
Alternation-Free Weighted Mu-Calculus:
Decidability and Completeness

Kim G. Larsen Radu Mardare Bingtian Xue 1,2

Aalborg University, Denmark

Abstract

In this paper we introduce WMC, a weighted version of the alternation-free modal mu-calculus for weighted
transition systems. WMC subsumes previously studied weighted extensions of CTL and resembles previously
proposed time-extended versions of the modal mu-calculus. We develop, in addition, a symbolic semantics
for WMC and demonstrate that the notion of satisfiability coincides with that of symbolic satisfiability. This
central result allows us to prove two major meta-properties of WMC. The first is decidability of satisfiability
for WMC. In contrast to the classical modal mu-calculus, WMC does not possess the finite model-property.
Nevertheless, the finite model property holds for the symbolic semantics and decidability readily follows;
and this contrasts to resembling logics for timed transitions systems for which satisfiability has been shown
undecidable. As a second main contribution, we provide a complete axiomatization, which applies to both
semantics. The completeness proof is non-standard, since the logic is non-compact, and it involves the
notion of symbolic models.

Keywords: weighted modal Mu-Calculus, non-compact modal logics, weighted transition systems,
satisfiability, complete axiomatization.

1 Introduction

For more than two decades, specification and modelling formalisms have been sought

that address essential non-functional properties of embedded and cyber-physical sys-

tems. In particular, timed automata [4] were used for expressing and analysing tim-

ing constraints of systems with respect to timed logics such as TCTL [3], Tμ [17],

Lν [23] and MTL [19]. However, equally important non-functional properties of

embedded or cyber-physical systems are related to consumption of resources, in

particular that of energy. This lead initially to weighted extensions of timed au-

tomata [5, 6] and most recently to energy automata [9]. However, whereas the
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problems of cost-optimal reachability and infinite runs have been shown to be effi-

ciently computable, the general model checking problem with respect to a weighted

extension of TCTL turns out to be undecidable [11].

In this paper, we consider the purely weighted setting, in which the quantitative

information of systems is modelled as weighted transition systems (WTSs) with

transitions being decorated with non-negative reals besides actions. We study the

problems of satisfiability and axiomatization of weighted logics in the most gen-

eral setting. We develop WMC, a weighted version of the alternation-free modal

mu-calculus, that subsumes WCTL and resembles the previously studied timed ex-

tension of the modal mu-calculus Tμ and Lν . WMC is a multi-modal logic with

fixed-point operators, where modalities either constrain discrete transitions or the

amount of resources in a given state. For the latter, WMC uses resource-variables,

similar to the clock-variables used in timed logics, see e.g. [10].

Our first main contribution is to show decidability of satisfiability for WMC. In

previous work [27], we proved decidability and finite model property for restriction

of WMC with only one resource-variable for each resource and only maximal fixed

points. This restriction bounds severely the expressiveness of the logic. In [25, 26],

we studied two sub-logics of WMC with multiple resource-variables for each re-

source and only maximal fixed points. These logics are shown decidable by using

the filtration construction, but are significantly weaker than WMC in that resource-

variables are restricted to be event-recording. In contrast to these fragments and

to modal mu-calculus, WMC does not posses finite model property, thus decidabil-

ity does not follow from classical arguments. As an alternative, we propose here

notions of symbolic model and semantics for which the finite model property does

hold. Fortunately – as demonstrated in the paper – the notion of satisfiability coin-

cides with that of symbolic satisfiability, from which our decidability result follows.

This should be contrasted to the resembling timed logics for which satisfiability is

undecidable.

The fact that the two semantics have the same validities is a remarkable property

and a powerful tool that allows us to transport meta-results between the two seman-

tics, in particular computability and complexity results for satisfiability checking

and completeness results for proof systems.

Our second main contribution is a complete axiomatization of WMC, allowing all

valid properties to be derived as theorems. At the best of our knowledge, this is the

first complete axiomatization for a fixed point weighted modal logic in the literature.

The axiomatization is remarkably simple, combining modal axioms of non-recursive

weighted logic with classic axioms of fixed points [20, 28, 30]. The finite model

property provides the arguments to demonstrate that the axiomatization is complete

for the symbolic semantics and hence, the completeness result can be extrapolated

to the WTS-semantics.

Our third main contribution is the completeness proof itself, which is non-standard

and novel in many aspects. Since the logic is non-compact, it requires infinitary
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proof rules. To cope with this, we involve topological techniques for model theory,

inspired by the work of Rasiowa and Sikorski [16, 29]. These techniques were previ-

ously developed by the first two authors in colaboration with Kozen and Panangaden

for proving the strong completeness for Markovian logics [21, 22]. Our completeness

proof avoids the tableaux method used in [32] for the general Mu-Calculus and it is

sufficiently robust to be reused in similar contexts. On the other hand, our proof is

designed for alternation-free calculi and it is not clear whether it can be used in a

general unrestricted context.

2 Alternation-Free Weighted Mu-Calculus

Definition 2.1 A weighted transition system is a tuple W = (M,K,Σ, θ) where

M is a non-empty set of states, K = {e1, . . . , ek} is a finite set of resources, Σ a

non-empty set of actions and θ : M ×Σ× (K → R≥0)→ 2M is a labelled transition

function.

Instead of m′ ∈ θ(m, a, f), we write m
f−→a m′ and we call f the weight function. For

simplicity, in what follows we assume that K is a singleton and we use the transition

functions θ : M × (Σ × R≥0) → 2M . However, the work can be straightforwardly

extended to include multiple resources and all the following results hold in the

extended case.

Alternation-Free Weighted Mu-Calculus (WMC) encodes properties of WTSs and

involves modal operators and resource-variables similar to the ones used in timed

logics [1, 3, 17]:

(i) transition modalities of type [a] for a ∈ Σ;

(ii) recursive-variables that range over the set X ; they are used to define simultane-

ous recursive equations to express maximal and minimum fixed points, in the style

of [12, 13, 24];

(iii) resource-variables ranging over the set V;
(iv)) state modalities of type x�r for � ∈ {≤,≥} and r ∈ Q≥0, which approximates

the resource-variable x ∈ V;
(v) reset operators of type x in for the resource-variable.

Notation: we use both � and � to range over the set {≤,≥} such that {�,�} =

{≤,≥}. Similarly, we use � and � to range over the set {<,>} such that {�,�} =
{<,>}.

Definition 2.2 [Syntax] The formulas of WMC are defined by the following gram-

mar, for arbitrary r ∈ Q≥0, a ∈ Σ, x ∈ V, � ∈ {≤,≥}, X ∈ X .

L : φ := x� r | ¬φ | φ ∨ φ | [a]φ | x in φ | X .

We also consider the De Morgan duals of x� r and [a], defined by

x� r = ¬(x� r) and 〈a〉φ = ¬([a]¬φ) respectively.
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Given φ, ψ1, ..., ψn ∈ L and X1, ..., Xn ∈ X , let φ{ψ1/X1, ..., ψn/Xn} be the for-

mula obtained by substituting each occurrence of the variable Xi in φ with ψi

for each i = 1..n. If ψ = (ψ1, ..., ψn) and X = (X1, ..., Xn), let φ{ψ/X} denote

φ{ψ1/X1, ..., ψn/Xn}. Following [12, 13], we allow sets of the maximal or minimal

blocks of mutually recursive equations in WMC.

Definition 2.3 [Equation Blocks] An equation block B over the set XB =

{X1, . . . , Xn} of pairwise distinct variables has one of two forms – min{E} or

max{E}, where E is a system of (mutually recursive) equations such that for any

i, j ∈ {1, ...,m}, φi is monotonic in Xj.

E : 〈 X1 = φ1, . . . , Xn = φn 〉

If B = max{E} or B = min{E}, the elements of XB are called max-variables or min-

variables respectively. Given the system E of equations in the previous definition,

its dual is

Ẽ : 〈 X1 = ¬φ1{¬X1/X1, . . . ,¬Xn/Xn}, . . . , Xn = ¬φn{¬X1/X1, . . . ,¬Xn/Xn} 〉
If B = max{E} or B = min{E}, then its dual is B̃ = min{Ẽ} or B̃ = max{Ẽ}
respectively.

Given a block B, a formula φ ∈ L depends on B if it involves variables in XB. Given

two blocks B and B′ such that XB ∩ XB′ = ∅, we say that B is dependent on B′ if
the right hand side formulas of the equations of B depend on B′.

Definition 2.4 [Alternation-Free Block Sequence] A sequence B = B1, . . . , Bm of

m ≥ 1 pairwise-distinct equation blocks is an alternation-free block sequence given

that

(i) XBi ∩ XBj = ∅ for i �= j; (ii) if i < j, then Bi is not dependent on Bj.

A formula φ ∈ L is dependent on B if it is dependent of each block in the sequence.

Example 2.5 Anticipating the semantics, the sequence of blocks in WMC can be

used to encode, for instance, the formula A(φ1U[r,r′]φ2) of WCTL: let φ = X be

dependent on the alternation-free sequence B = B1, B2 defined as follows

B1 = min{Y = (φ2 ∧ r ≤ x ≤ r′) ∨ (φ1 ∧
∧

a∈Σ[a]Y )}
B2 = max{X =

∧
a∈Σ[a]X ∧ (φ1 → x in Y }

B1 is a minimal equation block and B2 is a maximal one. B2 is dependent on B1.�

3 Weighted Semantics for WMC

To provide a semantics for WMC in terms of WTSs, we define the notions of resource

valuation, extended states and environments.

A resource valuation is a function l : V → R≥0 that assigns (non-negative) real

numbers to the resource-variables in V. We denote by L the class of resource

valuations. For l ∈ L, x ∈ V and s ∈ R≥0, let l[x → s] ∈ L be defined by
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l[x → s](x) = s and l[x → s](y) = l(y) for y �= x; let l + s ∈ L be defined by

(l + s)(x) = l(x) + s.

Given a WTSW = (M,Σ, θ), m ∈M and l ∈ L, the pair (m, l) is called an extended

state of W. Transitions between extended states are defined by:

(m, l) −→a (m′, l′) iff m
u−→a m′ and l′ = (l + u).

Given a WTS W = (M,Σ, θ), an environment is a function ρ : X → 2M×L that

interpret the recursive-variables as sets of extended states. We use 0 as the empty

environment that associates ∅ to all recursive-variables. Given an environment ρ

and S ⊆ M × L, let ρ[X → S] be the environment that interprets X as S and

all the other recursive-variables as ρ does. Similarly, for a pairwise-disjoint tuple

X = (X1, ..., Xn) ∈ X n and S = (S1, ..., Sn) ⊆ (M × L)n, let ρ[X → S] be the

environment that interprets Xi as Si for all i = 1..n and all the other variables as

ρ does.

Given a WTS W = (M,Σ, θ) and an environment ρ, the WTS-semantics for L is

defined, on top of the classic semantics for Boolean logic, as follows.

W, (m, l), ρ |= x� r iff l(x)� r;

W, (m, l), ρ |= [a]φ iff for any (m′, l′) ∈ M × L s.t. (m, l) −→a (m′, l′),
W, (m′, l′), ρ |= φ;

W, (m, l), ρ |= x in φ iff W, (m, l[x → 0]), ρ |= φ;

W, (m, l), ρ |= X iff (m, l) ∈ ρ(X).

Let �φ�ρ = {(m, l) ∈M × L | W, (m, l), ρ |= φ}.

Following [12, 13, 24], we extend now the semantics to include the restrictions im-

posed by an alternation-free sequence of blocks and obtain the so-called block-

semantics.

Given a set of equations E with variables X = (X1, ..., Xn), an environment ρ and

Υ = (Υ1, ...,Υn) ⊆ (M×L)n, let the function fρ
E : (2M×L)n −→ (2M×L)n be defined

as follows:

fρ
E(Υ) = 〈�φ1�ρ[X �→Υ], . . . , �φn�ρ[X �→Υ]〉.

Observe that (2M×L)n forms a complete lattice with the ordering, join and meet

operations defined as the point-wise extensions of the set-theoretic inclusion, union

and intersection, respectively. Moreover, for any E and ρ, fρ
E is monotonic with

respect to the order of the lattice and therefore, it has a greatest fixed point denoted

by νX.fρ
E and a least fixed point denoted by μX.fρ

E [12]. These can be characterized

as follows:

νX.fρ
E =

⋃
{Υ | Υ ⊆ fρ

E(Υ)}, μX.fρ
E =

⋂
{Υ | fρ

E(Υ) ⊆ Υ}.

The blocks max{E} and min{E} define environments that satisfy all the equations

in E; max{E} is the greatest fixed point and min{E} is the least fixed point. The

environment defined by the block B is denoted by �B�ρ.

Given an alternation-free block sequence B = B1, . . . , Bm and an environment ρ0,

let ρ1, . . . , ρm be defined by ρi = �Bi�ρi−1 for i = 1, . . . ,m. The semantics of B is
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then given by

�B�ρ0 = ρm.

Definition 3.1 [Block-Semantics] Given an alternation-free sequence B of blocks,

the B-semantics of a formula φ ∈ L that depends on B is given for a WTS W =

(M,Σ, θ) with m ∈M , a resource valuation l ∈ L and an environment ρ, as follows

W, (m, l), ρ |=B φ iff W, (m, l), �B�ρ |= φ.

We say that a formula φ is B-satisfiable if there exists at least one WTS that satisfies

it for the alternation-free block sequence B in one of its states under some resource

valuation and some environment; φ is a B-validity, written |=B φ, if it is satisfied in

all states of any WTS under any resource valuation and any environment.

4 Symbolic Semantics for WMC

Consider an weighted system that can perform three actions a, b and c, and suppose

that we are interested in the following specifications of the system:

1. it can do an a-action followed by an infinite sequence of alternations of the

actions b and c with non-zero cost;

2. after an a-transition, the overall behaviour costs less than one unit of resource.

These requirements can be encoded in WMC, by using three resource-variables

xa, xb and xc, as follows:

φ = 〈a〉(xa in X),

B = max{X = xa < 1∧〈b〉(xb in (Y ∧xc > 0)), Y = xa < 1∧〈c〉(xc in (X∧xb >
0))}
We can see that there exists a WTS satisfying φ under the assumptions of B. But

it cannot be satisfied by a finite WTS, since it must have at least one infinite trace

of non-zero cost transitions with a bounded overall cost. However, all the WTSs

that satisfy the requirements encoded by φ have something in common: the way

the resource-variables behave under certain resource valuations and as a result of

resetting.

This observation motivates the development of symbolic weighted transition sys-

tems (SWSs), which are similar to the ones used with timed automata in [2, 4, 23].

These are abstractions of WTSs: a symbolic model is a labelled transition system

representing an infinite set of WTSs by involving the concept of regions that ab-

stracts the quantitative information. One can provide an SWS-semantics for WMC

(symbolic semantics) and can prove that there exists a relation between WTSs and

SWSs such that any systems in this relation satisfy the same WMC properties.

Moreover, the relation is complete, in the sense that to each WTS corresponds an

SWS and reverse. An important consequence of this fact is that the validities for

WTS-semantics coincide with the validities for SWS-semantics.

For any s ∈ R≥0, let �s� = max{z ∈ N | z ≤ s}, {s} = s − �s� and �s� = min{z ∈
N | z ≥ s}.
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Definition 4.1 Given N ∈ N, l, l′ ∈ L are equivalent w.r.t. N , denoted by l
N
= l′

iff:

1. ∀x ∈ V, l(x) > N iff l′(x) > N ;

2. ∀x ∈ V s.t. 0 ≤ l(x) ≤ N , �l(x)� = �l′(x)� and {l(x)} = 0⇔ {l′(x)} = 0;

3. ∀x, y ∈ V s.t. 0 ≤ l(x), l(y) ≤ N , {(l(x)} ≤ {l(y)} ⇔ {(l′(x)} ≤ {l′(y)}.

The equivalence classes under
N
= are called N -regions. Let [l] be the region contain-

ing l and RV
N be the set of all N -regions for the set V of resource-variables and the

constant N . For a given N ∈ N, RV
N is finite whenever V is finite.

For δ ∈ RV
N , a successor region is the region δ′ s.t. for any l ∈ δ, there exists d ∈

R≥0 s.t. l + d ∈ δ′, denoted by δ � δ′. For δ ∈ RV
N , x ∈ V and n ∈ N, δ[x → n]

denotes the region consisting of all the resource valuations l for which there exists

l′ ∈ δ s.t. l = l′[x → n].

Example 4.2 In Figure 1 are represented some regions for N = 1 and V =

{xa, xb, xc}.

δ0 = [xa = xb = xc = 0]

δ2 = [xb = 0, 0 < xa = xc < 1]

δ4 = [xc = 0, 0 < xb < xa < 1]

δ6 = [xb = 0, 0 < xc < xa < 1]

δ1 = [0 < xa = xb = xc < 1]

δ3 = [0 < xb < xa = xc < 1]

δ5 = [0 < xc < xb < xa < 1]

δ7 = [0 < xb < xc < xa < 1]
xb

xa

xc

0 1

1

1

δ1

δ0

δ2

δ4δ6

Fig. 1. Regions

δ1 is a successor of δ0, δ2 = δ1[xb → 0] and δ3 is a successor of δ2. Similarly,

δ5 is a successor of δ4 and δ7 is a successor of δ6. Moreover, δ2 = δ3[xb → 0],

δ4 = δ3[xc → 0] = δ5[xc → 0] = δ7[xc → 0] and δ6 = δ5[xb → 0] = δ7[xb → 0]. �

In what follows, we consider an extension of the concept of region to also include

the case when N = p/q with p, q ∈ N. We firstly construct the regions for p and

then divide each of the resource-valuation in it by q – the resulting set will be

a region for N = p/q. For instance, if we take N = 1/2 in Example 4.2, then

δ1 = [0 < xa = xb = xc < 1/2] and δ2 = [xb = 0, 0 < xa = xc < 1/2] are regions in

RV
1/2.

Definition 4.3 [Symbolic Model] Given RV
N and a non-empty set S, a symbolic

weighted transition system (SWS) is a tuple Ws = (Πs,Σs, θs) where Πs ⊆ S ×RV
N

is a non-empty set of symbolic states, Σs = {εx | x ∈ V} ∪ Σ a non-empty set of

actions, and θs : Πs × Σs → 2Π
s
is a labeled transition function such that:

1) if (s, δ) −→a (s′, δ′) for a ∈ Σ, then δ�δ′; 2) if (s, δ) −→εx (s, δ′) then δ′ =

δ[x → 0].

Note that if (s, δ) −→εx (s, δ), then for any l ∈ δ, l(x) = 0.
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For a given SWS Ws = (Πs,Σs, θs), a symbolic environment is a function ρs : X →
2Π

s
which interprets the recursive-variables as sets of symbolic states.

The symbolic satisfiability relation |=s is defined for the non-Boolean operators as

follows.

Ws, π, ρs |=s x� r iff for any l ∈ δ, l(x)� r;

Ws, π, ρs |=s [a]φ iff for arbitrary π′ ∈ Πs such that π −→a π′, we haveWs, π′, ρs |=s

φ;

Ws, π, ρs |=s x in φ iff there exists π′ ∈ Πs such that π −→ε π
′ andWs, π′, ρs |=s φ;

Ws, π, ρs |=s X iff π ∈ ρs(X).

Similarly as in Section 3, for a given alternation-free sequence of blocks B we can

define the symbolic B-semantics based on the B-satisfiability relation |=s
B, as follows:

Ws, π, ρ |=s
B φ iff Ws, π, �B�ρ |=s φ.

5 The Equivalence of the Two Semantics

In this section we prove that the two semantics introduced for WMC are equivalent,

in the sense that the set of the WTS-validities coincides with the set of the SWS-

validities. This result has important consequences: (i) if the satisfiability problem

is decidable for one semantics, then it is also decidable for the other; and (ii) an

axiomatization that is sound and complete for one semantics is sound and complete

also for the other semantics. To prove the equivalence, we show that for any formula

φ ∈ L dependent on B, if φ has a WTS-model, then we can also construct an

SWS-model for it; and reversely, if it has an SWS-model, then we can construct a

WTS-model for it.

Construction A: Given a WTS W = (M,Σ, θ) and RV
N , we construct the SWS

WS = (Πs,Σs, θs), where Πs = M ×RV
N , Σ

s = {εx | x ∈ V} ∪ Σ and θs is defined

as follows:

1. (m, [l]) −→a (m′, [l′]) iff (m, l) −→a (m′, l′);

2. (m, [l]) −→εx (m, [l′]) iff [l′] = [l][x → 0].

We call Ws the symbolic model of W w.r.t. RV
N , denoted by S(W,RV

N ).

Construction B: Given an SWS WS = (Πs,Σs, θs) on RV
N with Σs = {εx | x ∈

V} ∪ Σ, let W = (M,Σ, θ) be a WTS s.t.

• the states are sets of type {(s, δ1, l1), . . . , (s, δk, lk)} where

(1) (s, δi) ∈ Πs and li ∈ δi; (2) for any i ∈ {1, ..., k} there exist j ∈ {1, ..., k}
and x ⊆ V s.t. either δj = δi[x → 0] and lj = li[x → 0], or δi = δj [x → 0] and

li = lj [x → 0].

• θ is defined for any m1,m2 ∈ M , m1
u−→a m2 iff there exist (s1, δ1, l1) ∈ m1 and

(s2, δ2, l2) ∈ m2 s.t. (s1, δ1) −→a (s2, δ2) and l2 = (l1 + u).

We call W the concrete model of Ws on RV
N , denoted by C(Ws,RV

N ).

We prove that the constructions preserve the B-satisfiability of WMC properties,

i.e., a formula φ is B-satisfiable in the WTS-semantics iff it is B-satisfiable in the
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SWS-semantics.

Consider an arbitrary formula φ ∈ L dependent on B.
• Let V[φ,B] be the set of the resource-variables in φ and B. For any x ∈ V[φ,B],
let Q[φ,B] ⊆ Q≥0 be the set of all r ∈ Q≥0 that occur in a construct of type x� r

in φ or B.
• Let g be the least common denominator of the elements of Q[φ,B].
• Let R[φ,B] denote the set RV[φ,B]

p/g of p/q-regions, where p/g = maxQ[φ,B].

Theorem 5.1 Let φ depending of the alternating-free sequence of blocks B =

B1, . . . , Bm.

1. If W, (m, l), ρ |=B φ, then Ws, (m, [l]), ρs |=s
B φ, where Ws = S(W,R[φ,B]) and

ρs(X) = {(m, [l]) | (m, l) ∈ ρ(X)} for any X ∈ X .

2. If Ws, (s, δ), ρs |=s
B φ, then W, (m, l), ρ |=B φ, where W = C(Ws,R[φ,B]), m ∈

M, (s, δ, l) ∈ m and for any X ∈ X , ρ(X) = {(m, l) | (s, δ) ∈ ρs(X), (s, δ, l) ∈ m}.

Consequently, the B-validities for WTC-semantics coincide with that of SWS-

semantics.

6 Decidability and finite symbolic model property

In this section, we prove that WMC enjoys the finite model property against the

SWS-semantics, by involving the region construction technique and adapting the

classical tableau method. A consequence of this result is that the B-satisfiability
problem for the SWS-semantics is decidable. In the light of Theorem 5.1, this

means that B-satisfiability is decidable also for the WTS-semantics even if, as we

have emphasized in Section 4, WMC does not enjoy the finite model property for

the WTS-semantics.

Given φ ∈ L that depends on an alternation-free sequence B, let Σ[φ,B] be the set

of all actions a ∈ Σ that appears in some transition modality of type 〈a〉 or [a] in

φ or B; let Q[φ] and R[φ] be defined as in Section 5. Observe that Σ[φ], Q[φ] and

R[φ] are finite or empty.

We fix φ0 ∈ L dependent on B0. Let L[φ0,B0] be the set of the sub-formulas of

φ0 or B0. Let Ω[φ0,B0] ⊆ 2L[φ0,B0] × R[φ0,B0]. Since L[φ0,B0] and R[φ0,B0] are

both finite, Ω[φ0,B0] is finite. We construct a tableau for φ0, which is similar to the

standard construction with extra focus on the quantities.

The nodes of a tableau are pairs (Δ, δ) ∈ Ω[φ0,B0] and the tableau rules are listed

in Table 1, where {φ,Δ} denotes {φ} ∪Δ.

Because of the quantitative requirements must also be satisfied, not any pair (Δ, δ)

is a node in the tableau. A tableau T (φ, δ) derived from the previous rules must be

region consistent, meaning that any node (Δ, δ′) ∈ T (φ, δ) must satisfy the following

conditions:

(i) for any x� r ∈ Δ and l ∈ δ, l(x)� r;
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(∧) ({φ1, φ2,Δ}, δ)
({φ1 ∧ φ2,Δ}, δ)

(∨) ({φ1,Δ}, δ) ({φ2,Δ}, δ)
({φ1 ∨ φ2,Δ}, δ)

(Res)
({φ,Δ}, δ′)

({x in φ,Δ}, δ)
(Reg)

({φX ,Δ}, δ)
({X,Δ}, δ)

X = φX ∈ B

(Mod)
({ψ} ∪ {ψ′ | [a]ψ′ ∈ Δ}, δ′) for any 〈a〉ψ ∈ Δ

(Δ, δ)
Table 1

Tableau System T φ

(ii) if ({x in φ,Δ}, δ) is the conclusion and ({φ,Δ}, δ′) is the assumption of

(Res), then δ′ = δ[x → 0];

(iii) if (Δ, δ) is the conclusion of (Mod), then δ � δ′ for any assumption (Δ′, δ′).

If (Mod) is applied for an action a at the node t, the node obtained is called an

〈a〉-son of t. The tableaux may be infinite. However, because Ω[φ0] is finite, the

pairs from Ω[φ0] that appear in T (φ, δ) are finitely many.

As in the classic method for mu-calculus [20, 31, 32], we use max-trace, min-trace

to capture the idea of a history of the regeneration of a formula and markings,

consistent markings to characterize B-satisfiability of a formula in a state of an

SWS (these classic definitions can be found in the appendix).

Lemma 6.1 φ0 is satisfied at state π0 = (s0, δ0) in an SWS Ws = (Πs,Σs, θs) if

and only if there is a consistent marking of T (φ0, δ0) respect to Ws and π0.

The proof of Lemma 6.1 relies on notion of signature, similar to that considered

by Streett and Emerson [31]. These notions come from the characterization of

fixed point formulas by means of transfinite chains of approximations, which have

been extended to the setting with fixed points defined with blocks in [12, 13].

Involving these, the previous lemma is proven similarly to the case of classic μ-

calculus [20, 31, 32]. The correctness of the cases with weight is guaranteed by the

region consistency.

This lemma allows us to prove the finite model property for SWS-semantics, by

following the classic proof strategy of [20]; the only difference consists in managing

the reset actions.

Theorem 6.2 (Finite Symbolic Model Property) Let φ0 ∈ L be a formula

that depends of B0. If φ0 is B0-satisfiable, then there exists a finite SWS Ws
f =

(Πs
f ,Σ

s
f , θ

s
f ) with πf ∈ Πs

f and a symbolic environment ρsf such that Ws
f , πf , ρ

s
f |=B0

φ0.

According to Lemma 6.1 and Theorem 6.2, we can have an algorithm to decide

the satisfiability of a given WMC formula. The following example shows how this

works.

Example 6.3 Suppose that we want to verify the B-satisfiability of the property

discussed at the beginning of Section 4.
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φ = 〈a〉(xa in X),

B = max{X = xa < 1∧ 〈b〉(xb in (Y ∧xc > 0)), Y = xa < 1∧ 〈c〉(xc in (X ∧xb >

0))}.

.

.

. reg
t14 = ({(X,xb > 0)}, δ4)

res, ∧
t13 = ({xc in (X ∧ xb > 0)}, δ7)

mod
t12 = ({xa < 1, 〈c〉(xc in (X ∧ xb > 0)), xc > 0}, δ6)

reg, ∧
t11 = ({Y, xc > 0}, δ6)

res, ∧
t10 = ({xb in (Y ∧ xc > 0)}, δ5)

mod
t9 = ({xa < 1, 〈b〉(xb in (Y ∧ xc > 0)), xb > 0}, δ4)

reg, ∧
t8 = ({(X,xb > 0)}, δ4)

res, ∧
t7 = ({xc in (X ∧ xb > 0)}, δ3)

mod
t6 = ({xa < 1, 〈c〉(xc in (X ∧ xb > 0)), xc > 0}, δ2)

reg, ∧
t5 = ({Y, xc > 0}, δ2)

res, ∧
t4 = ({xb in (Y ∧ xc > 0)}, δ1)

mod
t3 = ({xa < 1, 〈b〉(xb in (Y ∧ xc > 0))}, δ0)

reg, ∧
t2 = ({X}, δ0)

res
t1 = ({xa in X}, δ0)

mod
t0 = ({〈a〉(xa in X)}, δ0)

Fig. 2. Tableau T (φ,B)

δ0 = [xa = xb = xc = 0]

δ2 = [xb = 0, 0 < xa = xc < 1]

δ4 = [xc = 0, 0 < xb < xa < 1]

δ6 = [xb = 0, 0 < xc < xa < 1]

δ1 = [0 < xa = xb = xc < 1]

δ3 = [0 < xb < xa = xc < 1]

δ5 = [0 < xc < xb < xa < 1]

δ7 = [0 < xb < xc < xa < 1]

(t0, δ0) (t3, δ0) (t6, δ1)

(t6, δ2)

(t9, δ3)(t9, δ4)

(t12, δ5)(t12, δ6)

(t9, δ7)

a b

εxa

εxb

c

εxc

b

εxb

c

εxc

Fig. 3. SWS for φ dependent on B

In Figure 2 shows T (φ, δ0). There is only one infinite trace –

max-trace. We construct Ws: Σs = {a, b, c, εxa , εxb , εxc}, Πs =

{(t0, δ0), (t3, δ0), (t6, δ1), (t6, δ2), (t9, δ3), (t9, δ4), (t12, δ5),
(t12, δ6), (t9, δ7)} and θs is defined as shown in Figure 3. From the symbolic model

in Figure 3, one can generate a WTS, which in this case is infinite; φ is satisfied in

some state of it. In Figure 4 it is shown part of this infinite model.
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l0 = (0, 0, 0)

l1 = (0.3, 0.3, 0.3) l2 = (0.3, 0, 0.3)

l3 = ( π
10

, π
10

, π
10

) l4 = ( π
10

, 0, π
10

)

l5 = (0.1, 0.1, 0.1) l6 = (0.1, 0, 0.1)

l7 = (0.5, 0.2, 0.5) l8 = (0.5, 0.2, 0)

l9 = (0.3 + π
10

, π
10

, 0.3 + π
10

) l10 = (0.3 + π
10

, π
10

, 0)

l11 = (0.3, 0.2, 0.3) l12 = (0.3, 0.2, 0)

l13 = (0.6, 0.3, 0.1) l14 = (0.6, 0, 0.1)

l15 = (0.5, 0.4, 0.2) l16 = (0.5, 0, 0.2)

l17 = (0.75, 0.15, 0.25) l18 = (0.75, 0.15, 0)

l19 = (0.6, 0.1, 0.3) l20 = (0.6, 0.1, 0)

. . . . . .

m0 = {(t0, δ0, l0)} m1 = {(t3, δ0, l0)}
m2 = {(t6, δ1, l1), (t6, δ2, l2)}
m3 = {(t6, δ1, l3), (t6, δ2, l4)}
m4 = {(t6, δ1, l5), (t6, δ2, l6)}
m5 = {(t9, δ3, l7), (t9, δ4, l8)}
m6 = {(t9, δ3, l9), (t9, δ4, l10)}
m7 = {(t9, δ3, l11), (t9, δ4, l12)}
m8 = {(t12, δ5, l13), (t12, δ6, l14)}
m9 = {(t12, δ5, l15), (t12, δ6, l16)}
m10 = {(t9, δ7, l17), (t9, δ4, l18)}
m11 = {(t9, δ7, l19), (t9, δ4, l20)}
. . .

m1

m0

m2 . . . m3 . . . m4 . . .

m5 . . . m6 . . .

...

... m7 . . .

m8 . . .

...

... m9 . . .

m10 . . .

...

m11 . . .

...

0.
3

b

0.1
b

0.
2
c

0 a

π
10 b

π
10 c 0.2 c

0.1 b 0.2 b

0.15 c 0.1 c

Fig. 4. Generalizing WTS from the symbolic model

It is not difficult to verify that it is a model for φ. �

Theorem 6.4 (Decidability of B-Satisfiability) For any alternation-free block

sequence B, the B-satisfiability problem for WMC is decidable for both WTS- and

SWS-semantics.

7 Axiomatization

In this section, we focus on developing a sound and complete axiomatization for

the validities of WMC with respect to the two semantics. Recall that the two sets

of validities coincide. In the light of Theorem 5.1, it is sufficient to find such an

axiomatization for the SWS-semantics and it is then sound and complete also for

the WTS-semantics.

7.1 Sound axiomatization

In order to state the axioms for WMC we need to establish some notations.

• The modal prefixes are words w ∈Mod∗ over the alphabet of modal operators of

L, Mod = {[a] | a ∈ Σ} ∪ {x in | x ∈ V}. E.g., [a], x in [a][a], [a]x in , ε ∈Mod∗ .

• A context C is a word formed by a modal prefix w ∈ Mod∗ concatenated with

the metavariable X; e.g., [a]X, [a]x in [b]X, x in [a][a]X, [a]x in X are contexts. To

emphasize the presence of the metavariable we will use the functional representation

of type C[X] for contexts; this will allow us to instantiate the metavariable with
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elements from L. E.g., if C[X] = [a]x in [b]X is a context, then C[(x ≥ r)] =

[a]x in [b](x ≥ r) ∈ L. Also ε[X] is a context - the empty one - and for φ ∈ L,
ε[φ] = φ.

The axiomatization of WMC is given in two phases. Firstly, we provide axioms for

deriving the validities that do not depend on sequences of blocks; and secondly, we

extend the axiomatization to recursive constructs.

The axioms and rules presented in Table 2 together with the axioms and the rules of

propositional logic axiomatize a classic deducibility relation (see [16]) for the non-

recursive validities of WMC denoted by �. The axioms and the rules are stated for

arbitrary φ, ψ ∈ L, r, s ∈ Q≥0, a ∈ Σ, x, y ∈ V and arbitrary context C[X], where

{�,�} = {≤,≥}.
(A1): � x ≥ 0 (A8): � x in x in φ→ x in φ
(A2): � (x ≥ r) ∨ (x ≤ r) (A9): � x in y in φ→ y in x in φ
(A3): � x ≤ r → ¬(x ≥ s), r < s (A10): � ¬(x in φ)↔ x in ¬φ
(A4): � x ≥ r → [a](x ≥ r) (A11): � x in φ→ (x = 0→ φ)
(A5): � x ≥ r ∧ y ≥ s→ [a](x ≥ r + t→ y ≥ s+ t) (R1): If � φ, then � �φ
(A6): � �(φ→ ψ)→ (�φ→ �ψ) (R2): {C[x� r] | r � s} � C[x� s]
(A7): � x in ⊥ → ⊥ (R3): {C[x ≥ r] | r ∈ Q≥0} � C[⊥]

Table 2
Axiomatic System of WMC basic formulas

The axioms (A1)-(A3) state simple arithmetic facts. (A4) states that an action-

transition has a positive cost. (A5) guarantees that all the resource-variables mea-

sure the same resource. The axiom (A6) and the rule (R1) state that all the box-like

operators of WMC are normal in the sense of modal logic [8]. The nature of the

reset operation is depicted by (A7)-(A11).

The rules (R2) and (R3) are infinitary and encode the Archimedean properties of

rational numbers. For instance, the formula {(≥ r) | r < s} � (≥ s) is an instance

of (R2) stating that if the resources available in a state are at least r for each r < s,

then they are at least s.

Similarly, the formula {(≥ r) | r ∈ Q} � ⊥ is an instance of (R3) guaranteeing that

the resources in a state cannot be infinite (bigger that any rational).

The rules (R2) and (R3) are closed under arbitrary contexts. Due to them, WMC

is non-compact: infinite sets of formulas such as {(≥ r) | r < s} ∪ {¬(≥ s)} and

{(≥ r) | r ∈ Q} are inconsistent while any finite subset of them is consistent.

Theorem 7.1 (Soundness) The axiomatic system of � is sound with respect to

the WTS-semantics, i.e., for arbitrary φ ∈ L,
� φ implies |= φ.

Consequently, the axioms are also sound for SWS-semantics. Now we can proceed

with the recursive constructs.

Given a maximal equation block B = max{X1 = φ1, . . . , Xn = φn} and an arbi-

trary clasical deducibility relation �∗, we define the deducibility relation �∗B as the

extension of �∗ given by the axioms and rules in Table 3, which are the equation-

version of the fixed points axioms of Mu-calculus [20, 28, 30]. These are stated
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for arbitrary φ ∈ L and Ψ = (ψ1, ..., ψn) ∈ Ln, where X = (X1, ..., Xn). Simi-

larly, we define a classical deducibility relation �∗B for a minimal equation block

B = min{X1 = φ1, . . . , Xn = φn} based on �∗ by using the axioms and rules in

Table 4.

(max-R1): If �∗ φ, then �∗B φ
(max-A1): �∗B

∧
i=1,...,n(Xi → φi)

(max-R2): If �∗B
∧

i=1,...,n(ψi → φi{Ψ/X}),
then �∗B

∧
i=1,...,n(ψi → Xi)

Table 3
Axiomatic System of Maximal Equation Blocks

(min-R1): If �∗ φ, then �∗B φ
(min-A1): �∗B

∧
i=1,...,n(φi → Xi)

(min-R2): If �∗B
∧

i=1,...,n(φi{Ψ/X} → ψi),
then �∗B

∧
i=1,...,n(Xi → ψi)

Table 4
Axiomatic System of Minumum Equation Blocks

Given an alternation-free block sequence B = B1, ..., Bm, we define the classical

deducibility relations �0,�1, ...,�m as follows: �0=�, �i=�i−1
Bi

for i = 1, ..m. Con-

sequently, �B=�m.

As usual, we say that a formula φ (or a set Φ of formulas) is B-provable, denoted
by �B φ (respectively � Φ), if it can be proven from the given axioms and rules of

�B. We denote by

Ψ = {φ ∈ L | Ψ �B φ}.

An induction on the structure of the alternation-free blocks shows that all the

theorems of �B are sound in the WTS-semantics, hence also in the SWS-semantics.

Theorem 7.2 (Extended Soundness) The axiomatic system of �B is sound with

respect to the semantics based on WTSs, i.e., for arbitrary φ ∈ L,
�B φ implies |=B φ.

7.2 Completeness

In the rest of this section we prove that the axiomatic system of �B is not only

sound, but also complete for the two semantics, meaning that all the B-validities
can be proved, as theorems, from the proposed axioms and rules, i.e., for arbitrary

φ ∈ L, |=B φ implies �B φ. To complete this proof it is sufficient to show that any

B-consistent formula has a model.

For some set S ⊆ L, Φ is (S,B)-maximally consistent if it is B-consistent and no

formula of S can be added to Φ without making it inconsistent. Φ is B-maximally-

consistent if it is (L,B)-maximally-consistent.

In the following we fix a consistent formula φ0 depending on a fixed alternation-free

sequence B0 and we construct a model. Let Θ be the set of B0-maximally consistent

sets.

The model construction is not standard, in the sense that we will not use Θ as the

set of states in the canonical WTS model. This is because any state in a given WTS

corresponds to a function from the set of valuations L to Θ: each resource valuation

identifies a B0-maximally-consistent set of formulas satisfied by that model under

the given resource valuation. Consequently, to construct the canonical model we
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will need to take as states not B0-maximally-consistent sets of formulas (as usual

in modal logics), but some particular functions from L to B0-maximally-consistent

sets, called coherent functions. Then, the construction will go as follows:

1. we construct a canonical model which takes coherent functions as states, similar

to the construction made in [18] for timed logic;

2. we construct an SWS from the above model and prove the truth lemma, where

the symbolic finite model property is used;

3. according to Theorem 5.1, there exists a WTS for any B0-consistent formula.

Lemma 7.3 For arbitrary Λ ∈ Θ and x ∈ V,
sup{r ∈ Q+ | x ≥ r ∈ Λ} = inf{r ∈ Q+ | x ≤ r ∈ Λ} ∈ R≥0.

The previous lemma demonstrates that each B0-maximally-consistent set corre-

sponds to a unique resource valuation of resource-variables, that we will identify

using the function I : Θ −→ L defined for arbitrary Λ ∈ Θ and x ∈ V by:

I (Λ)(x) = sup{r ∈ Q+ | x ≥ r ∈ Λ} ∈ R≥0.

Since I (Λ) synthesizes only the information regarding the resource-variables, there

exist distinct sets Λ1,Λ2 ∈ Θ s.t. I (Λ1) = I (Λ2); this defines an equivalence

relation on Θ and the equivalence classes are in one to one correspondence with the

resource valuation in L.

Observe that not just any function γ : L → Θ is a good candidate for becaming a

state in the canonical model. To better understand this, we emphasize the essential

role of resource valuations in the semantics of WMC. We start from analyzing how

the formulas satisfied by a given WTS under a certain resource valuation change

with the change of the valuation.

Let F(φ) be the set of the free resource-variables in φ ∈ L (i.e., those that are not

bounded by reset operator x in ) defined by: F(⊥) = F(X) = ∅, F(x � r) = {x},
F(φ ∨ ψ) = F(φ) ∪ F(ψ), F(¬φ) = F([a]φ) = F(φ), F(x in φ) = F(φ) \ {x}.
Similarly, we denote the set of the free resource-variables in φ0 and B by F [φ0,B0].

For y ∈ V that does not appear in the syntax of φ and x ∈ F(φ), we denote by

φ{y/x} the formula obtained by uniformly substituting all the occurrences of x in

φ by y.

Definition 7.4 Let f−, f+: V → Q be two rational resource valuations. For any

formula φ ∈ L, let φ + f−/f+ be defined as follows, where x � t for t < 0 should be

read as x ≥ 0:

⊥+ f−/f+
df
= ⊥

(x ≤ r) + f−/f+
df
= x ≤ (r + f+(x))

(¬φ) + f−/f+
df
= ¬(φ+ f+/f−)

(x in φ) + f−/f+
df
= x in (φ+ f−[x �→ 0]/f+[x �→ 0])

(φ ∨ ψ) + f−/f+
df
= (φ+ f−/f+) ∨ (ψ + f−/f+)

(x ≥ r) + f−/f+
df
= x ≥ (r + f−(x))

([a]φ) + f−/f+
df
= [a](φ+ f−/f+)

X + f−/f+
df
= X

Given a list of equations E = (X1 = φ1, .., Xn = φn), let E + f−/f+ = (X1 = φ1 +
f−/f+, .., Xn = φn + f−/f+). Given an equation block B = max{E} or B = min{E},
we define B+ f−/f+ to be max{E+ f−/f+} or min{E+ f−/f+} respectively. Given an
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alternation-free block sequence B = B1, . . . , Bm, let B+f−/f+ = B1+f−/f+, . . . , Bm+
f−/f+.

Whenever f− = f+ = f , we write +f .

For S ⊆ L and δ : V → R, let

S � δ = {φ+ f−/f+ | φ ∈ S, f−, f+ : K → Q s.t. f− < δ < f+}.

Definition 7.5 [Coherent function] A function γ : L → Θ is coherent, if for any

l, l′ ∈ L,

1. (I ◦ γ)(l) = l; 2. γ(l)� (l′ − l) ⊆ γ(l′).

The first fundamental result is that any B0-maximally-consistent set Λ belongs to

the image γ(L) of a coherent function γ. Eventually, we will construct a symbolic

model from the WTS on the set of coherent functions, and this result will guarantee

that any B0-maximally-consistent set is satisfied.

Lemma 7.6 For any Λ ∈ Θ, there exists a coherent function γ such that

γ(I (Λ)) = Λ.

Firstly, we define a WTS using the state space

Γ = {γ : L→ Θ | γ is a coherent function}
and the transitions defined by

γ
u−→a γ′ if [∀l ∈ L, [a]φ ∈ γ(l)⇒ φ ∈ γ′(l + u)].

Secondly, we apply Construction A from Section 5 and construct a SWS Ws =

(Πs,Σs, θs) for the above WTS w.r.t φ0 that depends of B0, for a set of regions

R[φ0,B0]. We get Πs = Γ×R[φ0,B0], Σ
s = Σ[φ0,B0] ∪ {εx | x ∈ V[φ0,B0]} and

1. (γ, [l]) −→a (γ′, [l′]) iff γ −→a γ′ and l′ = l + u; 2. (γ, [l]) −→εx (γ, [l′]) iff [l′] = [l][x → 0].

Let L[φ0, B] be defined as:

L[φ0, B] = {φ ∈ L | Σ[φ,B] ⊆ Σ[φ0, B], Qi[φ,B] ⊆ Qi[φ0, B]}.

Let ρs0 be the symbolic environment defined for any X ∈ X , by ρs0(X) = {(γ, [l]) |
X ∈ γ(l)}.

Firstly, we prove the restricted truth lemma that does not consider recursive con-

structs. Its proof is similar to the proof presented in [18] for timed modal logic.

Lemma 7.7 (Restricted Truth Lemma) For φ ∈ L[φ0,B0], l ∈ L and π =

(γ, [l]) ∈ Πs,

Ws, π, ρs0 |= φ iff φ ∈ γ(l).

On the restricted truth lemma we can base the following two results that indicate

how we can extend the results to include the recursive cases.

Lemma 7.8 Let B = max{X1 = φ1, . . . , Xn = φn} be an equation block in the

sequence B0 and ρs a symbolic environment such that ρs(Xi) = {(γ, [l]) | Xi ∈ γ(l)}
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for any i = 1, .., n. For any φ ∈ L[φ0,B0], l ∈ L and π = (γ, [l]) ∈ Πs,

if [Ws, π, ρs |= φ iff φ ∈ γ(l)], then [Ws, π, �B�ρs |= φ iff φ ∈ γ(l)].

Proof. Induction on φ. We prove here the case of the recursive-variables Xi, i =

1, ..k.

(=⇒) Because WMC enjoys the finite symbolic model property, there exists a finite

ordinal k0 s.t. for all i = 1, . . . , n, Ws, π, �B�ρs |= Xi iff Ws, π, �B�ρs |= φk0
i , where

for all i = 1, . . . , n, φk
i are defined simultaneously by φ0

i = ⊥ and φk+1
i = φi{Φ

k
/X},

where Φ
k
= (φk

1, .., φ
k
n) and X = (X1, ..Xn).

It is clear that in φk
i there is no recursive-variable from {X1, . . . , Xn}. For

any recursive-variable X other than X1, . . . , Xm, �B�ρs(X) = ρs(X). Hence,

Ws, π, �B�ρs |= Xi implies Ws, π, ρs |= φk0
i . Then, φk

i ∈ γ(l).

The finite symbolic model property also guarantees that for any π′ ∈ Γ and any

i = 1, . . . , n,

Ws, π′, ρs |= φk
i → φi{Φ

k
/X}.

So, for any i = 1, ..n, φk
i → φi{Φ

k
/X} ∈ γ′(l′) for any (γ′, [l′]) ∈ Γ. This further

implies that �
∧

i(φ
k
i → φi{Φ

k
/X}), since

∧
i(φ

k
i → φi{Φ

k
/X}) is present in all the

maximal-consistent sets. Hence, using (max-R2), for any i, φk
i → Xi ∈ γ′(l′) for

any (γ′, [l′]) ∈ Γ.

As already proven above, Ws, π, �B�ρs |= Xi implies φk
i ∈ γ(l). Together with

φk
i → Xi ∈ γ′(l′) for any (γ′, [l′]) ∈ Γ, provided by (max-A1), we get that Xi ∈ γ(l).

(⇐=) We prove that ρs is a post-fixed point of B as follows:

For any Xi, i = 1, . . . , n, suppose Ws, π, ρs |= Xi. Then Xi ∈ γ(l), which implies

that φi ∈ γ(l) by (max-A1). So Ws, π, ρs |= φi. Since �B�ρs is the maximal fixed

point of B, we have ρs ⊆ �B�ρs . Therefore, Ws, π, ρs |= φ implies Ws, π, �B�ρs |= φ.

�

Since the minimal blocks are dual of the maximal blocks, we have a similar lemma

for minimal blocks.

Lemma 7.9 Let B = min{X1 = φ1, . . . , Xn = φn} be an equation block in the

sequence B0 and ρs a symbolic environment such that ρs(Xi) = {(γ, [l]) | Xi ∈
γ(l)} for any i = 1, ..n. For any φ ∈ L[φ0,B0], l ∈ L and π = (γ, [l]) ∈ Πs,

if [Ws, π, ρs |= φ iff φ ∈ γ(l)], then [Ws, π, �B�ρs |= φ iff φ ∈ γ(l)].

These lemmas allow us to prove the stronger version of the truth lemma.

Theorem 7.10 (Extended Truth Lemma) For φ ∈ L[φ0,B0], l ∈ L and π =

(γ, [l]) ∈ Πs,

Ws, π, ρs0 |=B φ iff φ ∈ γ(l).
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A direct consequence of Theorem 7.10 is the completeness 3 of the axiomatic system.

Theorem 7.11 (Completeness) The axiomatic system of �B is complete with

respect to the WTS-semantics, i.e., for arbitrary φ ∈ L,
|=B φ implies �B φ.

8 Conclusions

In this paper we have investigated the alternation-free weighted mu-calculus (WMC)

for which we presented two semantics: one based on weighted transition systems

(WTSs) and one based on the symbolic models (SWSs). We have demonstrated

that the two semantics are equivalent in the sense that the WTS-validities coincide

with the SWS-validities. This is a remarkable result that allows us to transport

metaresults between the two semantics.

We firstly proved that even if WMC does not enjoy the finite model property for

the WTS-semantics, it enjoys it for the SWS-semantics and thus we prove that

satisfiability is decidable in both cases. To prove this we involve the tableau method.

We suspect that a similar result can be extended to the entire weighted Mu-Calculus

without the alternation-free restriction, but for now we have no evidence in this

sense.

The finite model property is also used to prove that the axiomatization that com-

bines modal axioms of weighted logic with the axioms of fixed points is complete

for the SWS-semantics. Since the SWS-validities coincide with the WTS-validities,

the completeness result can be extrapolated for the TWS-semantics.

The development of symbolic semantics that induces the same validities as the clas-

sic semantics is a powerful tool with potential applications also in other contexts.

We intend to further apprehend these results to understand if some general tech-

nique can be proposed.
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Appendix

Related definitions for the tableau method

Definition 8.1 [Trace] Given a path P = t0t1 . . . of a tableau T (φ, δ), a trace on P
is a function T assigning a formula to every node t = (Δ, δ) in some initial segment

of P (possibly to all of P), satisfying the following conditions:

(i) if T(t) is defined, T(t) ∈ Δ;

(ii) if T(t) is defined and t′ ∈ P is a son of t; if a rule applied at t does not reduce

the formula T(t) then T(t′) = T(t);if T(t) is reduced in t then T(t′) is one of the

results of the reduction.

We say that there is a regeneration of a recursive-variable X on a trace T on some

path of a tableau, if for t and its son t′ on the path, T(t) = X and T(t′) = φ, where

X = φ ∈ B.

Definition 8.2 [max-Trace and min-Trace] We call a trace a max-trace iff it is an

infinite trace (defined for the whole path) on which the recursive-variable regener-

ated infinitely often is a max-variable.

Similarly, a trace will be called a min-trace iff it is an infinite trace where the

recursive-variable regenerated infinitely often is a min-variable.

Every infinite trace is either a max-trace or a min-trace; all the rules except (Reg)

decrease the size of formulas; hence, every formula is eventually reduced.

Definition 8.3 [Marking] For a tableau T (φ, δ), we define itsmarking with respect

to an SWS Ws = (Πs,Σs, θs) and state π0 ∈ Πs to be a relation M ⊆ Πs × T (φ, δ)
satisfying the following conditions:

(i) (π0, t0) ∈M, where t0 is the root of T (φ, δ);
(ii) if some pair (π, t) ∈ M and a rule other than (mod) was applied at t, then

for some son t′ of t, (π, t′) ∈M;

(iii) if (π, t) ∈ M and rule (mod) was applied at t, then for every action a for

which exists 〈a〉ψ ∈ Δ(t):

(a) for every 〈a〉-son t′ of t, there exists a state π′ s.t. π −→a π′ and (π′, t′) ∈M,

and

(b) for every state π s.t. π −→a π′, there exists a 〈a〉-son t′ of t s.t. (π′, t′) ∈M.
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Definition 8.4 [Consistent Marking] A marking M of T (φ, δ) is consistent with

respect to Ws = (Πs,Σs, θs) and π ∈ Πs if and only if M satisfies the following

conditions:

• local consistency : for any node t = (Δt, δt) ∈ T (φ, δ) and state π′ = (s′, δ′) ∈ Πs,

if (π′, t) ∈M then δt = δ′ and for any ψ ∈ Δ(t), Ws, π′ |=s
B ψ;

• global consistency : for every path P = t0, t1, . . . of T (φ, δ) s.t. there exist πi with

(πi, ti) ∈M for i = 0, 1, . . ., there is no min-trace on P.

Detailed Proofs

Proof of Theorem 5.1 1. W, (m, l), ρ |=B φ iff there exist ρ0, ρ1, . . . , ρm s.t.

• ρ0 = ρ and for any i = 1, . . . ,m, ρi = �Bi�ρi−1 ;

• W, (m, l), ρm |= φ.

Let ρsi for any i = 0, . . . ,m be defined as: ρsi (X) = {(m, [l]) | (m, l) ∈ ρi(X)} for

any X ∈ V. It is not difficult to verify that ρs0 = ρs and ρsi = �Bi�ρsi−1
for any

i = 1, . . . ,m.

We can prove that for any i = 0, . . . ,m, ifW, (m, l), ρi |= φ, thenWs, (m, [l]), ρsi |=s

φ by induction on φ. Moreover, Ws, (m, [l]), ρs |=s
B φ iff Ws, (m, [l]), �B�ρs |=s φ,

where �B�ρs = ρms . Hence, W, (m, l), ρ |=B φ implies Ws, (m, [l]), ρs |=s
B φ.

2. Ws, (s, δ), ρs |=s
B φ iff there exist ρs0, ρ

s
1, . . . , ρ

s
m s.t.

• ρs0 = ρs and for any i = 1, . . . ,m, ρsi = �Bi�ρsi−1
;

• Ws, (s, δ), ρsm |=s φ.

Let ρi for any i = 0, . . . ,m be defined as: ρi(X) = {(m, l) | (s, δ) ∈ ρs(X), (s, δ, l) ∈
m} for any X ∈ V. It is not difficult to verify that ρ0 = ρ and ρi = �Bi�ρi−1 for any

i = 1, . . . ,m.

We can prove that for any i = 0, . . . ,m, if Ws, (s, δ), ρsi |=s φ, then W, (m, l), ρi |= φ

by induction on φ. Moreover, W, (m, l), ρ |=B φ iff W, (m, l), �B�ρ |= φ, where

�B�ρ = ρm.

Hence, Ws, (s, δ), ρ |=s
B φ implies W, (m, l), ρ |=B φ. �

Proof of Theorem 6.2 Suppose φ0 = (π0, δ0) is satisfied at state π0 in WS under

environment ρs. According to the above lemma, there is a consistent marking M

of T (φ0, δ0) respect to Ws and π0. We construct a finite SWS Ws
f = (Πs

f ,Σ
s
f , θ

s
f ),

with Σs
f = Σ[φ0] ∪ {εx | x ∈ V}.

Let A,B and C be the set of T (φ0, δ0) nodes that are leaves, where the (mod) rule

is applied and where the (res) rule is applied respectively. For t ∈ A ∪ B ∪ C, let

U(t) be the set of nodes of T (φ0, δ0) consisting of t and all ancestors on the path

back up to, but not including, the most recent ancestor in A∪B ∪C; or back up to

and including the root if no ancestor of t is in A∪B∪C. Similarly for t ∈ A∪B, let

U ′(t) be the set of nodes of T (φ0, δ0) consisting of t and all ancestors on the path

back up to, but not including, the most recent ancestor in A∪B; or back up to and

including the root if no ancestor of t is in A ∪B.

Let Π1 = {(t, δ) | t = (Δ, δ) ∈ A ∪ B} and Π2 = {(t, δ′) | t = (Δ, δ) ∈ A ∪ B, t′ =
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(Δ′, δ′) ∈ C ∩ U ′(t)}. The state set Πs
f = Π1 ∪ Π2. Notice that Ω[φ] is finite, so Πs

is finite.

Then the transition relation θsf is defined as:

• for any (t1, δ1), (t2, δ2) ∈ Π1, (t1, δ1) −→a (t2, δ2) iff there exists an 〈a〉-son t′ of t1
s.t. t′ ∈ U(t2);

• for any (t1, δ1) ∈ Π1 and (t2, δ
′
2) ∈ Π2, (t1, δ1) −→a (t2, δ2) iff there exist an 〈a〉-son

t′ of t and t′2 = (Δ′
2, δ

′
2) ∈ C s.t. t′2 ∈ U ′(t) and t′ ∈ U(t′2);

• for any (t, δ′), (t, δ′′) ∈ Π2, (t, δ′) −→ε (t, δ′′) iff there exist t′ = (Δ′, δ′), t′′ =

(Δ′′, δ′′) ∈ C and (t, δ) ∈ Π1 s.t. t′, t′′ ∈ U ′(t).

• for any (t, δ′) ∈ Π2, (t, δ) ∈ Π1, (t, δ
′) −→ε (t, δ) iff there exist t′ = (Δ′, δ′) ∈ C s.t.

t ∈ U ′(t).

For any X ∈ X , let ρsf (X) = {t = (Δ, δ) | X ∈ Δ}. We need to prove that for any

φ ∈ L[φ0,B0] and t = (Δ, δ) ∈ Πs,

t′ = (Δ′, δ′) ∈ U(t), φ ∈ Δ′ implies Ws, (t, δ′), ρsf |=s
B φ.

This can be done in a similar way to that in [20, 32].The correctness of the cases

with weight is guaranteed by the region consistency. �

Proof of Lemma 7.3 Let A = {r ∈ Q+ | x ≥ r ∈ Λ} and B = {r ∈ Q+ | x ≤ r ∈
Λ}. (A1) guarantees that A �= ∅ and if B = ∅, we can derive a contradiction from

(R3) for C[X] = X.

Since the two sets are non-empty, the sup and inf exist. Moreover, (R3) can also

be used to prove that supA < ∞. Let supA = u and inf B = v. If u < v, there

exists r ∈ Q+ such that u < r < v. Hence, x ≤ r ∈ Λ, which contradicts r ≤ v. If

v < u, there exists r1, r2 ∈ Q+ such that v < r1 < r2 < u. Hence, x ≤ ri, x ≥ ri ∈ Λ

for i = 1, 2. Since r2 − r1 > 0, (A3)� x ≥ r2 → ¬(x ≤ r1), which proves the

inconsistency of Λ - contradiction. �

Proof of Lemma 7.6 We prove the following properties first:

• For any S ⊆ L and δ, δ1, δ2 : V → R such that δ = δ1 + δ2, S � δ = (S � δ1)� δ2.

Proof : (⇒) Suppose ψ′ ∈ S � δ. Then there must exist ψ ∈ S, f−, f+ :

V → Q s.t. f− < δ < f+ and ψ′ = ψ + f−/f+. Since δ = δ1 + δ2, there exist

g−, g+, h−, h+ : V → Q s.t. g− < δ1 < g+, h− < δ < h+ and f− = g− + h−, f+ =

g++h+. So ψ′ = ψ+ g− + h−/g+ + h+ = ψ+ g−/g+ + h−/h+. Since ψ+ g−/g+ ∈ S� δ1
by definition, we have ψ+ g−/g++ h−/h+ ∈ (S� δ1)� δ2. Hence, ψ′ ∈ (S� δ1)� δ2.

(⇐) Suppose ψ′ ∈ (S�δ1)�δ2. Then there must exist ψ ∈ S, g−, g+, h−, h+ : V →
Q s.t. g− < δ1 < g+, h− < δ < h+ and ψ′ = ψ + g−/g+ + h−/h+. Since δ = δ1 + δ2,

there exist f−, f+ : V → Q s.t. f− < δ < f+ and f− = g− + h−, f+ = g+ + h+. So

ψ′ = ψ + g− + h−/g+ + h+ = ψ + f−/f+. Hence, ψ′ ∈ S � δ.

• 2. Let Λ1,Λ2 ∈ Θ such that {Λ1,Λ2} is coherent. Then, for any l ∈ L, Λ1 � (l −
I (Λ1)) = Λ2 � (l −I (Λ2)).

Proof : Let l1 = I (Λ1), l2 = I (Λ2).
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(⇒) Λ1 � (l − l1) = Λ1 � ((l2 − l1) + (l − l2)), which implies Λ1 � (l − l1) =

(Λ1 � (l2 − l1)) � (l − l2)) by the above property. Since {Λ1,Λ2} is coherent,

Λ1 � (l2 − l1) ⊆ Λ2. So (Λ1 � (l2 − l1))� (l − l2)) ⊆ Λ2 � (l − l2).

Similarly for the other direction.

With these properties, we can prove the lemma.

I. Firstly, observe that C ⊆ Θ is coherent iff for any Λ1,Λ2 ∈ C, with l1 =

I (Λ1), l2 = I (Λ2),

Λ1 � (l2 − l1) ⊆ Λ2 and Λ2 � (l1 − l2) ⊆ Λ1,

Moreover, Λ1 � (l2 − l1) ⊆ Λ2 iff Λ2 � (l1 − l2) ⊆ Λ1.

II. Secondly, we observe that all the infinitary rules of our axiomatization have

countable sets of instances. We consider the Boolean-completion of L with the same

axiomatization (see [14]), namely (an isomorphic copy of) the Boolean algebra of

complete ideals in L. The completion is a complete Boolean algebra. Every element

in the completion is the supremum (in the completion) of the set of elements in L
that are below it. Moreover, L is a dense subset of its completion in the sense that

every non-zero element in the completion is above a non-zero element in L. Since

the axiomatization is countable, the Rasiowa-Sikorski lemma [15, 29] applied to the

completion guarantees that any non-zero element of the completion belongs to an

ultrafilter (of the completion). Since any consistent set S of L corresponds to a

non-zero element
∧

S in the completion, by applying Rasiowa-Sikorski lemma to

the completion of L, we obtain that there exists an ultrafilter u of the completion

containing
∧

S. This is equivalent to the fact that there exists an ultrafilter u ∩ L
of L that includes S.

III. We prove that if l = I (Λ) and l′ ∈ L, then there exists Λ′ ∈ Θ s.t. I (Λ′) = l′

and {Λ,Λ′} is coherent. To prove this, we firstly need to prove that Λ � (l′ − l) is

consistent. The following two properties guarantee the consistency, which can be

proved by induction on the structure of the formulas:

(a) If φ ∈ Λ and f−, f+ : V → Q s.t. for any x ∈ V(φ), either f−(x) = f+(x) = 0 or

f−(x) < (l′ − l)(x) < f+(x), then,

� (φ+ f−/f+) + − f−/− f+ → φ.

(b) For any x� r ∈ L,
{(x� r) + f−/f+ | f−, f+ : V → Q, f− < 0 < f+} � x� r.

Since Λ � (l′ − l) is consistent, applying II, it must have a B0-maximal-consistent

extension Λ′. Since Λ� (l′ − l) ⊆ Λ′, we also have Λ′ � (l− l′) ⊆ Λ. Hence, {Λ,Λ′}
is coherent.

IV. Suppose C = {Λ0,Λ1, . . . ,Λk, . . .} is a coherent set (possibly infinite), li =

I (Λs), i = 1, . . . , k, . . . and l ∈ L. Similarly with III, we can prove that Λs�(l− li)

is consistent. By Property 2 proven above, we have that Λ1�(l−l1) = Λ2�(l−l2) =

. . . = Λk � (l− lk) = . . . Hence, in order to get a coherent function γ, we only need

to get Λ� (l′ − l) for any l′ ∈ L, and extend it to B0-maximal-consistent set Λl′ by

applying II. Let γ(l′) = Λl′ . Obviously, γ is a coherent function. �
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[Proof of Lemma 7.7 Induction on φ. φ∨ψ, ¬φ and X cases are straightforward.

[The case x� r]:

(=⇒) Ws, π, ρs0 |= x� r implies for any l′ ∈ [l], l′(x)� r. So l(x)� r, which implies

that x� r ∈ γ(l).

(⇐=) x � r ∈ γ(l) implies l(x) � r. Because x ∈ V [φ0,B], so r ∈ Q[φ0,B0]. And

since either [l] = n/g or [l] = (n/g, n+ 1/g), it is obvious that for any l′ ∈ [l], l′(x)� r.

Hence Ws, π, ρs0 |= x� r.

[The case [a]φ]:

Ws, π, ρs0 |= [a]φ iff for any π′ = (γ′, [l′]) ∈ Πs s.t. π −→a π′, Ws, π′, ρs0 |= φ, iff

φ ∈ γ′(l′) by induction hypothesis.

(=⇒) Supp. 〈a〉¬φ ∈ γ(l).

If γ cannot do any a-transition, then there should be no formula like 〈a〉ψ in γ(l)

for all l ∈ L – contradiction!

Suppose γ
u−→a γ′. Let Al = {¬φ} ∪ {ψ | [a]ψ ∈ γ(l)} ∪ Υl+u and Al′ = {ψ | [a]ψ ∈

γ(l′)}∪Υl′+u for any l′ �= l, where Υl′ =
⋃

x∈V{x ≤ r | r ≥ l′(x)}∪{x ≥ r | r ≤ l′(x)}.

It is easy to see that {ψ | [a]ψ ∈ γ(l)} ∪Υl+u and Al′ for any l′ �= l are consistent.

Suppose that Al is inconsistent. Then there exists a set F ⊆ Al s.t. F � φ. If F is

finite, (R1) guarantees that [a]F � [a]φ, where [a]F = {[a]ψ | ψ ∈ F}. Otherwise,

F � φ is (modulo Boolean reasoning possible involving infinite meets) an instance of

one of the rules (R2)-(R3); in all these cases, [a]F � [a]φ is an instance of the same

rule for the context C[X] = [a]X. Since F ⊆ Al, [a]F ⊆ γ(l) implying [a]φ ∈ γ(l),

which contradicts the consistency of γ(l). Hence, Al is consistent.

Now we prove that for any l1, l2 ∈ L, Al1 and Al2 are such that Al1 +(l2− l1) ⊆ Al2 .

If l1 �= l, then for arbitrary ψ′ ∈ Al1 either [a]ψ′ ∈ γ(l1), or ψ
′ = x� r.

In the first case, [a]ψ′+ f−/f+ ∈ γ(l2), for all f− ≤ l2− l1 ≤ f+. So, ψ
′+ f−/f+ ∈ Al2 .

In the second case, since ψ′ = x� r is closed under any resource valuation transfor-

mation, for any f− ≤ l2 − l1 ≤ f+, ψ
′ + f−/f+ ∈ Al2 .

If l1 = i, consider an arbitrary ψ′ ∈ Al1 . If ψ
′ �= ¬φ, we get a similar case as above.

Otherwise, 〈a〉ψ′ ∈ γ(l), which implies 〈a〉ψ′+f−/f+ ∈ γ(l2) for all f− ≤ l2− l1 ≤ f+.

So, ψ′ + f−/f+ ∈ Al2 .

At this point we can use a similar strategy as in Theorem 7.6 to prove that there

exists γ′′ ∈ Γ s.t. for any l′ ∈ L, Al′ ⊆ γ′′(l′). Hence, ¬φ ∈ γ′′(l + u). According to

the definition of the model, γ
u−→a γ′′, which implies φ ∈ γ′′(l + u) - contradiction!

Hence, [a]φ ∈ γ(l).

(⇐=) derives from the definition of θs.

[The case x in φ]:

(=⇒) Ws, π, ρs0 |= x in φ implies that there exists π′ ∈ Πs s.t. π −→εx π′ and

Ws, π′, ρs0 |= φ, which implies that φ ∈ γ(l[x → 0]) by inductive hypothesis. Since
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l[x → 0](x) = 0, we have x in φ ∈ γ(l[x → 0]). Because γ is coherent function, it is

not difficult to prove that x in φ ∈ γ(l).

(⇐=) x in φ ∈ γ(l) implies that x in φ ∈ γ(l[x → 0]) by Definition 7.5. Therefore,

φ ∈ γ(l[x → 0]) by (A11). By inductive hypothesis, Ws, (γ, [l][x → 0]), ρs0 |= φ,

which implies Ws, (γ, [l]), ρs0 |= x in φ. �

Proof of Theorem 7.10 By the semantics of the alternation-free block sequence,

given an environment ρ0, B defines a series of environments: ρs1, . . . , ρ
s
m, where

ρsi = �Bi�ρsi−1
for any i = 1, . . . ,m. And �B�ρs0 = ρsm.

We prove that for ρsi , i = 0, 1, . . . ,m,

Ws, π, ρsi |= φ iff φ ∈ γ(l)

by induction on i. The case i = 0 is given by Lemma 7.7. Suppose the statement

holds for k ≥ 0. Then it is still true according to Lemma 7.8 and Lemma 7.9.

And Ws, π, ρs0 |=B φ iff Ws, π, ρsm |= φ. Therefore, Ws, π, ρs0 |=B φ iff φ ∈ γ(l). �
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