ JφK} (by def. of J·K)

= (·)|−1
1 (JφK) (by def. of (·)|1)

By inductive hypothesis and (·)|1 being measurable, it follows JXIφK ∈ σ(T ).
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Until. Consider Jφ U ψK. The following hold

Jφ U ψK = {π | ∃i ≥ 0.M, π|i |= ψ and ∀0 ≤ j < i.M, π|j |= φ} (by def. U)

= {π | ∃i ≥ 0. π|i ∈ JψK and ∀0 ≤ j < i. π|j ∈ JφK} (by def. J·K)

=
⋃
i≥0

⋂
0≤j<i

((·)|−1
i (JψK) ∩ (·)|−1

j (JφK)) . (by def. (·)|k)

By inductive hypothesis on φ, ψ and measurability of (·)|k for arbitrary k ∈ N,
it follows Jφ U ψK ∈ σ(T ).

(b) To prove σ(T ) ⊆ σ(JLTL-uK) it suffices to show T ⊆ σ(JLTL-uK). Define
A : A× 2S → LTL-u and B : T → LTL-u as follows

A(p, C) =

{
p if ∃u ∈ C s.t. p ∈ `(u)

¬p otherwise

B(C(C0)) =
∧
p∈AA(p, C0)

B(C(C0 · · ·Cn+1)) = B(C(C0)) ∧ XB(C(C1 · · ·Cn+1)) .

For T ∈ T one can prove that JB(T )K = T . ut

Proof (of Proposition 10). We prove the two implications separately.

(⇒) Let R be a stutter relation such that π R ρ. Without loss of generality
assume R to be symmetric (indeed R∪R−1 is a stutter bisimulation if R is so).
It suffices to prove that, for any ϕ ∈ LTL-x, M, π |= ϕ implies M, ρ |= ϕ. We
proceed by induction on the structure of ϕ.

(Case ϕ = ⊥). Immediate, by the semantics of ⊥.
(Case ϕ = p ∈ A). Assume M, π |= p. By π[0] ≡` ρ[0], then M, ρ |= p.
(Case ϕ = φ→ ψ). Assume M, ρ |= φ. By symmetry of R, ρ R π. By inductive
hypothesis, M, π |= φ. By hypothesis M, π |= φ → ψ, hence M, π |= ψ. By
inductive hypothesis, M, ρ |= ψ, hence M, ρ |= φ→ ψ.
(Case ϕ = φ U ψ). For π′ ∈ Jφ U ψK, define i∗(π′) = min {i | M, π′|i |= ψ}.
We proceed by induction on i∗(π). [Base case: i∗(π) = 0] By definition of i∗,
M, π |= ψ. By inductive hypothesis on the formula, M, ρ |= ψ. Therefore,
M, ρ |= φ U ψ. [Inductive step: i∗(π) > 0] By definition of i∗, M, π|1 |= φ U ψ.
Since i∗(π|1) = i∗(π)− 1, by inductive hypothesis on π|1, for every ρ′ such that
π|1 R ρ′, it holds M, ρ′ |= φ U ψ. By π R ρ, one of the following cases holds:

– Case π|1 ' ρ: then M, ρ |= φ U ψ.
– Case π|1 ' ρ|1: then M, ρ|1 |= φ U ψ. By i∗(π) > 0 and M, π |= φ U ψ we

have M, π |= φ. By inductive hypothesis on the formula, M, ρ |= φ. From
this and M, ρ|1 |= φ U ψ we conclude that M, ρ |= φ U ψ.

(⇐) We show that ≡LTL-x = {(π, ρ) | ∀ϕ ∈ LTL-x,M, π |= ϕ iff M, ρ |= ϕ} is a
stutter relation. Assume π ≡LTL-x ρ.

(i) p ∈ `(π[0]) iff M, π |= p iff M, ρ |= p iff p ∈ `(ρ[0]). Hence π[0] ≡` ρ[0].
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(ii) Assume π is not ≡LTL-x-constant. Then, there exists an index i > 0 such
that π 6≡LTL-x π|i. Let k be the least such index. Then, there exists ϕ such that
M, π |= ϕ, M, π|k |= ¬ϕ and, for all j < k, M, π|j |= ϕ. From this we get
that M, π |= ϕ U ¬ϕ. By π ≡LTL-x ρ, we have M, ρ |= φ U ¬ϕ and M, ρ |= ϕ.
This implies that there exists j > 0 such that ρ|j |= ¬ϕ. Therefore ρ is not
≡LTL-x-constant.
(iii) Let π 6≡LTL-x ρ|1 and π|1 6≡LTL-x ρ. We prove π|1 ≡LTL-x ρ|1. By π ≡LTL-x ρ,
we have π 6≡LTL-x π|1 and ρ 6≡LTL-x ρ|1. Hence there exist α, β ∈ LTL-x such that

M, π |= α and M, π|1 |= ¬α , (1)

M, ρ |= β and M, ρ|1 |= ¬β . (2)

Let ϕ ∈ LTL-x be such that M, π|1 |= ϕ. We show M, ρ|1 |= ϕ.

– Case M, π |= ϕ: Assume by contradiction that M, ρ|1 |= ¬ϕ. By π ≡LTL-x ρ
and (1), M, ρ |= α. Similarly, M, ρ |= ϕ. By M, ρ |= α and M, ρ|1 |= ¬ϕ it
holds M, ρ |= α U ¬ϕ, hence, by π ≡LTL-x ρ, we have M, π |= α U ¬ϕ. By
(1)M, π|1 |= ¬α, hence the only possibility is thatM, π|1 |= ¬ϕ, so that we
get a contradiction.

– CaseM, π |= ¬ϕ: By (2) and π ≡LTL-x ρ,M, π |= β. By this and hypothesis
on π|1, we have M, π |= β U ϕ. Then, by π ≡LTL-x ρ, we have M, ρ |= β U ϕ
and similarly, by the hypothesis made on π, we also have M, ρ |= ¬ϕ. This
means that M, ρ|1 |= ϕ. ut

Proposition 47. Define q : Sω → Sω as follows, for π ∈ Sω,

q(π) =

{
π[0]q(π|k) if ∃k s.t. π[0] 6≡` π[k] and ∀j < k, π[0] ≡` π[j]

π otherwise (i.e., π is ≡`ω -constant)

Then q is σ(ST )-σ(T ) measurable and ≡`ω◦q is a stutter relation.

Proof. To prove the measurability of q it suffices to show that for all cylinders
T ∈ T , q−1(T ) ∈ σ(ST ). We proceed by induction on the rank n ≥ 1 of T .

(Base case, n = 1). Let C ∈ S/≡`
, then the following holds:

q−1(C(C)) = {π | q(π) ∈ C(C)} (preimage)

= {π | π[0] ∈ C} (def. q)

= C(C) (cylinder set)

= C(C) (*)

The equality (*) follows by C(C) ⊆
⋃
k≥1 C(Ck) = C(C) and the fact that, for

all k ≥ 1, C(Ck) = C(C) ∩ ((·)|1)−1(C(Ck−1)) ⊆ C(C).
(Inductive step, n > 1). Let Ci ∈ S/≡`

, for i = 1..n. We consider two cases. If
for all i = 1..n, C1 = Ci, then the following holds:

q−1(C(C1 · · ·Cn)) = {π | q(π) ∈ C(C1 · · ·Cn)} (preimage)

= {π | π[0] ∈ C1} (def. q)

= C(C1) (by (*))
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Assume that for some 1 < j ≤ n, C1 6≡` Cj . Then the following holds:

q−1(C(C1 · · ·Cn)) = {π | q(π) ∈ C(C)} (preimage)

=

{
π

∣∣∣∣∣∃k. π[0] 6≡` π[k], ∀j < k. π[0] ≡` π[j],

π[0] ∈ C1 and q(π|k) ∈ C(C2 · · ·Cn)

}
(def. q)

=
⋃
k≥1

(
C(Ck1 ) ∩ ((·)|k)−1(q−1(C(C2 · · ·Cn)))

)
(def. (·)|k)

By inductive hypothesis q−1(C(C2 · · ·Cn)) ∈ σ(ST ). Now we show that for all
E ∈ σ(ST ),

⋃
k≥1

(
C(Ck1 ) ∩ ((·)|k)−1(E)

)
∈ σ(ST ). To do this it suffices to prove

that, for all stutter cylinders W ∈ ST ,
⋃
k≥1

(
C(Ck1 ) ∩ ((·)|k)−1(W )

)
∈ σ(ST ).

Let W = C(D+
1 · · ·D+

m), for some Di ∈ S/≡`
, s.t. Di 6= Di+1, for all i = 1..m.

We consider two cases. If C1 = D1, then⋃
k≥1

(
C(Ck1 ) ∩ ((·)|k)−1(C(D+

1 · · ·D+
m))
)

= C(D+
1 · · ·D+

m) ∈ σ(ST ) .

If C1 6= D1, then⋃
k≥1

(
C(Ck1 ) ∩ ((·)|k)−1(C(D+

1 · · ·D+
m))
)

=
⋃
k≥1

(
C(Ck1D

+
1 · · ·D+

m)
)

= C(C+
1 D

+
1 · · ·D+

m) ∈ σ(ST ) .

This concludes the proof for the σ(ST )-σ(T ) measurability of q.

We show that ≡`ω◦q = {(π, ρ) | q(π) ≡`ω q(ρ)} is a stutter relation. Assume that
q(π) ≡`ω q(ρ), then

(i) By definition of q, q(π)[0] = π[0] and q(ρ)[0] = ρ[0]. By definition of ≡`ω , we
get π[0] ≡` ρ[0].

(ii) It suffices to prove that, for arbitrary π, ρ ∈ Sω, the following hold:

(a) π is ≡`ω -constant iff π is ≡`ω◦q-constant;

(b) if π ≡`ω◦q ρ and π is ≡`ω -constant, then ρ is ≡`ω -constant.

(1: ⇐) Assume by contradiction that π is ≡`ω◦q-constant but not ≡`ω -constant.
Then, there exists k > 0 such that π[0] 6≡` π[k]. By definition of q, we have that
q(π)[0] = π[0], q(π|k)[0] = π[k], therefore q(π) ≡`ω q(π|k). In particular, this
means that π ≡`ω◦q π|k, hence π is not ≡`ω◦q-constant. This is in contradiction
with the hypothesis on π. (1: ⇒) Assume that π is ≡`ω -constant. This implies
also that, for all i ∈ N, π|i is ≡`ω -constant. By definition of q, we have q(π) = π
and, for all i ∈ N, q(π|i) = π|i. Hence, q(π) is ≡`ω◦q-constant.
(2) By π ≡`ω◦q ρ, we have q(π)`ωq(ρ). By π is ≡`ω -constant and definition of q,
q(π) = π, therefore π`ωq(ρ). In particular, q(ρ) is ≡`ω -constant and, by definition
of q, this is the case only when ρ is ≡`ω -constant.

(iii) We show that q(π|1) 6≡`ω q(ρ) and π 6≡`ω q(ρ|1) implies q(π|1) ≡`ω q(ρ|1). By
q(π|1) 6≡`ω q(ρ), we have that π[0] 6≡` π[1]. Indeed, if π[0] ≡` π[1], by definition
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of q, q(π) = q(π|1), and this contradicts the hypothesis q(π) ≡`ω q(ρ). Similarly,
π 6≡`ω q(ρ|1) implies ρ[0] 6≡` ρ[1]. By definition of q, π[0] 6≡` π[1] and ρ[0] 6≡` ρ[1],
we have q(π) = π[0]q(π|1) and q(ρ) = ρ[0]q(ρ|1). By q(π) ≡`ω q(ρ) and definition
of ≡`ω , we obtain q(π|1) ≡`ω q(ρ|1). ut

Proof (of Theorem 11). (ii) Is a direct consequence of (i) and Lemma 6, since
JLTL-xK is a field. To prove (i) it suffices to show (a) JLTL-xK ⊆ σ(ST ) and (b)
ST ⊆ σ(JLTL-xK).

(a) By structural induction on ϕ ∈ LTL-x we prove that JϕK ∈ σ(ST ).

Atomic prop. JpK =
⋃
{C([u]≡`

) | u ∈ S , p ∈ `(u)}. Since S is countable and
C([u]≡`

) = C([u]≡`
) ∈ ST for all u ∈ S, then JpK ∈ σ(ST ).

False. J⊥K = ∅ ∈ σ(ST ).

Implication. Jφ → ψK = J¬φ ∨ ψK = JφKc ∪ JψK. By inductive hypothesis,
JφK, JψK ∈ σ(ST ), therefore Jφ→ ψK ∈ σ(ST ).

Until. Consider the function q : Sω → Sω of Proposition 47. By Proposition 47,
≡`ω◦q = {(π, ρ) | q(π) ≡`ω q(ρ)} is a stutter relation. One can easily prove that
q(π) ≡`ω q(q(π)) for all π ∈ Sω, hence π ' q(π) π ∈ Sω. Then,

Jφ U ψK = {π | ∃i ≥ 0.M, π|i |= ψ and ∀0 ≤ j < i.M, π|j |= φ} (by def. U)

= {π | ∃i ≥ 0.M, q(π)|i |= ψ and ∀0 ≤ j < i.M, q(π)|j |= φ}
(Prop.10)

= {π | ∃i ≥ 0. q(π)|i ∈ JψK, ∀0 ≤ j < i. q(π)|j ∈ JφK} (by def. J·K)

=
⋃
i≥0

⋂
0≤j<i

(((·)|i ◦ q)−1(JψK) ∩ ((·)|j ◦ q)−1(JφK)) . (preimage)

By Proposition 47, q is σ(ST )-σ(T ) measurable, hence, for any k ∈ N, the
composite (·)|k ◦ q is σ(ST )-measurable. By inductive hypothesis on φ, ψ and
σ(ST )-measurability of (·)|k ◦ q, it follows that Jφ U ψK ∈ σ(ST ).

(b) To prove σ(ST ) ⊆ σ(JLTL-XK) it suffices to show ST ⊆ σ(JLTL-XK). To this
end, define A : A × 2S → LTL-X and B : ST → LTL-X as follows, for i = 1..n
and Ci ∈ S/≡`

s.t. Ci 6= Ci+1,

A(p, C) =

{
p if ∃u ∈ C s.t. p ∈ `(u)

¬p otherwise

B(C(C1)) =
∧
p∈AA(p, C0)

B(C(C1 · · ·Cn+1)) =
(
B(C(C1)) ∧ ¬B(C(C2)

)
U B(C(C2 · · ·Cn+1)) ,

For T ∈ ST one can prove that JB(T )K = T . ut



Converging from Branching to Linear Metrics on Markov Chains 27

Proof (of Lemma 12 —restated from [18, Th.5.2]). We prove that ‖µ − ν‖ is a
lower bound for {ω(6∼=) | ω ∈ Ω(µ, ν)}. Let ω ∈ Ω(µ, ν) and E ∈ Σ, then

µ(E) = ω(E ×X) (ω ∈ Ω(µ, ν))

≥ ω((X × E) ∩ ∼=) (def. ∼=)

= 1− ω((X × E)c ∪ 6∼=) (complement)

≥ 1− ω((X × E)c)− ω(6∼=) (sub additivity)

= ω(X × E)− ω(6∼=) (complement)

= ν(E)− ω(6∼=) . (ω ∈ Ω(µ, ν))

Thus, by the generality of ω ∈ Ω(µ, ν) and E ∈ Σ, it immediately follows that
‖µ− ν‖ = supE∈Σ |µ(E)− ν(E)| ≤ min {ω(6∼=) | ω ∈ Ω(µ, ν)}.

Now we prove that there exists an optimal coupling ω∗ ∈ Ω(µ, ν) such that
ω∗(6∼=) = ‖µ − ν‖. Define ψ : X → X × X by ψ(x) = (x, x) (it is measurable
because ψ−1(E×E′) = E∩E′, for all E,E′ ∈ Σ). Note that ψ−1(∼=) = X, since
ψ(x) = (x, x) ∈ ∼=.

If µ = ν, just define ω∗ = µ[ψ] (to check that this is a coupling and that it
is such that ω∗( 6∼=) = ‖µ − ν‖ is trivial). Let µ 6= ν. Define µ ∧ ν : Σ → R+ as
follows, for E ∈ Σ

(µ ∧ ν)(E) = inf {µ(F ) + ν(E \ F ) | F ∈ Σ and F ⊆ E} .

The above is a well defined measure (a.k.a. the meet of µ and ν, see [?, Corr.6
pp.163]). Now define the following derived measures

η = µ− (µ ∧ ν) , η′ = ν − (µ ∧ ν) , ω∗ =
η × η′

1− γ
+ (µ ∧ ν)[ψ] .

where γ = (µ ∧ ν)[ψ](∼=). Note that, since ψ−1(∼=) = X, (µ ∧ ν)[ψ] puts all its
mass in ∼=. Moreover, since µ 6= ν, we get γ < 1, so ω∗ is well defined and, in
particular, ω∗(∼=) = γ. Now we show that ω∗ ∈ Ω(µ, ν). Let E ∈ Σ, then

ω∗(E ×X) =
η(E) · η′(X)

1− γ
+ (µ ∧ ν)[ψ](E × Sω) (def. ω∗)

=
η(E) · (ν(X)− (µ ∧ ν)(X))

1− γ
+ (µ ∧ ν)[ψ](E ×X) (def. η′)

=
η(E) · (1− γ)

1− γ
+ (µ ∧ ν)[ψ](E ×X) (def. µ ∧ ν)

= µ(E)− (µ ∧ ν)(E) + (µ ∧ ν)[ψ](E ×X) (def. η)

= µ(E)− (µ ∧ ν)(E) + (µ ∧ ν)(E) (def. (µ ∧ ν)[ψ])

= µ(E) .
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Similarly ω∗(X × E) = ν(E). The following shows that ω∗ is optimal

‖µ− ν‖ = 1− (µ ∧ ν)(X) (def. µ ∧ ν and compl.)

= 1− (µ ∧ ν)[ψ](∼=) (def. ψ)

= 1− γ (def. γ)

= 1− ω∗(∼=) (def. ω∗)

= ω∗(6∼=) (compl.)

ut

Proof (of Lemma ??). For Ek ⊆ Ek+1, it suffices to prove Ck(S/≡`
,Rk) ⊆ Ek+1.

We proceed by induction on k ≥ 0. The base case is trivial. Assume k > 0
and let C ∈ Ck(S/≡`

,Rk). Note that, for any n ∈ N such that 0 ≤ n < k2k,
n
2k = 2n

2k+1 and 2n < (k + 1)2k+1. From this is immediate to prove that there

exists F ⊆ Ck(S/≡`
,Rk+1) such that C =

⋃
F . Note that Rk+1 is a partition

of R+ (i.e., a family of pairwise disjoint subsets of R+ whose union is R+). So,
any C ′ = C(C0, R0, .., Rk−1, Ck) ∈ Ck(S/≡`

,Rk+1) can be represented as

C ′ =
⋃
{C(C0, R0, .., Rk−1, Ck, R

′′, C ′′) | R′′ ∈ Rk+1, C
′′ ∈ S/≡`

} .

Since Rk+1 and S/≡`
are finite, from the above we get that C can be represented

as a finite union of cylinders in Ck+1(S/≡`
,Rk+1), hence C ∈ Ek+1.

Let E =
⋃
k∈N Ek. Since each Ck(S/≡`

,Rk) forms a finite partition of Sω, it
is immediate to prove that Ek is a field. Since the limit of an increasing sequence
of fields is a field, then E is a field.

It remains to show σ(E) = σ(T ). Clearly E ⊆ σ(T ), hence σ(E) ⊆ σ(T ).
As for the converse inclusion, let R =

⋃
k∈N Rk and recall that B = σ(CO),

where CO = {[q, q′) | q < q′ ∈ Q+}∪{[q,∞) | q ∈ Q+} is the family of left-closed
right-open intervals with rational endpoints (or ∞). Let q < q′ ∈ Q+, then the
following hold

[q, q′) =
⋃{[

n

2k
,
n+ 1

2k

)∣∣∣∣ q ≤ n

2k
<
n+ 1

2k
≤ q′, for k ∈ N, 0 ≤ n < k2k

}
,

[q,∞) =
⋃{[

n

2k
,
n+ 1

2k

)∣∣∣∣ q ≤ n

2k
, for k ∈ N, 0 ≤ n < k2k

}
.

The above suffices to prove CO ⊆ σ(R), hence B = σ(CO) ⊆ σ(R). This proves
σ(C(S/≡`

,R)) ⊆ σ(T ). Clearly, E ⊆ σ(C(S/≡`
,R)), therefore σ(E) ⊆ σ(T ). ut

Proposition 48. Let Σ be a σ-algebra on X generated by F ⊆ 2X . Then the
inseparability relations w.r.t. Σ and F coincide:

∼=Σ :=
⋂
{E × E | E ∈ Σ} =

⋂
{F × F | F ∈ F} =: ∼=F .
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Proof. (⊆) It immediately follows by F ⊆ Σ. (⊇) Let U be the smallest family
of subsets of X that contains F and is closed under complement and (generic)
union. Define ∼=U :=

⋂
{E × E | E ∈ U}. Clearly Σ ⊆ U . This means that to

prove the inclusion it suffices to prove ∼=F ⊆ ∼=U . We proceed by contradiction.
Assume that (x, y) ∈ ∼=F but (x, y) /∈ ∼=U . By definition of ∼=U , there exists a set
E ∈ U such that x ∈ E and y ∈ Ec. By definition of U , there exist P,N ⊆ F such
that E =

⋃
P∪

⋂
N . This means that, either x ∈ P for some P ∈ P or x ∈

⋂
N .

If x ∈ P , by x ∼=F y and P ∈ F we have y ∈ P ⊆ E, hence a contradiction.
If, x ∈

⋂
N , then by x ∼=F y and N ⊆ F , we have that x ∈

⋂
N ⊆ E, hence

another contradiction. ut

Proposition 49. ≡`ω is the inseparability relation w.r.t. σ(T ) and it is a mea-
surable set in σ(T )⊗ σ(T ), i.e., ≡`ω = ∼=σ(T ) ∈ σ(T )⊗ σ(T ).

Proof. We first show ≡`ω =
⋂
{E × E | E ∈ σ(T )}. (⊆) By Proposition 48, it

suffices to prove inseparability w.r.t trace cylinders. Let π ≡`ω ρ and π ∈ C =
C(C1 · · ·Cn), for some Ci ∈ S/≡`

(i = 1..n). By definition of ≡`ω , for all j ∈ N,
π[j] ≡` ρ[j], so that ρ ∈ C(C1 · · ·Cn). (⊇) By contraposition. Let π 6≡`ω ρ, then
there exist k ∈ N such that π[k] 6≡` ρ[k]. Let E = (·)|−1

k (C([π[k]]≡`
)). Clearly

π ∈ E but ρ /∈ E. The function (·)|k is measurable, hence E ∈ σ(T ).

Since T is a countable family, the measurability of ≡`ω follows by Proposi-
tion 48 and ≡`ω = ∼=σ(T ). ut

Proof (of Lemma 19). Let C ∈ Ck. To prove PC(u, v) ∈ Ω(P(u),P(v)) it suffices
to show that, for all n ∈ N and Ui ⊆ S (i = 0..nk) the following hold

(i) PC(u, v)(C(U0 · · ·Unk)× Sω) = P(u)(C(U0 · · ·Unk));

(ii) PC(u, v)(Sω × C(U0 · · ·Unk)) = P(v)(C(U0 · · ·Unk)).

We prove (i) by induction on n ≥ 0 The base case is trivial. Let n > 0. For
any v ∈ Snk+1 define F v = {v0} × R+ × .. × R+ × {vnk} and, for h < n, let
F v
h = {vhk} × R+ × ..× R+ × {v(h+1)k}. Then the following hold

PC(s, s′)(C(E)× Sω) =

=
∑

v∈Snk+1

PC(s, s′)(C(E)× C(F v)) (additivity)

=
∑

v∈Snk+1

1{(s,s′)}(u0, v0) ·
n−1∏
h=0

C(uhk, vhk)(Eh × F v
h ) (def. PC(s, s′))

=
∑

v∈S(n−1)k+1

PC(s, s′)(C(E′)× C(F v)) · C(s(n−1)k, v(n−1)k)(E(n−1) × Sk)

(def. PC(s, s′))
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=
∑

v∈S(n−1)k+1

PC(s, s′)(C(E′)× C(F v)) · P(s(n−1)k)(E(n−1)) (C ∈ Ck)

= PC(s, s′)(C(E′)× Sω) · P(s(n−1)k)(E(n−1)) (additivity)

= P(s)(C(E′)) · P(s(n−1)k)(E(n−1)) (inductive hp.)

= P(s)(C(E)) (def. PC(s, s′))

where E′ = {u0} ×R0 × ..×R(n−1)k−1×{u(n−1)k}. (ii) follows similarly. ut

Proof (of Lemma 21). We prove the two items separately.

(i) Let k > 0 and C ∈ Ck. Define, for all s, s′ ∈ S, D(s, s′) as the unique
measure on S2k ⊗ S2k s.t., for all E = {u0}×R0× ..×R2k−1×{u2k} and F =
{v0}×H0× ..×H2k−1×{v2k} in R2k

D(s, s′)(E × F ) = C(s, s′)(E′ × F ′) · C(uk, vk)(E′′ × F ′′) ,

where E′={u0}×R0×..×Rk−1×{uk} and E′′={uk}×Rk ×..×R2k−1×{u2k}
(similarly for F ). To show D ∈ C2k we need to prove that for all s, s′ ∈ S,
D(s, s′) ∈ Ω(P(s)|2k,P(s′)|2k). To this end it is sufficient that, for all measurable
sets E = {u0}×R0× ..×R2k−1×{u2k} ∈ R2k, the following hold

D(s, s′)(E × S2k)
(i)
= P(s)|2k(E) , D(s, s′)(S2k × E)

(ii)
= P(s′)|2k(E) .

We prove only (i). For any v ∈ S2k+1 define F v = {v0} × R+ × ..× R+ × {v2k}
and, for h = 0..1, let F v

h = {vhk} × R+ × ..× R+ × {v(h+1)k}. Then we have

D(s, s′)(E × S2k) =

=
∑

v∈S2k+1 D(s, s′)(E × F v) (additivity)

=
∑

v∈S2k+1 C(s, s′)(E′ × F v
0 ) · C(uk, vk)(E′′ × F v

1 ) (def. D)

=
∑

v∈Sk+1 C(s, s′)(E′ × F v
0 ) · C(uk, vk)(E′′ × Sk) (additivity)

=
∑

v∈Sk+1 C(s, s′)(E′ × F v
0 ) · P(uk)|k(E′′) (C ∈ Ck)

= C(s, s′)(E′ × Sk) · P(uk)|k(E′′) (additivity)

= P(s)|k(E′) · P(uk)|k(E′′) (C ∈ Ck)

= P(s)(C(E′)) · P(uk)(C(E′′)) (preimage)

= P(s)(C(E)) (def. P(s))

= P(s)|2k(E) . (preimage)

We show that, for arbitrary s, s′ ∈ S, PC(s, s′) = PD(s, s′). To this end it suffices
to check the following for all n ∈ N and E = {u0}×R0× ..×R2nk−1×{u2nk},
F = {v0}×H0× ..×H2nk−1×{v2nk} in R2nk:

PC(s, s′)(C(E)× C(F )) = PD(s, s′)(C(E)× C(F ))
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We proceed by induction on n ≥ 0. The base case is trivial. Assume n > 0 and,
for i ∈ {k, 2k}, define Eih = {uhi} × Rhi × .. × R(h+1)i−1×{u(h+1)i} (similarly
for F ). Then the following holds:

PC(s, s′)(C(E)×C(F )) = 1{(s,s′)}(u0, v0) ·
∏2n−1
h=0 C(uhk, vhk)(Ekh ×F kh )

(def. PC)

= 1{(s,s′)}(u0, v0) ·
∏n−1
h=0 D(u2hk, v2hk)(E2k

h ×F 2k
h )

(def. D)

= PD(s, s′)(C(E)×C(F )) . (def. PD)

From the above it immediately follows that Ck ⊆ C2k.
(ii) We prove the following more general result from which we will obtain (ii).

Let (X,Σ) be a measurable space such that F is a field that generates Σ and
let D ⊆ ∆(X) be such that, for all µ ∈ ∆(X) and F ∈ F , there exists ν ∈ D such
that ν(F ) = µ(F ). Then D is dense in ∆(X) w.r.t. the total variation distance.

Let E ∈ Σ be an arbitrary measurable set and dE : ∆(X) × ∆(X) → R+

be the pseudometric defined as dE(µ, ν) = |µ(E) − ν(E)|, for µ, ν ∈ ∆(X).
Since ‖µ − ν‖ = supE∈Σ dE(µ, ν), to prove that D is dense w.r.t. the total
variation distance it suffices to show that D is dense w.r.t. dE , for any E ∈ Σ
(see Proposition 53). Let E ∈ Σ and ε > 0. For any µ ∈ ∆(X) we have to
provide ν ∈ D such that dE(µ, ν) < ε. Define the measure µ̃ as the least upper
bound of D ∪ {µ} w.r.t. the point-wise partial order between measures (ν v ν′

iff ν(A) ≤ ν′(A), for all A ∈ Σ). The existence of µ̃ is guaranteed by [?, Corr.6
pp.163] (note that µ̃ is not necessarily finite). By Lemma ??, F ⊆ Σ is dense
in (Σ, dµ̃), where dµ̃ is the Fréchet-Nikodym pseudometric5, hence there exists
F ∈ F such that dµ̃(E,F ) < ε

2 . By hypothesis, there exists ν ∈ D, such that
ν(F ) = µ(F ). Let ω ∈ {µ, ν} then

ω(E) = ω(E \ F ) + ω(E ∩ F ) (ω additive)

≤ ω((E \ F ) ∪ (F \ E)) + ω(F ) (ω monotone)

= ω(E 4 F ) + ω(E) (by def)

≤ µ̃(E 4 F ) + ω(F ) (ω v µ̃)

= dµ̃(E,F ) + ω(F ) . (by def)

This implies |ω(E)−ω(F )| ≤ dµ̃(E,F ), and in particular that |µ(E)−µ(F )| < ε
2

and |ν(E)− ν(F )| < ε
2 . Then, the density of D follows by

dE(µ, ν) = |µ(E)− ν(E)| (def. dE)

≤ |µ(E)− µ(F )|+ |µ(F )− ν(E)| (triangular ineq.)

= |µ(E)− µ(F )|+ |ν(F )− ν(E)| (ν(F ) = µ(F ))

<
ε

2
+
ε

2
= ε .

5 Notice that Lemma ?? does not assume the measure to be finite, hence it can be
safely applied to µ̃.
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Let s, s′ ∈ S, Ω =
⋃
i∈N
{
PC(s, s′) | C ∈ C2i

}
. Given the general result above,

to prove (ii) it is sufficient to provide a field F that generates the σ-algebra of
Sω ⊗ Sω and to show that, for every µ ∈ Ω(P(s),P(s′)) and F ∈ F , there exists
ω ∈ Ω such that ω(F ) = µ(F ).

Define F =
⋃
k∈N Fk, where Fk denotes the collection of all finite union of

measurable sets of the form C(E) × C(F ), for some E,F ∈ Rk. It holds that
Fk ⊆ Fk+1 and Fk is a field, for all k ∈ N. Therefore F is a field that generates
the σ-algebra of Sω ⊗ Sω.

Let µ ∈ Ω(P(s),P(s′)), k ∈ N and D ∈ Ck. We define ωk = PCk(s, s′), where
Ck : S × S → ∆(Sk × Sk) is defined by

Ck(u, v) =

{
µ[(·)|k × (·)|k] if (u, v) = (s, s′)

D(u, v) otherwise

where µ[(·)|k × (·)|k] denotes the push forward of µ along (π, π′) 7→ (π|k, π′|k).
Note that, since Ck is nonempty, Ck is well defined. We show Ck ∈ Ck. We
just need to prove µ[(·)|k × (·)|k] ∈ Ω(P(s)|k,P(s′)|k) that corresponds to check
µ[(·)|k×(·)|k](E×Sk) = P(s)|k(E) and µ[(·)|k×(·)|k](Sk ×E) = P(s′)|k(E) for
arbitrary E ∈ Rk (we check one equality, the other follows similarly):

µ[(·)|k × (·)|k](E × Sk) = µ(C(E)× Sω) (preimage)

= P(s)(C(E)) (µ ∈ Ω(P(s),P(s′)))

= P(s)|k(E) . (preimage)

Next we prove that for all A ∈ Fk, ωk(A) = µ(A). Note that since Fk ⊆ Fk+1,
this suffices to show that ωk(B) = µ(B) holds for all B ∈ Fj such that j ≤ k.
Let A =

⋃n
i=0 C(Ei) × C(Fi) ∈ Fk, for some n ∈ N and Ei, Fi ∈ Rk (i = 0..n).

Without loss of generality we can assume that the C(Ei) × C(Fi)’s forming A
are pairwise disjoint (indeed, Fk is a field, hence we can simply replace any two
“overlapping” sets by taking the intersection and their symmetric difference).

ωk(A) = PCk(s, s′)(A) (def. ωk)

=
∑n
i=0 PCk(s, s′)(C(Ei)× C(Fi)) (additivity)

=
∑n
i=0 Ck(s, s′)(Ei × Fi) (def. PCk(s, s′))

=
∑n
i=0 µ(C(Ei)× C(Fi)) (def. Ck)

= µ(A) . (additivity)

To conclude the proof, observe that, given µ ∈ Ω(P(s),P(s′)) and F ∈ F ,
there exists i ∈ N such that F ∈ Fi, and that for ω2i defined as above (w.r.t. µ)
is such that ω2i(F ) = µ(F ) and ω2i ∈ Ω. ut

Proof (of Lemma ??). Consider the functions p1 and p2 defined as

p1 : Sk → Sk+1 p2 : Sk → Rk+
p1(s0, t0, . . . , tk−1, sk) = (s0, . . . , sk) p2(s0, t0, . . . , tk−1, sk) = (t0, . . . , tk−1) .
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Note that p1, p2 are measurable. For C ∈ Ck and (ϑ, η) satisfying the conditions
of the statement, the bijection is given by C 7→ (τC , ρC) and (ϑ, η) 7→ D, where

τC(u, v) = C(u, v)[p1 × p1] ,

ρC(u1..uk, v1..vk) =

{
C(u1,v1)[p2×p2]

α if α = τC(u1, v1)(u1..ukS×v1..vkS) 6= 0

0 otherwise

and

D(s, s′)(E × F ) = ϑ(u0, v0)(u0..uk, v0..vk) · η(u0..uk−1, v0..vk−1)(R,H) .

for E = {u0} ×R0 × ..×Rk−1×{uk}, F = {v0}×H0× ..×Hk−1×{vk}∈Rk,
and R = R0 × ..×Rk−1, H = H0 × ..×Hk−1. ut

Proof (of Lemma ??). Let k ∈ N and C = (τC , ρC) ∈ Ck be a coupling structure
for M = (S, τ, ρ, `). Define g : Sk+1 × Sk+1 → [0, 1], for x, y ∈ Sk+1, as

g(x, y) =

{
0 if τC(x0, y0)(x, y) = 0

PC(x0, y0)( 6≡`ω |{(π1, π2)[0..k] = (x, y)}) otherwise
(3)

where P(A|B) denotes the conditional probability of A given B w.r.t. P (defined
as P(A|B) = P(A ∩ B)/P(B), when P(B) > 0) and {(π1, π2)[0..k] = (x, y)}
stands for the event (·, ·)[0..k]−1({(x, y)}), where the function (·, ·)[0..k] is defined
by (π1, π2) 7→ (π1[0]..π1[k], π2[0]..π2[k]) (easily checked to be measurable). Note
that g is well defined since PC(x0, y0)({(π1, π2)[0..k] = (x, y)}) = τC(x0, y0)(x, y).

To prove PC(s, s′)( 6≡`ω ) =
∫
γC dτC(s, s

′) it suffices to show that g = γC .
Indeed

PC(s, s′)(6≡`ω ) =

∫
PC(s, s′)( 6≡`ω |{(π1, π2)[0..k] = (·, ·)}) dPC(s, s′)[(·, ·)[0..k]]

(cond. pr.)

=

∫
PC(s, s′)( 6≡`ω |{(π1, π2)[0..k] = (· , ·)}) dτC(s, s

′) (def. PC)

=

∫
g dτC(s, s

′) =

∫
γC dτC(s, s

′) . (by (3) and g = γC)

First we prove that g is a fixed point of Γ C . We proceed by cases

Case τC(x0, y0)(x, y) = 0. By definition of Γ C and (3), Γ C(g)(x, y) = 0 = g(x, y).

Case τC(x0, y0)(x, y) > 0 and ∃i ≤ k. xi 6≡` yi. The following hold

g(x, y) = PC(x0, y0)( 6≡`ω |{(π1, π2)[0..k] = (x, y)}) (by (3))

=
PC(x0, y0)( 6≡`ω ∩ {(π1, π2)[0..k] = (x, y)})

PC(x0, y0)({(π1, π2)[0..k] = (x, y)})
(cond. pr.)

=
PC(x0, y0)({(π1, π2)[0..k] = (x, y)})
PC(x0, y0)({(π1, π2)[0..k] = (x, y)})

= 1 = Γ C(g)(x, y) ,

where the last equalities follow by {(π1, π2)[0..k] = (x, y)} ⊆ 6≡`ω (because by
hypothesis ∃i. xi 6≡` yi) and definition of Γ C .
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Case τC(x0, y0)(x, y) > 0 and ∀i ≤ k. xi ≡` yi. Let A = {(π1, π2)[0..k] = (x, y)}
and B = {(π1, π2)〈0..k − 1〉 ∈ 6=} (i.e., the event (·, ·)〈0..k − 1〉−1(6=), where the
function (·, ·)〈0..k−1〉 is defined by (π1, π2) 7→ (π1〈0〉..π1〈k−1〉, π2〈0〉..π2〈k−1〉)
and it is easy to see that it is measurable).
Let β = ρC(x0..xk−1, y0..yk−1)( 6=). We show that the following hold

(i) PC(x0, y0)( 6≡`ω ∩B|A) = β;

(ii) PC(x0, y0)( 6≡`ω ∩Bc|A) = (1− β) ·
∫
g dτC(xk, yk).

Note that once we have shown (i–ii), g(x, y) = Γ C(g)(x, y) follows immediately:

g(x, y) = PC(x0, y0)( 6≡`ω |A) (by (3))

= PC(x0, y0)( 6≡`ω ∩B|A) + PC(x0, y0)( 6≡`ω ∩Bc|A) (by additivity)

= β + (1− β) ·
∫
g dτC(xk, yk) (by (i) and (ii))

= Γ C(g)(x, y) . (by def. Γ C)

We show (i):

PC(x0, y0)( 6≡`ω ∩B|A) = PC(x0, y0)(B|A) (by B ⊆ 6≡`ω )

= ρC(x0..xk−1, y0..yk−1)( 6=) (by def. PC)
= β (by def. β)

We show (ii):

PC(x0, y0)( 6≡`ω ∩Bc|A) =

=
PC(x0, y0)( 6≡`ω ∩Bc ∩A)

PC(x0, y0)(A)
(by cond. pr.)

=
τC(x0, y0)(x, y) · ρC(x0..xk−1, y0..yk−1)(=) · PC(xk, yk)( 6≡`ω )

τC(x0, y0)(x, y)
(by def. PC)

= (1− β) · PC(xk, yk)( 6≡`ω ) (by def. β and compl.)

= (1− β) ·
∫

PC(xk, yk)( 6≡`ω |{(π1, π2)[0..k] = (·, ·)}) dPC(xk, yk)[(·, ·)[0..k]]

(cond. pr.)

= (1− β) ·
∫

PC(xk, yk)( 6≡`ω |{(π1, π2)[0..k] = (· , ·)}) dτC(xk, yk) (def. PC)

= (1− β) ·
∫
g dτC(xk, yk) . (by (3))

Now we prove by contradiction that g is actually the least fixed point of Γ C

(i.e., γC = g). Assume that γC < g and let

m = maxx,y∈Sk+1

{
g(x, y)− γC(x, y)

}
, x M y ⇐⇒ g(x, y)− γC(x, y) = m.

We show that m = 0, that is γC = g. Assume x M y, we distinguish 3 cases
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1. If τC(x0, y0)(x, y) = 0, then by definition of Γ C and the fact that g and γC

are fixed points of it, we have that m = g(x, y)− γC(x, y) = 0− 0 = 0.

2. If τC(x0, y0)(x, y) > 0 and xi 6≡` yi for some 0 ≤ i ≤ k. Analogously, we have
that m = g(x, y)− γC(x, y) = 1− 1 = 0.

3. If τC(x0, y0)(x, y) > 0 and xi ≡` yi for all 0 ≤ i ≤ k. Let β = ρC(x, y)( 6=),
then the following equalities hold

m = g(x, y)− γC(x, y) (by x M y)

= Γ C(g)(x, y)− Γ C(γC)(x, y) (g and γC fixed points)

= (1− β) ·
∫

(g − γC) dτC(xk, yk) (by def. Γ C)

= (1− β) ·
∑
u,v∈Sk+1

(
g(u, v)− γC(u, v)

)
· τC(xk, yk)(u, v) . (4)

By hypothesis on m and τC we have respectively that g(u, v)− γC(u, v) ≤ m
for all u, v ∈ Sk+1 and

∑
u,v∈Sk+1 τC(xk, yk)(u, v) = 1, therefore it holds that

(1− β) ·
∑
u,v∈Sk+1

(
g(u, v)− γC(u, v)

)
· τC(xk, yk)(u, v) ≤ (1− β)m. (5)

We distinguish two cases:

– if β > 0, then 1− β < 1. By (4) and (5) we have that m ≤ (1− β)m. By
the assumption on β this holds only for m = 0;

– if β = 0, by (5) and (5) we have that g(u, v) − γC(u, v) = m whenever
τC(xk, yk)(u, v) > 0. Thus τC(xk, yk) has support contained in M . By the
generality of x and y one can prove that

g(x, y)
(3)
= PC(x0, y0)( 6≡`ω | {π1[0..k] = x, π2[0..k] = y}) = 0 .

Therefore γC(x, y) 6< g(x, y) = 0, hence m = 0.

This proves that γC = g.

This proves the thesis. ut

Proof (of Lemma ??). Let C = (τC , ρC) ∈ Ck be a coupling structure and
u0..uk, v0..vk ∈ S such that τC(u0..uk, v0..vk) > 0 and, for all i ≤ k, ui ≡` vi.
Consider µ ∈ Ω(Sk(uk),Sk(vk)), ν ∈ Ω(Tk(u0..uk−1),Tk(v0..vk−1)) and let
D = C[(uk, vk)/µ]〈(u0..uk−1, v1..vk−1)/ν〉 be an update of C.

We will prove that if (i) or (ii) holds then γC is a proper prefix point of ΓD,
that is, ΓD(γC) < γC . Then, the thesis follows by Tarski’s fixed point theorem.

To this end, define α, α′ and β, β′ as

α =
∫
γC dµ α′ =

∫
γC dτC(uk, vk) ,

β = ν(6=) β′ = ρC(u0..uk−1, v1..vk−1)( 6=) .
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Then, the following inequalities hold

ΓD(γC)(u0..uk, v0..vk) =

= β + (1− β)α (def. ΓD)

≤ β + (1− β)α′ (α ≤ α′)
= α′ − α′ + β + (1− β)α′

= α′ − βα′ − (1− β)α′ + β + (1− β)α′ (0 ≤ β ≤ 1)

= α′ − βα′ + β = α′ + (1− α′)β
≤ α′ + (1− α′)β′ (β ≤ β′)
= β′ + (1− β′)α′ (same as for β + (1− β)α′ = α′ + (1− α′)β)

= Γ C(γC)(u0..uk, v0..vk) (def. Γ C)

= γC . (def. γC)

In particular, for (i) β < β′ or (ii) α < α, the above inequality is strict.
By construction of D and definition of Γ , it is immediate to prove that, for

arbitrary u, v ∈ Sk+1, ΓD(γC)(u, v) ≤ γC(u, v). This proves that if (i) or (ii)
hold, then γD < γC . ut

Proof (of Lemma ??). By contradiction. Assume δ↓k(u, v) 6=
∫
γC dτC(u, v) for

some u, v ∈ S and that for all u′, v′ ∈ S and all µ ∈ Ω(S2k

(u′),S2k

(v′)) it holds
that

∫
γC dµ ≥

∫
γC dτC(u

′, v′). By hypothesis and Lemma ??, we have that∫
γC dτC(u, v) = min

{∫
γD dτD(u, v) | D ∈ C2k

}
. But at the same time

δ↓k(u, v) = min {PD(u, v)( 6≡`ω ) | D ∈ C2k} (by (??))

= min
{∫

γD dτD(u, v) | D ∈ C2k

}
. (by Lemma ??)

This contradicts hypothesis that
∫
γC dτC(u, v) 6= δ↓k(u, v). ut

C Folklore Results about Metric Spaces

Proposition 50. Let A ⊆ R be a bounded nonempty set. Then,

(i) supA ∈ A;

(ii) supA = supA.

Proof. First, notice that since A 6= ∅ and is bounded, by Dedekind axiom, the
supremum of A (and A) in R exists. Moreover, recall that, for any B ⊆ R,

B = ad(B) := {x ∈ R | ∀ε > 0. (x− ε, x+ ε) ∩B 6= ∅} ,

where ad(B) denotes the set of points adherent to B.
Let α = supA. (i) We prove that α ∈ A. Let ε > 0, then α−ε is not an upper

bound for A. This means that there exists x ∈ A such that α− ε < x ≤ α and,
in particular, that x ∈ (α − ε, α + ε) ∩ A. Therefore α ∈ A. (ii) Let β = supA.
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By A ⊆ A = A and (i), we have α ≤ β ∈ A. We prove that α = β. Assume by
contradiction that α 6= β and let ε := β − α. Clearly ε > 0, so that, by β ∈ A,
we have that (β − ε, β + ε) ∩ A 6= ∅. This means that there exists x ∈ A such
that α = β − ε < x, in contradiction with the hypothesis that α = supA. ut

Proposition 51. Let f : X → Y be continuous and A ⊆ X, then f(A) = f(A).

Proof. (⊇) A function f : X → Y is continuous iff for all B ⊆ X, f(B) ⊆ f(B).

Therefore f(A) ⊆ f(A). Since f(A) is closed, we have f(A) ⊆ f(A). (⊆) The
result follows by A ⊆ A and monotonicity of f(·) and (·). ut

Proposition 52. Let X be nonempty, f : X → R be a bounded continuous real-
valued function, and D ⊆ X be dense in X. Then sup f(D) = sup f(X).

Proof. Notice that, since X 6= ∅ and f is bounded, by Dedekind axiom, both
sup f(D) and sup f(X) exist. By Propositions 50, 51, and D = X, we have

sup f(D)
(Prop.50)

= sup f(D)
(Prop.51)

= sup f(D) = sup f(X)
(Prop.50)

= sup f(X) ,

which proves the thesis. ut

Proposition 53.

(i) The set of 1-bounded pseudometrics over a set X is a complete lattice
w.r.t. the point-wise order d v d′ iff for all x, y ∈ X, d(x, y) ≤ d′(x, y);

(ii) D ⊆ X is dense in all 1-bounded pseudometric spaces {(X, di) | i ∈ I} iff
is dense in (X,

⊔
i∈I di).

Proof. (i) Bottom and top elements are respectively given by the constant func-
tion 0 and the indiscrete metric 1(x, y) = 0 if x = y and 1(x, y) = 1 otherwise.
To complete the proof it suffices to show that the set of 1-bounded pseudomet-
rics is closed under supremum. Let P be a set of 1-bounded pseudometrics over
X. We define (

⊔
P )(x, y) = supd∈P d(x, y). It is easy to see that

⊔
P is the least

upper bound of P w.r.t. v and that is 1-bounded. We only have to check that⊔
P is a pseudometric. Reflexivity and symmetry are trivial. The only nontrivial

part is to prove the triangular inequality:

(
⊔
P )(x, y) + (

⊔
P )(y, z) ≤ sup

d∈P
d(x, y) + sup

d∈P
d(y, z) (def. and upper bound)

≤ sup
d∈P

d(x, y) + d(y, z) . (triang. ineq. d ∈ P )

(ii) Recall that a subset K ⊆ Y is dense in a pseudometric space (Y, d) iff
K = {y ∈ Y | d(y,K) = 0} = X, where d(y,K) = infy′∈K d(y, y′). Then, both
directions immediately follow by the equality below{

x ∈ X | (
⊔
i∈I di)(x,D) = 0

}
=
⋂
{x ∈ X | di(x,D) = 0} ,

which holds since all the pseudometrics di are positive. ut


