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Abstract. In this paper we propose a complete axiomatization of the bisimilarity distance
of Desharnais et al. for the class of finite labelled Markov chains.

Our axiomatization is given in the style of a quantitative extension of equational logic
recently proposed by Mardare, Panangaden, and Plotkin (LICS 2016) that uses equality
relations t ≡ε s indexed by rationals, expressing that “t is approximately equal to s up
to an error ε”. Notably, our quantitative deduction system extends in a natural way the
equational system for probabilistic bisimilarity given by Stark and Smolka by introducing
an axiom for dealing with the Kantorovich distance between probability distributions.

The axiomatization is then used to propose a metric extension of a Kleene’s style
representation theorem for finite labelled Markov chains, that was proposed (in a more
general coalgebraic fashion) by Silva et al. (Inf. Comput. 2011).

1. Introduction

In [Kle56], Kleene presented an algebra of regular events with the declared objective of
“showing that all and only regular events can be represented by [...] finite automata.” This fun-
damental correspondence is known as Kleene’s representation theorem for regular languages.
Kleene’s approach was essentially equational, but he did not provide a proof of completeness
for his equational characterization. The first sound and complete axiomatization for proving
equivalence of regular events is due to Salomaa [Sal66], later refined by Kozen [Koz91].

The above programme was applied by Milner [Mil84] to process behaviors and non-
deterministic labelled transition system. Milner’s algebra of process behaviors consists of a
prefix operator (representing the observation of an atomic event), a non-deterministic choice
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operator (for union of behaviors), and a recursive operator (for the definition of recursive
behaviors). He proved an analogue of Kleene’s theorem, showing that process behaviors
represent all and only finite labelled transition systems up to bisimilarity. Milner also
provided a sound and complete axiomatization for behavior expressions, with the property
that two expressions are provably equal if and only if they represent bisimilar labelled
transition systems.

Stark and Smolka [SS00] extended Milner’s axiomatization to probabilistic process
behaviors, providing a complete axiomatization for probabilistic bisimilarity on (generative)
labelled Markov chains. The key idea was to represent probabilistic non-determinism by a
probabilistic choice operator for the convex combination of probabilistic behaviors. Their
equational axiomatization differs from Milner’s only by replacing the semi-lattices axioms
for non-deterministic choice by the Stone’s barycentric axioms for probabilistic choice.

Similar extensions to Milner’s axiomatization have been investigated by several au-
thors. Amongst them we recall some of the works that have been done on probabilistic
systems: Bandini and Segala [BS01] on simple probabilistic automata; Mislove, Ouaki-
nine, and Worrell [MOW04] on (fully) non-deterministic probabilistic automata; Deng and
Palamidessi [DP07] axiomatizing probabilistic weak-bisimulation and behavioral equivalence
on Segala and Lynch’s probabilistic automata; and Silva et al. [SBBR11, BMS13] providing a
systematic way to generate sound and complete axiomatizations and Kleene’s representation
theorems thereof, for a wide variety of systems represented as coalgebras.

The attractiveness towards sound and complete axiomatizations for process behaviors
originates from the need of being able to reason about their equivalence in a purely algebraic
fashion by means of classical deduction of valid equational statements.

Jou and Smolka [JS90], however, observed that for reasoning about the behavior of
probabilistic systems (and more in general all type of quantitative systems) a notion
of distance is preferable to that of equivalence, since the latter is not robust w.r.t. small
variations of numerical values. This motivated the development of metric-based approximated
semantics for probabilistic systems, initiated by Desharnais et al. [DGJP04] on labelled
Markov chains and greatly developed and explored by van Breugel, Worrell and others
[vBW01, vBW06, vBSW08, BBLM15b, BBLM15a]. It consists in proposing a pseudometric
which measures the dissimilarities between quantitative behaviors. The pseudometric
proposed by Desharnais et al. [DGJP04] on labelled Markov chains, a.k.a. probabilistic
bisimilarity distance, is defined as the least solution of a functional operator on 1-bounded
pseudometrics based on the Kantorovich distance on probability distributions.

The first proposals of sound and complete axiomatizations of behavioral distances are
due to Larsen et al. [LFT11] on weighted transition systems, and D’Argenio et al. [DGL14]
on probabilistic systems. These approaches, however, are rather specific and based on
ad hoc assumptions. Recently, Mardare, Panangaden, and Plotkin [MPP16] —with the
purpose of developing a general research programme for a quantitative algebraic theory of
effects [PP01]— proposed the concept of quantitative equational theory. The key idea behind
their approach is to use “quantitative equations” of the form t ≡ε s to be interpreted as “t
is approximately equal to s up to an error ε”, for some rational number ε ≥ 0. Their main
result is that completeness for a quantitative theory always holds on the freely-generated
algebra of terms equipped with a metric that is freely-induced by the axioms. Due to this
result, they were able to prove soundeness and completeness theorems for many interesting
axiomatizations, such as the Hausdorff metric, the total variation metric, the p-Wasserstein
metric, and the Kantorovich metric.
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In this paper, we contribute to the quest of axiomatizations of behavioral metrics, by
proposing a quantitative deduction system in the sense of [MPP16], that is proved to be
sound and complete w.r.t. the probabilistic bisimilarity distance of Desharnais et al. on
labelled Markov chains. The proposed axiomatization extends Stark and Smolka’s one [SS00]
with three additional axioms —the last of these borrowed from [MPP16]— for expressing:
(1) 1-boundedness of the metric; (2) non-expansivity of the prefix operator; and (3) the
Kantorovich lifting of a distance to probability distributions.

The resulting axiomatization is simpler than the one presented in [DGL14] for proba-
bilistic transition systems and it extends [DGL14] by allowing recursive behaviors.

An important detail about our axiomatization that should be mentioned since the
introduction, is that the proposed quantitative deduction system do not fully adhere to the
conditions required to fit within the quantitative algebraic framework of [MPP16]. Indeed,
one of the conditions that we do not satisfy is soundness w.r.t. non-expansivity for the
recursion operator. To overcome this problem we propose to relax the original notion
of quantitative deduction system from [MPP16] by not requiring non-expansivity of the
algebraic operators. In this way we could not use the general proof technique of [MPP16]
to obtain the completeness theorem, and we needed to appeal to specific properties of the
distance. The property used to prove completeness is ω-cocontinuity (i.e., preservation
of infima of countable decreasing chains) of the functional operator defining the distance.
Interestingly, the proof technique proposed in this paper appears to be generic on the
used functional operator, provided its ω-cocontinuity. This generality is showed on a
specific example, where we prove soundness and completeness for another (although similar)
quantitative deduction system w.r.t. the discounted bisimilarity distance of Desharnais et al.

As a final result we prove a metric analogue of Kleene’s representation theorem for
finite labelled Markov chains. Specifically, we show that the class of expressible behaviors
correspond, up to bisimilarity, to the class of finite labelled Markov chains. Moreover, if the
set of expressions is equipped with the pseudometric that is freely-induced by the axioms,
this correspondence is metric invariant. Note that this establishes a stronger correspondence
than the usual “equational” Kleene’s theorem.

This work is an extended version of the conference paper [BBLM16]. In comparison
to [BBLM16], this paper includes new and more detailed examples, improved proofs of
soundness and completeness of the axiomatization, and two new results: (i) a sound and
complete axiomatization for the discounted bisimilarity distance (Section 6) and (ii) a
quantitative Kleene’s representation theorem for finite (open) Markov chains (Section 7).

Synopsis. Section 2 introduces the notation and the preliminary basic concepts. In Section 3
we recall the quantitative equational framework of [MPP16]. Section 4 presents the algebra
of open Markov chains. In Section 5 we present a quantitative deduction system (Section 5.3)
that is proved to be sound (Section 5.4) and complete (Section 5.5) w.r.t. the probabilistic
bisimilarity distance of Desharnais et al.. Section 6 shows how to extend these results to
the discounted version of the bisimilarity distance. In Section 7 we present a quantitative
Kleene’s representation theorem of finite open Markov chains. Finally, in Section 8 we
conclude and present suggestions for future work.
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2. Preliminaries and Notation

For R ⊆ X ×X an equivalence relation, we denote by X/R its quotient set. For two sets X
and Y , we denote by X ] Y their disjoint union and by [X → Y ] (or alternatively, Y X) the
set of all functions from X to Y .

A discrete sub-probability distribution on X is a real-valued function µ : X → [0, 1], such
that µ(X) ≤ 1, where, for E ⊆ X, µ(E) =

∑
x∈E µ(x). A sub-probability distribution is

a (full) probability distribution if µ(X) = 1. The support of µ is the set of all points with
strictly positive probability, denoted as supp(µ) = {x ∈ X | µ(x) > 0}. We denote by ∆(X)
and D(X) the set of discrete probability and finitely-supported sub-probability distributions
on X, respectively.

A 1-bounded pseudometric on X is a function d : X × X → [0, 1] such that, for any
x, y, z ∈ X, d(x, x) = 0, d(x, y) = d(y, x) and d(x, y) + d(y, z) ≥ d(x, z); d is a metric if, in
addition, d(x, y) = 0 implies x = y. The pair (X, d) is called (pseudo)metric space. The
kernel of a (pseudo)metric d is the set ker(d) = {(x, y) | d(x, y) = 0}.

3. Quantitative Algebras and their Equational Theories

We recall the notions of quantitative equational theory and quantitative algebra from [MPP16].
Let Σ be an algebraic signature of function symbols f : n ∈ Σ of arity n ∈ N. Fix a

countable set of metavariables X, ranged over by x, y, z, . . . ∈ X. We denote by T(Σ, X) the
set of Σ-terms freely generated over X; terms will be ranged over by t, s, u, . . . A substitution
of type Σ is a function σ : X → T(Σ, X) that is homomorphically extended to terms as
σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)); by S(Σ) we denote the set of substitutions of type Σ.

A quantitative equation of type Σ is an expression of the form t ≡ε s, where t, s ∈ T(Σ, X)
and ε ∈ Q≥0. Let E(Σ) denote the set of quantitative equations of type Σ. The subsets of
E(Σ) will be ranged over by Γ,Θ,Π, . . . ⊆ E(Σ).

Let ` ⊆ 2E(Σ) × E(Σ) be a binary relation from the powerset of E(Σ) to E(Σ). We
write Γ ` t ≡ε s whenever (Γ, t ≡ε s) ∈ `, and ` t ≡ε s for ∅ ` t ≡ε s. We use Γ ` Θ
as a shorthand to meaning that Γ ` t ≡ε s holds for all t ≡ε s ∈ Θ. The relation ` is a
quantitative deduction system of type Σ if it satisfies the following axioms and rules

(Refl) ` t ≡0 t ,

(Symm) {t ≡ε s} ` s ≡ε t ,
(Triang) {t ≡ε u, u ≡ε′ s} ` t ≡ε+ε′ s ,

(Max) {t ≡ε s} ` t ≡ε+ε′ s , for all ε′ > 0 ,

(Arch) {t ≡ε′ s | ε′ > ε} ` t ≡ε s ,
(NExp) {t1 =ε s1, . . . , tn =ε sn} ` f(t1, . . . , tn) ≡ε f(s1, . . . , sn) , for all f : n ∈ Σ ,

(Subst) If Γ ` t ≡ε s, then σ(Γ) ` σ(t) ≡ε σ(s), for all σ ∈ S(Σ) ,

(Cut) If Γ ` Θ and Θ ` t ≡ε s, then Γ ` t ≡ε s ,
(Assum) If t ≡ε s ∈ Γ, then Γ ` t ≡ε s .

where σ(Γ) = {σ(t) ≡ε σ(s) | t ≡ε s ∈ Γ}.
The rules (Subst), (Cut), (Assum) are the classical deduction rules from equational logic.

The axioms (Refl), (Symm), (Triang) correspond, respectively, to reflexivity, symmetry, and
triangular inequality for a pseudometric; (Max) represents inclusion of neighbourhoods of
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increasing diameter; (Arch) is the Archimedean property of the reals w.r.t. a decreasing
chain of neighbourhoods with converging diameters; and (NExp) stands for non-expansivity
of the algebraic operators f ∈ Σ.

A quantitative equational theory is a set U of universally quantified quantitative inferences,
(i.e., expressions of the form

{t1 ≡ε1 s1, . . . , tn ≡εn sn} ` t ≡ε s ,
with a finite set of hypotheses) closed under `-deducibility. A set A of quantitative inferences
is said to axiomatize a quantitative equational theory U , if U is the smallest quantitative
equational theory containing A. A theory U is called inconsistent if ` x ≡0 y ∈ U , for
distinct metavariables x, y ∈ X, it is called consistent otherwise1.

The models of quantitative equational theories are standard Σ-algebras equipped with a
pseudometric, called quantitative algebras.

Definition 3.1 (Quantitative Algebra). A quantitative Σ-algebra is a tuple A = (A,ΣA, dA),
consisting of a pseudometric space (A, dA) and a set ΣA =

{
fA : An → A | f : n ∈ Σ

}
of

interpretations for the function symbols in Σ, required to be non-expansive w.r.t. dA, i.e.,
for all 1 ≤ i ≤ n and ai, bi ∈ A, dA(ai, bi) ≥ dA(fA(a1, . . . , an), fA(b1, . . . , bn)).

Morphisms of quantitative algebras are non-expansive homomorphisms.

A quantitative algebra A = (A,ΣA, dA) satisfies the quantitative inference Γ ` t ≡ε s,
written Γ |=A t ≡ε s, if for any assignment of the meta-variables ι : X → A,(

for all t′ ≡ε′ s′ ∈ Γ, dA(ι(t′), ι(s′)) ≤ ε′
)

implies dA(ι(t), ι(s)) ≤ ε ,
where, for a term t ∈ T(Σ, X), ι(t) denotes the homomorphic interpretation of t in A. A
quantitative algebra A is said to satisfy (or is a model for) the quantitative theory U , if
whenever Γ ` t ≡ε s ∈ U , then Γ |=A t ≡ε s. The collection of all models of a theory U of
type Σ, is denoted by K(Σ,U ).

In [MPP16] it is shown that any quantitative theory U has a universal model TU (the
freely generated `-model) satisfying exactly those quantitative equations belonging to U .
Moreover, [MPP16, Theorem 5.2] proves a completeness theorem for quantitative equational
theories U , stating that a quantitative inference is satisfied by all the algebras satisfying U
if and only if it belongs to U .

Theorem 3.2 (Completeness). For any given quantitative equational theory U of type Σ,(
for any A ∈ K(Σ,U ), Γ |=A t ≡ε s

)
if and only if Γ ` t ≡ε s ∈ U .

Furthermore, in [MPP16] several interesting examples of quantitative equational theories
have been proposed. The one we will focus on later in this paper is the so called interpolative
barycentric equational theory (cf. §10 in [MPP16]).

1Note that for an inconsistent theory U , by Subst, we have ` t ≡0 s ∈ U , for all t, s ∈ T(Σ, X).
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4. The Algebra of Probabilistic Behaviors

Recall from the introduction that the aim of the paper is to study the quantitative algebraic
properties of two different behavioral pseudometrics on Markov chains, namely the proba-
bilistic bisimilarity distance and the total variation distance. This will be done by employing
the framework of quantitative algebras and their equational theories. For the moment we
will focus only on the purely algebraic part, leaving to later sections the definition of the
pseudometrics and the quantitative equational theories.

In this section we present the algebra of open Markov chains. Open Markov chains
extend the familiar notion of discrete-time labelled Markov chain with “open” states taken
from a fixed countable set X of names ranged over by X,Y, Z, . . . ∈ X . Names indicate
states at which the behavior of the Markov chain can be extended by substitution of another
Markov chain, in a way which will be made precise later.

4.1. Open Markov Chains. In what follows we fix a countable set L of labels, ranged
over by a, b, c, . . . ∈ L. Recall that D(M) denotes the set of finitely supported discrete
sub-probability distributions over a set M .

Definition 4.1 (Open Markov Chain). An open Markov chain M = (M, τ) consists of a
set M of states and a transition probability function τ : M → D((L ×M) ] X ).

Intuitively, if M is in a state m ∈M , then with probability τ(m)(a, n) it emits a ∈ L
and moves to state n ∈M , or it moves with probability τ(m)(X) to a name X ∈ X without
emitting any label. A state m ∈M with probability zero of emitting any label and moving
to any name, is called terminating. A name X ∈ X is said to be unguarded in a state m ∈M ,
if τ(m)(X) > 0. Clearly, open Markov chains where all names are guarded in each state (i.e.,
for all m ∈M , τ(m)(X ) = 0) are just standard labelled sub-probabilistic Markov chains.

A pointed open Markov chain, denoted by (M,m), is an open Markov chainM = (M, τ)
with a distinguished initial state m ∈M .

Hereafter, we will use M = (M, τ), N = (N, θ) to range over open Markov chains and
(M,m), (N , n) to range over the set OMC of pointed open Markov chains. To ease the
reading, we will often refer to the constituents of M and N implicitly, so that we will try to
keep this notation consistent as much as possible along the paper.

For the definition of the algebra we will need to consider open Markov chains up to
probabilistic bisimilarity. Next we recall its definition, due to Larsen and Skou [LS89]2.

Definition 4.2 (Bisimulation). An equivalence relation R ⊆M ×M is a bisimulation on
M if whenever m R m′, then, for all a ∈ L, X ∈ X and C ∈M/R,

(i) τ(m)(X) = τ(m′)(X),
(ii) τ(m)({a} × C) = τ(m′)({a} × C).

Two states m,m′ ∈M are bisimilar w.r.t.M, written m ∼M m′, if there exists a bisimulation
relation on M relating them.

Intuitively, two states are bisimilar if they have the same probability of (i) moving to a
name X ∈ X and (ii) emitting a label a ∈ L and moving to the same bisimilarity class.

In the following we consider bisimilarity between pointed open Markov chains. Two
pointed open Markov chains (M,m), (N , n) ∈ OMC are bisimilar, written (M, n) ∼ (N , n),

2The original definition of probabilistic bisimulation was given for classical labelled Markov chains.
Definition 4.2 is a straightforward generalization of the same concept for open Markov chains.
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if m and n are bisimilar w.r.t. the disjoint union of M and N (denoted by M⊕N ) defined
as expected. One can readily see that ∼ ⊆ OMC×OMC is an equivalence.

4.2. An Algebra of Open Markov Chains. Next we turn to a simple algebra of pointed
Markov chains. The signature of the algebra is defined as follows,

Σ = {X : 0 | X ∈ X} ∪ (names)

{a.(·) : 1 | a ∈ L} ∪ (prefix)

{+e : 2 | e ∈ [0, 1]} ∪ (probabilistic choice)

{recX : 1 | X ∈ X} , (recursion)

consisting of a constant X for each name in X ; a prefix a.· and a recursion recX unary
operators, for each a ∈ L and X ∈ X ; and a probabilistic choice +e binary operator for each
e ∈ [0, 1]. For t ∈ T(Σ,M), fn(t) denotes the set of free names in t, where the notions of free
and bound name are defined in the standard way, with recX acting as a binding construct.
A term is closed if it does not contain any free name. Throughout the paper we consider two
terms as syntactically identical if they are identical up to renaming of their bound names
(α-equivalence). For t, s1, . . . , sn ∈ T(Σ,M) and an n-vector X = (X1, . . . , Xn) of distinct
names, t[s/X] denotes the simultaneous capture avoiding substitution of Xi in t with si, for
i = 1, . . . , n. A name X is guarded3 in a term t if every free occurrence of X in t occurs
within a context the following forms: a.[·], s+1 [·], or [·] +0 s.

Since from now on we will only refer to terms constructed over the signature Σ, we will
simply write T(M) and T, in place of T(Σ,M) and T(Σ, ∅), respectively.

To give the interpretation of the operators in Σ, we define an operator U on open
Markov chains, taking M to the open Markov chain U(M) = (T(M), µM), where the
transition probability function µM is defined as the least solution over the complete partial
order of the set of all functions mapping elements in T(M) to a [0, 1]-valued functions from
(L × T(M)) ] X , ordered point-wise of the recursive equation

µM = PM
(
µM
)
.

The functional operator PM is defined by structural induction on T(M), for arbitrary
functions θ : T(M)→ [(L × T(M)) ] X → [0, 1]], as follows:

PM(θ)(m) = τ(m)

PM(θ)(X) = 1{X}

PM(θ)(a.t) = 1{(a,t)}

PM(θ)(t+e s) = eθ(t) + (1− e)θ(s)
PM(θ)(recX.t) = θ(t[recX.t/X]) ,

where 1E denotes the characteristic function of the set E.
The existence of the least solution is guaranteed by Tarski’s fixed point theorem, since

PM is a monotone operator over the complete partial order defined above. Notice that,
requiring µM to be the least solution is essential for ensuring it to be a proper transition
probability function, i.e., that for all t ∈ T(M), µM(t) ∈ D((L × T(M)) ] X ). We would
also like to point out that, for all X ∈ X , the above definition renders recX.X a terminating
state in U(M), that is, µM(recX.X)(L × T(M)) = 0 and µM(recX.X)(X ) = 0.

3This notion, coincides with the one in [SS00], though our definition may seem more involved due to the
fact that we allow the probabilistic choice operators +e with e ranging in the closed interval [0, 1].
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Remark 4.3. The definition of µM corresponds essentially to the transition probability of
the operational semantics of probabilistic processes given by Stark and Smolka in [SS00].
The only difference with their semantics is that the one above is defined over generic terms
in T(M) rather that just in T. Moreover, our formulation simplifies theirs by skipping the
definition of a labelled transition system. For a detailed discussion about the well-definition
of µM we refer the interested reader to [AÉI02] and [SS00].

Definition 4.4 (Universal open Markov chain). Let M be an open Markov chain. The
universal open Markov chain w.r.t. M is given by U(M).

The reason why it is called universal will be clarified soon. As for now, just notice that
U(M∅), where M∅ = (∅, τ∅) is the open Markov chain with empty transition function, has
T as the set of states and that its transition probability function corresponds to the one
defined in [SS00]. To ease the notation we will denote U(M∅) as U = (T, µT).

Finally we are ready to define the Σ-algebra of pointed open Markov chains.
For arbitrary pointed open Markov chains (M,m), (N , n) and n-ary operator f ∈ Σ,

define fomc : OMCn → OMC ∈ Σomc as follows:

Xomc = (U, X) ,

(a.(M,m))omc = (U(M), a.m) ,

(M,m) +omc
e (N , n) = (U(M⊕N ),m+e n) ,

(recX.(M,m))omc = (U(M∗X,m), recX.m) ,

where, for M = (M, τ), M∗X,m denotes the open Markov chain (M, τ∗X,m) with transition

function defined, for all m′ ∈M and E ⊆ (L ×M) ] X , as

τ∗X,m(m′)(E) = τ(m′)(X)τ(m)(E \ {X}) + τ(m′)(Xc)τ(m′)(E \ {X}) .
where Xc = ((L×M)]X )\{X}. Intuitively, τ∗X,m modifies τ by removing the name X ∈ X
from the support of τ(m′) and replacing it with the probabilistic behavior of m.

Definition 4.5. The algebra of open pointed Markov chains is (OMC,Σomc).

The (initial) semantics of terms t ∈ T as pointed open Markov chains is given via the
Σ-homomorphism of algebras J·K : T→ OMC, defined by induction on terms as follows

JXK = Xomc

Ja.tK = (a.JtK)omc ,

Jt+e sK = JtK +omc
e JsK ,

JrecX.tK = (recX.JtK)omc .
(semantics)

Example 4.6. To clarify the semantics of Σ-terms, we show a step-by-step construction of
the pointed open Markov chain JrecX.(a.X + 1

2
Z)K. We start by giving the semantics of

the sub-terms Z, a.X, and a.X + 1
2
Z.

JZK =

Z

Z

1 Ja.XK =

a.X

X

X

a, 1

1

Ja.X + 1
2
ZK =

a.X + 1
2
Z

X Z

X

a, 1
2

1
2

1



A QUANTITATIVE DEDUCTION SYSTEM FOR THE BISIMILARITY DISTANCE ON MCS 9

Note that by the definition of the semantic, the pointed Markov chains associated with each
term has the set of terms T as set of states (hence a countable state space). For the sake
of readability, the pointed Markov chains above are presented using the usual graphical
representation where only the states reachable from the initial one are shown. White-colored
nodes represent the states; grey-colored ones names; and initial states are marked in bold.

The semantics of recX.(a.X + 1
2
Z) is obtained from Ja.X + 1

2
ZK as follows:

JrecX.a.X + 1
2
ZK = (recX.Ja.X + 1

2
ZK)omc =

recX.(a.X + 1
2
Z)

X Z

a, 1
2

1
2

a, 1
2

1
2

∼

m

Z

1
2

a, 1
2

It is important remarking that by definition of the interpretation of the recursion operator,
for each t ∈ T(M), the states recX.t and X are always bisimilar in JrecX.tK (cf. picture).
Hence, the semantics of recX.a.X + 1

2
Z is bisimilar to the pointed open Markov chain with

initial state m depicted on the right hand side of JrecX.a.X + 1
2
ZK.

The next result states that it is totally equivalent to reason about the equivalence of
the behavior of JtK and JsK by just considering bisimilarity between the corresponding states
t and s in the universal open Markov chain U.

Theorem 4.7 (Universality). For all t ∈ T, JtK ∼ (U, t).

Proof (sketch). The proof of JtK ∼ (U, t) is by induction on t. The base case is trivial.
The cases for the prefix and probabilistic choice operations are completely routine from
the definition of the interpretations and the operator U : OMC → OMC (in each case a
bisimulation can be constructed from those given by the inductive hypothesis). The only
nontrivial case is when t = recX.t′. The proof carries over in two steps. First one shows
that (U, recX.t′) ∼ (recX.(U, t′))omc; then, by using the inductive hypothesis Jt′K ∼ (U, t′),
that (recX.(U, t′))omc ∼ (recX.Jt′K)omc. Since JrecX.t′K = (recX.Jt′K)omc, by transitivity
of the bisimilarity relation JrecX.t′K ∼ (U, recX.t′).

Remark 4.8. We already noted that the universal open Markov chain U corresponds to
the operational semantics of probabilistic expressions given by Stark and Smolka [SS00]. In
the light of Theorem 4.7, the soundness and completeness results for axiomatic equational
system w.r.t. probabilistic bisimilarity over probabilistic expressions given in [SS00], can be
moved without further efforts to the class of open Markov chains of the form JtK.

5. Axiomatization of the Bisimilarity Distance

In this section we present the probabilistic bisimilarity distance of Desharnais et al. [DGJP04],
that we use to define a quantitative algebra of open Markov chains. After that, we define a
quantitative deduction system which we prove to be sound and complete w.r.t. probabilistic
bisimilarity distance.

We will see that for obtaining these results we cannot directly use the quantitative
algebraic framework of Mardare, Panangaden, and Plotkin [MPP16] recalled in Section 3,
because the recursive operator does not satisfy the conditions required to applying their gen-
eral equational theory. The divergences from [MPP16] in our development of a quantitative
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equational theory for the bisimilarity distance over open Markov chains will be explained at
length as soon as we introduce them.

5.1. The Probabilistic Bisimilarity Distance. The notion of probabilistic bisimilarity
can be lifted to a pseudometric by means of a straightforward extension to open Markov chains
of the probabilistic bisimilarity distance of Desharnais et al. [DGJP04]. For more details about
its original definition and properties, we refer the interested reader to [DGJP04, vBW01].

This distance is based on the Kantorovich (pseudo)metric between discrete probability
distributions µ, ν ∈ ∆(A) over a finite set A with underlying (pseudo)metric d, defined as

K(d)(µ, ν) = min

 ∑
x,y∈A

d(x, y) · ω(x, y) | ω ∈ Ω(µ, ν)

 . (Kantorovich metric)

where Ω(µ, ν) denotes the set of couplings for (µ, ν), i.e., distributions ω ∈ ∆(A×A) on the
cartesian product A×A such that, for all E ⊆ A, ω(E ×A) = µ(E) and ω(A× E) = ν(E).

Remark 5.1. The definition of K(d) is tailored on probability distributions, whereas later
we will use it on sub-probability distributions. In these situations one usually interpret
sub-probabilities µ in A as full-probabilities µ∗ in A⊥ (i.e., A extended with a bottom
element ⊥ that is assumed to be at maximum distance from all elements a ∈ A) uniquely
defined as µ∗(E) = µ(E), for all E ⊆ A, and µ∗(⊥) = 1− µ(A).

Definition 5.2 (Bisimilarity Distance). Let M = (M, τ) be an open Markov chain. The
probabilistic bisimilarity pseudometric dM : M ×M → [0, 1] on M is the least fixed-point of
the following functional operator on 1-bounded pseudometrics (ordered point-wise),

ΨM(d)(m,m′) = K(Λ(d))(τ∗(m), τ∗(m′)) (Kantorovich Operator)

where Λ(d) is the greatest 1-bounded pseudometric on
(
(L ×M) ] X

)
⊥ such that, for all

a ∈ L and m,m′ ∈M , Λ(d)((a,m), (a,m′)) = d(m,m′).

The well definednees of dM is ensured by monotonicity of ΨM (Lemma 5.4) and Knaster-
Tarski fixed-point theorem once it is noticed that the set of 1-bounded pseudometrics with
point-wise order d v d′ iff d(m,n) ≤ d′(m,n), for all m,n ∈M , is a complete partial order.

Hereafter, whenever M is clear from the context we will simply write d and Ψ in place
of dM and ΨM, respectively.

Example 5.3. To better understand how the functional operator Ψ works, we look at a
simple example of computation of the probabilistic bisimilarity distance d between two states.
Consider the open Markov chain and coupling ω for the transition probability distribution
(τ(m), τ(n)) of the states m and n given as follows:

m n

Z

1
2

a, 1
2

2
3

a, 1
3

ω(u, v) =


1
3 if u = (a,m) and v = (a, n)
1
6 if u = (a,m) and v = Z
1
2 if u = v = Z

0 otherwise .
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By definition, d(m,n) = Ψ(d)(m,n) = K(Λ(d))(τ∗(m), τ∗(n)). Since τ(m) and τ(n) are
fully-probability distributions, we apply the direct definition of Kantorovich distance to get

d(m,n) = K(Λ(d))(τ(m), τ(n))

≤ 1

3
Λ(d)((a,m), (a, n)) +

1

6
Λ(d)((a,m), Z) +

1

3
Λ(d)(Z,Z) .

By definition of Λ, we have that Λ(d)((a,m), (a, n)) = d(m,n), Λ(d)((a,m), Z) = 1, and
Λ(d)(Z,Z) = 0.

By an easy analysis of the inequality obtained above, one may readily notice that the
coupling Ω(τ(m), τ(n)) that minimizes the distance between m and n is the one maximizing
the probability mass on the pairs ((a,m), (a,m)) and (Z,Z). Since ω is already doing so,
we have that d(m,n) = 1

3d(m,n) + 1
6 , thus the distance is d(m,n) = 1

4 .

By the next lemma and Kleene fixed-point theorem, the bisimilarity distance can be
alternatively characterized as d =

⊔
n∈N Ψn(0), where 0 is the bottom element of the set of

1-bounded pseudoemetrics ordered point-wise (i.e., the constant 0 pseudometric).

Lemma 5.4. Ψ is monotonic and ω-continuous, i.e., for any countable increasing sequence
d0 v d1 v d2 v . . . , it holds

⊔
i∈N Ψ(di) = Ψ(

⊔
i∈N di).

Proof. Monotonicity of Ψ follows from the monotonicity of K and Λ. ω-continuity follows
from [vB12, Theorem 1] by showing that Ψ is non-expansive, i.e., for all d, d′ : M×M → [0, 1],
‖Ψ(d′)−Ψ(d)‖ ≤ ‖d′ − d‖, where ‖f‖ = supx |f(x)| is the supremum norm. It suffices to
prove that for all d v d′ and m,m′ ∈M , Ψ(d′)(m,m′)−Ψ(d)(m,m′) ≤ ‖d′ − d‖:

Ψ(d′)(m,m′)−Ψ(d)(m,m′)

= K(Λ(d′))(τ∗(m), τ∗(m′))−K(Λ(d))(τ∗(m), τ∗(m′)) (by def. Ψ)

by choosing ω ∈ Ω(τ∗(m), τ∗(m′)) so that K(Λ(d))(τ∗(m), τ∗(m′)) =
∑

x,y Λ(d)(x, y)·ω(x, y),

= K(Λ(d′))(τ∗(m), τ∗(m′))−
∑

x,y Λ(d)(x, y) · ω(x, y)

≤
∑

x,y(Λ(d′)(x, y) · ω(x, y))−
∑

x,y(Λ(d)(x, y) · ω(x, y)) (by def. of K(Λ(d′)))

=
∑

x,y(Λ(d′)(x, y)− Λ(d)(x, y)) · ω(x, y) (by linearity)

and since, for all (x, y) /∈ E = {((a, n), (a, n′)) | a ∈ L, n, n′ ∈M}, Λ(d′)(x, y) = Λ(d)(x, y),

=
∑

(x,y)∈E(Λ(d′)(x, y)− Λ(d)(x, y)) · ω(x, y)

≤
∑

(x,y)∈E ‖d′ − d‖ · ω(x, y) (by def. Λ)

≤ ‖d′ − d‖ . (by linearity and ω(E) ≤ 1)

Next we show that d is indeed a lifting of the probabilistic bisimilarity to pseudometrics.

Lemma 5.5. d(m,m′) = 0 iff m ∼ m′.

Proof. We prove the two implications separately. (⇐) It suffices to show that the re-
lation R = {(m,m′) | d(m,m′) = 0} (i.e., ker(d)) is a bisimulation. Clearly, R is an
equivalence, and also ker(Λ(d)) is so. Assume (m,m′) ∈ R. By definition of Ψ, we have
that K(Λ(d))(τ∗(m), τ∗(m′)) = 0. By [FPP04, Lemma 3.1], for all ker(Λ(d))-equivalence



12 G. BACCI, G. BACCI, K. G. LARSEN, AND R. MARDARE

classes D ⊆ ((L × M) ] X )⊥, τ∗(m)(D) = τ∗(m′)(D). By definition of Λ, this im-
plies that, for all a ∈ L, X ∈ X and C ∈ M/R, τ(m)(X) = τ(m′)(X) and, moreover,
τ(m)({a} × C) = τ(m′)({a} × C). (⇒) Let R ⊆ M ×M be a bisimulation on M, and
define dR : M ×M → [0, 1] by dR(m,m′) = 0 if (m,m′) ∈ R and dR(m,m′) = 1 other-
wise. We show that Ψ(dR) v dR. If (m,m′) /∈ R, then dR(m,m′) = 1 ≥ Ψ(dR)(m,m′).
If (m,m′) ∈ R, then for all a ∈ L, X ∈ X and C ∈ M/R, τ(m)(X) = τ(m′)(X),
τ(m)({a} × C) = τ(m′)({a} × C). This implies that for all ker(Λ(dR))-equivalence class
D ⊆ ((L × M) ] X )⊥, τ∗(m)(D) = τ∗(m′)(D). By [FPP04, Lemma 3.1], we have
K(Λ(dR))(τ∗(m), τ∗(m′)) = 0. This implies that Ψ(dR) v dR. Since ∼ is a bisimula-
tion, Ψ(d∼) v d∼, so that, by Tarski’s fixed point theorem, d v d∼. By definition of d∼ and
d v d∼, m ∼ m′ implies d(m,m′) = 0.

The bisimilarity distance can alternatively be obtained as d =
d
k∈N Ψ̃k(1), i.e., as the

ω-limit of the decreasing sequence 1 w Ψ̃(1) w Ψ̃2(1) w . . . of the operator

Ψ̃(d)(m,m′) =

{
0 if m ∼ m′,

Ψ(d)(m,m′) otherwise.

where 1 is the top element of the set of 1-bounded pseudometrics ordered point-wise (i.e.,
the pseudometric that assigns distance 1 to all distinct elements).

Lemma 5.6. Ψ̃ is monotone and ω-cocontinuous, i.e., for any countable decreasing sequence
d0 w d1 w d2 w . . . , it holds

d
i∈N Ψ(di) = Ψ(

d
i∈N di). Moreover, d =

d
k∈N Ψ̃k(1).

Proof. Monotonicity and ω-cocontinuity follow similarly to Lemma 5.4 and [vB12, Theorem 1].

By ω-cocontinuity
d
k∈N Ψ̃k(1) is a fixed point. By Lemma 5.5 and d = Ψ(d), also d is a

fixed point of Ψ̃. We show that they coincide by proving that Ψ̃ has a unique fixed point.
Assume that Ψ̃ has two fixed points d and d′ such that d < d′. Define R ⊆M ×M as

m R m′ iff d′(m,m′)− d(m,m′) = ‖d′ − d‖. By the assumption made on d and d′ we have
that ‖d′ − d‖ > 0 and R ∩ ∼ = ∅. Consider arbitrary m,m′ ∈M such that m R m′, then

‖d′ − d‖ = d′(m,m′)− d(m,m′)

= Ψ̃(d′)(m,m′)− Ψ̃(d)(m,m′) (by d = Ψ̃(d) and d′ = Ψ̃(d′))

= Ψ(d′)(m,m′)−Ψ(d)(m,m′) (by m 6∼ m′ and def. Ψ̃)

≤
∑

(x,y)∈E(Λ(d′)(x, y)− Λ(d)(x, y)) · ω(x, y) , (as proved in Lemma 5.4)

where we recall that E = {((a, n), (a, n′)) | a ∈ L, n, n′ ∈M}.
Observe that (Λ(d′)− Λ(d))((a, n), (a, n′)) = d′(n)− d(n′) ≤ ‖d′ − d‖, for all n, n′ ∈M

and a ∈ L. Since ‖d′ − d‖ > 0 the inequality

‖d′ − d‖ ≤
∑

(x,y)∈E(Λ(d′)(x, y)− Λ(d)(x, y)) · ω(x, y) ≤ ‖d′ − d‖

holds only if the support of ω is included in ER = {((a, n), (a, n′)) | a ∈ L and n R n′}.
Since the argument holds for arbitrary m,m′ ∈M such that m R m′, we have that R is a
bisimulation, which is in contradiction with the initial assumptions.
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5.2. A Quantitative Algebra of Open Markov Chains. We turn the algebra of pointed
open Markov chains (OMC,Σomc) given in Section 4.2 into a “quantitative algebra” by
endowing it with the probabilistic bisimilarity pseudometric of Desharnais et al. Our
definition, however, does not comply with the non-expansivity conditions that are required
for the interpretations of the algebraic operators by Definition 3.1. Indeed we show that the
recursion operator fails to be non-expansive.

We conclude the section by extending the universality result of Theorem 4.7 to the
quantitative setting.

In Definition 5.2, the bisimilarity pseudometric dM is defined over the states of a given
open Markov chain M. This can be extended to distance dOMC : OMC×OMC→ [0, 1]
over the set OMC of open Markov chains by simply computing the bisimilarity distance
between the initial states on the disjoint union of the two open Markov chains, i.e.

dOMC((M,m), (N , n)) = dM⊕N (m,n) .

Definition 5.7. The quantitative algebra of open Markov chains is (OMC,Σomc,dOMC).

It is important to remark that the algebraic structure we just defined is not a quantitative
algebra in the sense of [MPP16] (cf. Definition 3.1), because as we show in Example 5.9 the
interpretation of the recursion operator fails to be non-expansive.

Remark 5.8. The use of the term “quantitative algebra” in Defintion 5.7 is clearly an abuse
of terminology. Perhaps, we should call such structures “relaxed quantitative algebras” to
emphasize the fact that the interpretations of the operators do not need to be non-expansive.
For the sake of readability, however, we decided to omit the adjective “relaxed” since, as it
will be showed in Sections 5.4 and 5.5, this detail will not cause troubles for the soundness
and completeness results.

Example 5.9 (Recursion is not non-expansive!). We show an example where the recursion
operator recX fails to be non-expansive w.r.t. the bisimilarity distance.

Let 0 < ε < 1
2 and consider the two pointed open Markov chains depicted below.

(M,m) =

m

u

n

X

b, 1
2

a, 1
2

b, 1
2

a, 1
2

1

(M′,m′) =
m′

u′

n′

X

b, 1
2
− ε

a, 1
2

+ ε

b, 1
2

a, 1
2

1

By a straightforward computation one can readily show that the bisimilarity distance between
(M,m) and (M′,m′) is d((M,m), (M′,m′)) = ε. Let now consider the application of the
operator (recX)omc on these two pointed open Markov chains. It turns out that the resulting
chains have the following behavior:

(recX.(M,m))omc ∼

recX.m

n

b, 1
2

a, 1
2

a, 1
2

b, 1
2

(recX.(M′,m′))omc ∼

recX.m′

n′

b, 1
2
− ε

a, 1
2

+ ε

a, 1
2

b, 1
2
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By an easy calculation, independently of the value ε ∈ (0, 1
2), we obtain that

d((recX.(M,m))omc, (recX.(M′,m′))omc) = 1 .

Since ε < 1, d((M,m), (M′,m′)) 6≥ d((recX.(M,m))omc, (recX.(M′,m′))omc). This
proves that (recX)omc fails to be non-expansive w.r.t. the bisimilarity distance.

By Theorem 4.7, we know that one can equivalently reason about bisimilarity between
the semantics of terms by simply considering bisimilarity for the corresponding terms as
states in the universal open Markov chain U. The next result states that the situation is
similar when one needs to compute the distance between the semantics of terms.

Theorem 5.10 (Quantitative universality). Let t, s ∈ T. Then dOMC(JtK, JsK) = dU(t, s).

Proof. The equality dOMC(JtK, JsK) = dU(t, s) follows by Lemma 5.5 and Theorem 4.7.

dOMC(JtK, JsK) = d(JtK, JsK) (def. d)

≤ d(JtK, (U, t)) + d((U, t), (U, s)) + d((U, s), JsK) (triangular ineq.)

= d((U, t), (U, s)) (Theorem 4.7 & Lemma 5.5)

= dU(t, s) . (def. d)

By a similar argument we also have dOMC(JtK, JsK) ≥ dU(t, s), hence the thesis.

5.3. A Quantitative Deduction System. Now we present a quantitative deduction
system which will be later shown to be sound and complete w.r.t. the probabilistic bisimilarity
distance of Desharnais et al.. The deduction system we propose will not be a quantitative
deduction system in the sense of [MPP16], because it does not satisfies the (NExp) axiom of
non-expansivity for the signature operators (cf. Section 3).

The quantitative deduction system ` ⊆ 2E(Σ)×E(Σ) of type Σ that we consider satisfies
the axioms (Refl), (Symm), (Triang), (Max), (Arch) and rules (Subst), (Cut) (Assum) from
Section 3 and the following additional axioms

(B1) ` t+1 s ≡0 t ,

(B2) ` t+e t ≡0 t ,

(SC) ` t+e s ≡0 s+1−e t ,

(SA) ` (t+e s) +e′ u ≡0 t+ee′ (s+ e′−ee′
1−ee′

u) , for e, e′ ∈ [0, 1) ,

(Unfold) ` recX.t ≡0 t[recX.t/X] ,

(Unguard) ` recX.(t+e X) ≡0 recX.t ,
(Fix) {s ≡0 t[s/X]} ` s ≡0 recX.t , for X guarded in t ,

(Cong) {t ≡0 s} ` recX.t ≡0 recX.s ,

(Top) ` t ≡1 s ,

(Pref) {t ≡ε s} ` a.t ≡ε a.s ,
(IB) {t ≡ε s, t′ ≡ε′ s′} ` t+e t

′ ≡ε′′ s+e s
′ , for ε′′ ≥ eε+ (1− e)ε′ .

Note that the axiom (NExp) is not included in the definition.
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Remark 5.11. The use of the term “quantitative deduction system” is again an abuse of
terminology. To emphasize the fact that the axiom (NExp) is not required to be satisfied,
we should perhaps have used the word “relaxed quantitative deduction system” to mark
the difference w.r.t. the quantitative algebraic framework of Mardare, Panangaden, and
Plotkin [MPP16]. However the omission of the adjective “relaxed” will not cause troubles in
the further development of the paper.

(B1), (B2), (SC), (SA) are the axioms of barycentric algebras (a.k.a. abstract convex sets)
due to M. H. Stone [Sto49], used here to axiomatize the convex set of probability distributions.
(SC) stands for skew commutativity and (SA) for skew associativity. Barycentric algebras
are entropic in the sense that all operations +e are affine maps, that is, for all e, d ∈ [0, 1]
we have the entropic identity

` (t+e s) +d (t′ +e s
′) ≡0 (t+d t

′) +e (s+d s
′) . (Entr)

If t = s, by (B2) the above reduces to the distributivity law

` u+d (t′ +e s
′) ≡0 (u+d t

′) +e (u+d s
′) . (Distr)

Although the entropic identity (Entr) can be verified by direct deduction, a simpler proof for
it that does not use a direct approach can be found in [KP17, Lemma 2.3].

The axioms (Unfold), (Unguard), (Fix), (Cong) are the recursion axioms of Milner [Mil84],
used here to axiomatize the coinductive behavior of open Markov chains. (Unfold) and (Fix)
state that, whenever X is guarded in a term t, recX.t is the unique solution of the recursive
equation s ≡0 t[s/X]. The axiom (Unguard) deals with unguarded recursive behavior, and
(Cong) states the congruential properties of the recursion operator.

As opposed to the axioms described so far, which are essentially equational, the last
three are the only truly quantitative one characterizing the quantitative deduction system we
have just introduced. (Top) states that the distance between terms is bounded by 1; (Pref) is
the non-expansivity for the prefix operator; and (IB) is the interpolative barycentric axiom of
Mardare, Panangaden, and Plotkin introduced in [MPP16] for axiomatizing the Kantorovich
distance between finitely-supported probability distributions (cf. §10 in [MPP16]).

Note that for ε = ε′, (IB) reduces to non-expansivity for the operator +e:

{t ≡ε s, t′ ≡ε s′} ` t+e t
′ ≡ε s+e s

′ ,

and non-expansivity always entails congruence for the operator. Indeed, for ε = ε′ = 0 in
(Pref) and (IB) we obtain

{t ≡0 s} ` a.t ≡0 a.s , (Pref-0)

{t ≡0 s, t
′ ≡0 s

′} ` t+e t
′ ≡0 s+e s

′ , (IB-0)

corresponding to the congruence for the prefix and probabilistic choice operators, respectively.
It is important to remark that the quantitative deduction system presented above

subsumes the equational deduction system of Stark and Smolka [SS00] that axiomatizes
probabilistic bisimilarity.

We conclude this section by recalling some historical notes from [KP17, WMM+98]
about the axioms of barycentric algebras and recursion.

Remark 5.12 (Historical note). The first axiomatization of convex sets can be traced
back to M. H. Stone [Sto49]. Independently, Kneser [Kne52] gave a similar axiomatization.
Stone’s and Kneser’s axioms where not restricted to convex sets arising in vector spaces over
the reals but, by requiring an additional cancellation axiom, they axiomatized convex sets
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embeddable in vector spaces over linearly ordered skewed fields. W. D. Neumann [Neu70]
seems to be the first to have looked at a truly equational theory of convex sets. He remarked
that barycentric algebras may be very different from convex sets in vector spaces. Indeed
∨-semilattices are an example of barycentric algebra by interpreting +e as ∨, for all 0 < e < 1,
and +1 and +0 as left and right projections, respectively.

The axioms (B1), (B2), (SC), (SA) that we use in this work are due to Šwirszcz [Š74]
and have been reproduced by Romanowska and Smith [RS02], who actually introduced the
terminology barycentric algebra for an abstract convex set.

Early attempts to prove equational properties of recursive definitions in various spe-
cific contexts include the work of de Bakker [dB71], Manna and Vuillemin [MV72], and
Kahn [Kah74]. Since then, the general study of recursion equations has been pursued under

several guises: as recursive applicative program schemes [CKV74], µ-calculus [BÉ94], and

perhaps most notably as the iteration theories [BÉ93] of Bloom and Ésik.
The axioms (Unfold), (Unguard), (Fix), (Cong) first appeared in Milner [Mil84], who

was certainly aware of de Bakker’s work (cf. [Mil75]). The same axioms have been used by
Stark and Smolka in their development of an equational deduction system for probabilistic
bisimilarity [SS00]. An equivalent axiomatization to that in [SS00] appeared in [AÉI02],
where recursion is extended to vector terms and the recursive axioms were replaced by the
axioms of iteration algebras, a.k.a. Conway equations [BÉ93],

` recX.t[s/X] ≡0 t[recX.s[t/X]/X] (Composition Identity)

` recX.t[X/Y ] ≡0 recX. recY.t (Diagonal Identity)

capturing the equational properties of the fixed point operations in a purely equational way.
Note that the composition identity reduces to (Unfold) when taking s = X.

5.4. Soundness. In this section we show the soundness of our quantitative deduction system
w.r.t. the bisimilarity distance between pointed open Markov chains.

Recall that, by Theorem 5.10, it is totally equivalent to reason about the distance between
JtK and JsK by just considering the bisimilarity distance between the states corresponding to
the terms t and s in the universal open Markov chain U. Hence hereafter, whenever we refer
to the distance between terms in T we will use dU, often simply denoted as d. Similarly,
|=OMC t ≡ε s is equivalent to |=U t ≡ε s, and it will be denoted just by |= t ≡ε s.

Theorem 5.13 (Soundness). For arbitrary t, s ∈ T, if ` t ≡ε s then |= t ≡ε s.

Proof. We must show that each axiom and deduction rule of inference is valid. The
axioms (Refl), (Symm), (Triang), (Max), and (Arch) are sound since d is a pseudometric
(Lemma 5.5). The soundness of the classical logical deduction rules (Subst), (Cut), and
(Assum) is immediate. By Lemma 5.5, the kernel of d is ∼. Hence the axioms of barycentric
algebras (B1), (B2), (SC), and (SA) along with (Unfold), (Unguard), (Cong), and (Fix)
follow directly by the soundness theorem proven in [SS00] (cf. Remark 4.8).
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The soundness for the axiom (Top) is immediate consequence of the fact that d is
1-bounded. To prove the soundness of (Pref) it suffices to show that d(t, s) ≥ d(a.t, a.s).

d(a.t, a.s) = K(Λ(d))(µ∗T(a.t), µ∗T(a.s)) (d fixed-point & def. Ψ)

= K(Λ(d))(1{(a,t)},1{(a,s)}) (def. µT & PU)

= Λ(d)((a, t), (a, s)) (def. K)

= d(t, s) . (def. Λ)

The soundness of (IB) follows by proving ed(t, s) + (1− e)d(t′, s′) ≥ d(t+e t
′, s+e s

′).

ed(t, s) + (1− e)d(t′, s′)

= eΨ(d)(t, s) + (1− e)Ψ(d)(t′, s′) (d fixed point)

= eK(Λ(d))(µ∗T(t), µ∗T(s)) + (1− e)K(Λ(d))(µ∗T(t′), µ∗T(s′)) (def. Ψ)

then, for ω ∈ Ω(µ∗T(t), µ∗T(s)) and ω′ ∈ Ω(µ∗T(t′), µ∗T(s′)) optimal couplings for K(Λ(d)), and
by noticing that eω + (1− e)ω′ ∈ Ω(eµ∗T(t) + (1− e)µ∗T(t′), eµ∗T(s) + (1− e)µ∗T(s′)) we have

= e
∑

x,y Λ(d)(x, y) · ω(x, y) + (1− e)
∑

x,y Λ(d)(x, y) · ω′(x, y)

=
∑

x,y Λ(d)(x, y) · (e · ω(x, y) + (1− e) · ω′(x, y)) (linearity)

≥ K(Λ(d))(eµ∗T(t) + (1− e)µ∗T(t′), eµ∗T(s) + (1− e)µ∗T(s′)) (def. K and above)

= K(Λ(d))(PU(µT)∗(t+e t
′),PU(µT)∗(s+e s

′)) (def. PU)

= K(Λ(d))(µ∗T(t+e t
′), µ∗T(s+e s

′)) (µT fixed-point)

= d(t+e t
′, s+e s

′) (def. Ψ & d fixed-point)

The above concludes the proof.

5.5. Completeness. This section is devoted to proving the completeness of our quantitative
deduction system w.r.t. the bisimilarity distance between pointed open Markov chains.

For the sake of readability it will be convenient to introduce the following notation for
formal sums of terms (or convex combinations of terms). For n ≥ 1, t1, . . . , tn ∈ T terms,
and e1, . . . , en ∈ [0, 1] positive reals such that

∑n
i=1 ei = 1, we define

n∑
i=1

ei · ti =

{
t1 if e1 = 1

t1 +e1

(∑n
i=2

ei
1−e1 · ti

)
otherwise .

Following the pattern of [Mil84, SS00], the completeness theorem hinges on a couple of
important transformations. The first of these is the standard de Bekič-Scott construction of
solutions of simultaneous recursive definitions. References for this theorem may be found
in de Bakker [dB71], who seems the first to use it to support a proof rule for “program
equivalence”. This is embodied in the next theorem, which is [Mil84, Theorem 5.7].

Theorem 5.14 (Unique Solution of Equations). Let X = (X1, . . . , Xk) and Y = (Y1, . . . , Yh)
be distinct names, and t = (t1, . . . , tk) terms with free names in (X,Y ) in which each Xi is
guarded. Then there exist terms s = (s1, . . . , sk) with free names in Y such that

` si ≡0 t[s/X] , for all i ≤ k.
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Moreover, if for some terms u = (u1, . . . , uk) with free variables in Y , ` ui ≡0 t[u/X], for
all i ≤ k, then ` si ≡0 ui, for all i ≤ k.

The second transformation provides a deducible normal form for terms. This result is
embodied in the following theorem, which is [SS00, Theorem 5.9]4.

Theorem 5.15 (Equational Characterization). For any term t, with free names in Y , there
exist terms t1, . . . , tk with free names in Y , such that ` t ≡0 t1 and

` ti ≡0

h(i)∑
j=1

pij · sij +

l(i)∑
j=1

qij · Yg(i,j) , for all i ≤ k ,

where the terms sij and names Yg(i,j) are enumerated without repetitions, and sij is either
recX.X or has the form aij .tf(i,j).

The last lemma relates the proposed deduction system with the Kantorovich distance
between probability distributions. So far this is the only transformation embodying the use
of the interpolative barycentric axiom (IB) to deduce quantitative information on terms.

Lemma 5.16. Let d be a 1-bounded pseudometric over T and µ, ν ∈ ∆(T) probability
measures with supports supp(µ) = {t1, . . . , tk} and supp(ν) = {s1, . . . , sr}. Then

{ti ≡ε su | ε ≥ d(ti, su)} `
k∑
i=1

µ(ti) · ti ≡ε′
r∑

u=1

ν(su) · su , for all ε′ ≥ K(d)(µ, ν) .

Proof. We proceed by well-founded induction on the strict preorder

(µ, ν) ≺ (µ′, ν ′) iff

 (supp(µ) ⊂ supp(µ′) and supp(ν) ⊆ supp(ν ′))
or

(supp(µ) ⊆ supp(µ′) and supp(ν) ⊂ supp(ν ′)) .

(Base case: supp(µ) = {t1} and supp(µ′) = {s1}). In this case µ = 1{t1} and ν = 1{s1}.
Thus the proof follows by (Assum), by noticing that K(d)(µ, ν) = d(t1, s1).

(Inductive step: supp(µ) = {t1, . . . , tk} and supp(ν) = {s1, . . . , sr}) Assume without
loss of generality that k > 1 (if k = 1, then r > 1 and we proceed dually). The proof is
structured as follows. We find suitable e ∈ (0, 1) and µ1, µ2, ν1, ν2 ∈ ∆(T), such that

(1) (µ1, ν1) ≺ (µ, ν) and (µ2, ν2) ≺ (µ, ν);
(2) K(d)(µ, ν) = eK(d)(µ1, ν1) + (1− e)K(d)(µ2, ν2);
(3) and the following are deducible

`
∑k

i=1 µ(ti) · ti ≡0

(∑k
i=1 µ1(ti) · ti

)
+e

(∑k
i=1 µ2(ti) · ti

)
, (5.1)

`
∑r

u=1 ν(su) · su ≡0

(∑r
u=1 ν1(su) · su

)
+e

(∑r
u=1 ν2(su) · su

)
. (5.2)

By (1) and the inductive hypothesis, we have that, for j ∈ {1, 2}

{ti ≡ε su | ε ≥ d(ti, su)} `
k∑
i=1

µj(ti) · ti ≡ε′
r∑

u=1

νj(su) · su , for all ε′ ≥ K(d)(µj , νj) .

4The formulation given here is slightly simpler than the original one in [SS00], since our deduction system
satisfies the axiom (B1), which is not included in the equational deduction system of [SS00].
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From the above, (3), and (IB) we deduce

{ti ≡ε su | ε ≥ d(ti, su)} `
k∑
i=1

µ(ti) · ti ≡ε′
r∑

u=1

ν(su) · su , for all ε′ ≥ κ .

where κ = eK(d)(µ1, ν1) + (1− e)K(d)(µ2, ν2). Then, the proof follows from (2).
In the following we provide the definitions for e ∈ (0, 1) and µ1, µ2, ν1, ν2 ∈ ∆(T), then

in turn we prove (1), (2), and (3). Let e = µ(t1). Note that since supp(µ) = {t1, . . . , tk} and
k > 1, we have that µ(t1) ∈ (0, 1). Let ω̃ ∈ Ω(µ, ν) be the minimal coupling for K(d)(µ, ν),
i.e., the one realizing the following equality (cf. the definition of K(d))

K(d)(µ, ν) =
∑

i≤k, u≤r d(ti, su) · ω̃(ti, su) , (5.3)

and, for 2 ≤ i ≤ k, 1 ≤ u ≤ r, define

µ1(t1) = 1 , µ2(ti) =
µ(ti)

1− µ(t1)
, ν1(su) =

ω̃(t1, su)

µ(t1)
, ν2(su) =

ν(su)− ω̃(t1, su)

1− µ(t1)
.

Note that supp(µ1) = {t1}, supp(µ2) = {t2, . . . , tk} and supp(ν1), supp(ν2) ⊆ supp(ν). It is
easy to show that, since ω̃ ∈ Ω(µ, ν), the above are well-defined probability distributions.

(1) It follows directly by definition of ≺, supp(µ1) = {t1}, supp(µ2) = {t2, . . . , tk},
supp(µ) = {t1, . . . , tk}, and supp(ν1), supp(ν2) ⊆ supp(ν).

(2) Define the measures ω̃1, ω̃2 with supports supp(ω̃1) = {(t1, su) | 1 ≤ u ≤ r} and
supp(ω̃2) = {(ti, su) | 2 ≤ i ≤ k, 1 ≤ u ≤ r} as follows

ω̃1(t1, su) =
ω̃(t1, su)

µ(t1)
; ω̃2(ti, su) =

ω̃(ti, su)

1− µ(t1)
, for 2 ≤ i ≤ k and 1 ≤ u ≤ r.

By the fact that ω̃ ∈ Ω(µ, ν), one easily get that ω̃1 ∈ Ω(µ1, ν1) and ω̃2 ∈ Ω(µ2, ν2). From
this, the following inequality holds:

K(d)(µ, ν) =
∑
i, u

d(ti, su) · ω̃(ti, su) (by Equation 5.3)

= µ(t1)

∑
i, u

d(ti, su) · ω̃1(ti, su)

+ (1− µ(t1))

∑
i, u

d(ti, su) · ω̃2(ti, su)


≥ µ(t1)K(d)(µ1, ν1) + (1− µ(t1))K(d)(µ2, ν2) .

Now, we prove also that the reverse inequality holds. Assume that, for j ∈ {1, 2}, ω̃j is the
minimal coupling for K(d)(µj , νj). By the fact that supp(µ1) = {t1}, supp(µ2) = {t2, . . . , tk}
is a partition of supp(µ), we can define the coupling ω ∈ Ω(µ, ν) as follows, for 2 ≤ i ≤ k
and 1 ≤ u ≤ r:

ω(t1, su) = µ(t1) · ω̃1(t1, su) ; ω(ti, su) = (1− µ(t1)) · ω̃2(ti, su) .
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For this, the following inequality holds:

µ(t1)K(d)(µ1, ν1) + (1− µ(t1))K(d)(µ2, ν2)

= µ(t1)

∑
i, u

d(ti, su) · ω̃1(ti, su)

+ (1− µ(t1))

∑
i, u

d(ti, su) · ω̃2(ti, su)


=
∑
i, u

d(ti, su) · ω(ti, su)

≥ K(d)(µ, ν) .

Therefore, (2) holds.
(3) We start by showing (5.1). Since µ(t1) ∈ (0, 1), the formal sum on the left-hand side

of (5.1) is syntactically equivalent to

k∑
i=1

µ(ti) · ti = t1 +µ(t1)

(
k∑
i=2

µ(ti)

1− µ(t1)
· ti

)
, (5.4)

By (B1), (SC), and the definitions of µ1, µ2 we easily obtain

` t1 ≡0

k∑
i=1

µ1(ti) · ti , `
k∑
i=2

µ(ti)

1− µ(t1)
· ti ≡0

k∑
i=1

µ2(ti) · ti .

Thus (5.1) follows from the deductions above by applying (IB-0) to (5.4). Next we prove
(5.2) by showing that for any coupling ω ∈ Ω(µ, ν) the following is deducible:

`
r∑

u=1

ν(su) · su ≡0

(
r∑

u=1

ω(t1, su)

µ(t1)
· su

)
+µ(t1)

(
r∑

u=1

ν(su)− ω(t1, su)

1− µ(t1)
· su

)
. (5.5)

We do this by induction on the size of the support of ν. (Base case: supp(ν) = {s1}).
Then, ν(s1) = 1 and ω(t1, s1) = µ(t1), so (5.5) reduces to (B2). (Inductive step: r > 1 and
supp(ν) = {s1, . . . , sr}). Then ν(s1) ∈ (0, 1). Thus, the formal sum on the left-hand side of
(5.5) is syntactically equivalent to

r∑
u=1

ν(su) · su = s1 +ν(s1)

(
r∑

u=2

ν ′(su) · su

)
, (5.6)

where ν ′(su) = ν(su)
1−ν(s1) , for 2 ≤ u ≤ r. Note that ω′(ti, su) = ω(ti,su)

1−ν(s1) , for 1 ≤ i ≤ k and

2 ≤ u ≤ r, is a coupling in Ω(µ, ν ′) and that supp(ν ′) = {s2, . . . , sr}. Thus, by inductive
hypothesis on ν ′ we obtain

`
r∑

u=2

ν ′(su) · su ≡0

(
r∑

u=2

ω′(t1, su)

µ(t1)
· su

)
+µ(t1)

(
r∑

u=2

ν ′(su)− ω′(t1, su)

1− µ(t1)
· su

)

=

(
r∑

u=2

ω(t1, su)

µ(t1)(1− ν(s1))
· su

)
+µ(t1)

(
r∑

u=2

ν(su)− ω(t1, su)

(1− µ(t1))(1− ν(s1))
· su

)
From this deduction and (5.6), by (Dist), we obtain (5.5).

Now we are ready to prove the main result of this section. The proof of completeness
can be roughly sketched as follows. Given t, s ∈ T such that d(t, s) ≤ ε, to prove ` t ≡ε s
we first apply Theorem 5.15 to get their deducible equational normal forms as formal sums.
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Then, for each α ∈ N, by applying (Top) for the case α = 0, and Lemma 5.16 and (Pref) for

α > 0, we deduce ` t ≡ε s, for all ε ≥ Ψ̃α(1)(t, s). Then, my (Max) and (Arch), ` t ≡ε s
follows by noticing that d(t, s) =

d
α∈N Ψ̃α(1)(t, s) (Lemma 5.6).

Theorem 5.17 (Completeness). For arbitrary t, s ∈ T, if |= t ≡ε s, then ` t ≡ε s.

Proof. Let t, s ∈ T and ε ∈ Q+. We have to show that if d(t, s) ≤ ε then ` t ≡ε s. The
case ε ≥ 1 trivially follows by (Top) and (Max). Let ε < 1. By Theorem 5.15, there exist
terms t1, . . . , tk and s1, . . . , sr with free names in X and Y , respectively, such that ` t ≡0 t1,
` s ≡0 s1, and

` ti ≡0
∑h(i)

j=1 pij · t′ij , for all i ≤ k, (5.7)

` su ≡0
∑n(u)

v=1 quv · s′uv , for all u ≤ r, (5.8)

where the terms t′ij (resp. s′uv) are enumerated without repetitions, and t′ij (resp. s′uv) have

either the form aij .tf(i,j) (resp. buv.sz(u,v)), or Xg(i,j) (resp. Yw(u,v)), or recZ.Z.
If we can prove that for all α ∈ N,

` ti ≡ε su , for all i ≤ k, u ≤ r, and ε ≥ Ψ̃α(1)(ti, su) , (5.9)

then, by Lemma 5.6 and (Arch), we deduce ` ti ≡ε su, for all ε ≥ d(ti, su). Since ` t ≡0 t1,
` s ≡0 s1, by (Triang), we deduce ` t ≡ε s, for all ε ≥ d(t, s), concluding the thesis.

The reminder of the proof is devoted to prove (5.9). We do it by induction on α ∈ N.

(Base case: α = 0) Ψ̃0(1)(ti, su) = 1(ti, su). Since 1(ti, su) = 0 whenever ti = su and
1(ti, su) = 1 if ti 6= su, then (5.9) follows by the axioms (Refl), (Top) and (Max).

(Inductive step: α > 0). Recall that, by definition of Ψ̃, we have the following:

Ψ̃α(1)(ti, su) = Ψ̃(Ψ̃α−1)(ti, su) =

{
0 if ti ∼U su,

Ψ(Ψ̃α−1)(ti, su) otherwise .

We consider the cases ti ∼U su and ti 6∼U su separately.
Assume ti ∼U su. Since our deduction system includes the one of Stark and Smolka,

whenever ti ∼U su, by completeness w.r.t. ∼U ([SS00, Theorem 3]), we obtain ` ti ≡0 su.

By (Max), ` ti ≡ε su, for all ε ≥ Ψ̃α+1(1)(ti, su) = 0.
Assume ti 6∼U su. Let H,G be the formal sums on the right-hand side of (5.7), (5.8),

respectively. Then, by definition of µ∗T, we have that, for x, y ∈ (L × T) ] X ,

µ∗T(H)(x) =

{
pij if γ(x) = t′ij , j ≤ h(i)

0 otherwise ,
µ∗T(G)(y) =

{
quv if γ(y) = s′uv, v ≤ n(u)

0 otherwise ,

where γ is the mapping such that for all t ∈ T, a ∈ L, and X ∈ X ,

γ((a, t)) = a.t , γ(X) = X , γ(⊥) = recZ.Z .

If we can prove that, for all i ≤ k, j ≤ h(i), u ≤ r, and v ≤ n(u),

` t′ij ≡ε s′uv , for all ε ≥ Λ(Ψ̃α−1(1))(γ(t′ij), γ(s′uv)) , (5.10)

then, by Lemma 5.16, we deduce

` H ≡ε G , for all ε ≥ K(Λ(Ψ̃α−1(1)))(µ∗T(H), µ∗T(G)) . (5.11)
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Note that, by ti 6∼U su, (5.7), (5.8), and soundness of ≡0 w.r.t. ∼U in [SS00], we have that
ti ∼U H, su ∼U G and H 6∼U G. Therefore, by definition of Ψ and triangular inequality

K(Λ(Ψ̃α−1(1)))(µ∗T(H), µ∗T(G)) = Ψ̃α(1)(H,G) = Ψ̃α(1)(ti, su) .

From (5.11), (5.7), (5.8), (Triang), and the equality above we conclude (5.9).

Next we prove (5.10). The only interesting case is t′i,j = a.tf(i,j) and s′u,v = a.sz(u,v)

—the others follow by using (Refl), if t′i,j = s′u,v, (Top) otherwise, and then (Max). By

definition of γ and Λ, we have Λ(Ψ̃α−1(1))(γ(t′ij), γ(s′uv)) = Ψ̃α−1(1)(tf(i,j), sz(u,v)). Now
note that, by inductive hypothesis on α− 1, the following is deducible:

` tf(i,j) ≡ε sz(u,v) , for all ε ≥ Ψ̃α(1)(tf(i,j), sz(u,v)) ,

Therefore, (5.10) follows by the above and (Pref).

We conclude the section by showing a concrete example of deduction of the bisimilarity
distance between two terms.

Example 5.18. Consider the terms t = recX.(a.X + 1
2
Z) and s = recY.(a.Y + 1

3
Z).

Similarly to Example 4.6, their pointed open Markov chain semantics are

JtK ∼
m

Z

1
2

a, 1
2

JsK ∼
n

Z

2
3

a, 1
3

As shown in Example 5.3 their bisimilarity distance is d(t, s) = 1
4 , hence |= t ≡ 1

4
s.

Next we show how ` t ≡ 1
4
s can be deduced by applying the axioms and rules of the

quantitative deduction system proposed in Section 5.3. For the sake of readability, the
classical logical deduction rules (Subst), (Cut), (Assum) will be used implicitly, as well as
(Refl), (Symm), and (Triang). By (Unfold) and (Fix) we can deduce

` t ≡0 a.t+ 1
2
Z and ` s ≡0 a.s+ 1

3
Z . (5.12)

Note that, t and s are now in the equational normal form of Theorem 5.15. The next step
consists in applying (IB) to get information about the distance between the two probabilistic
sums on the right-hand sides of the quantitative equations in (5.12). To do so, we first need
to “rearrange” the sums in a way such that (IB) can actually be applied:

` a.t+ 1
2
Z ≡0 (a.t+ 1

3
a.t) + 1

2
Z (B2)

≡0 a.t+ 1
6

(a.t+ 2
5
Z) (SA) ,

` a.s+ 1
3
Z ≡0 Z + 2

3
a.s (SC)

≡0 (Z + 1
4
Z) + 2

3
a.s (B2)

≡0 Z + 1
6

(Z + 3
5
a.s) (SA)

≡0 Z + 1
6

(a.s+ 2
5
Z) (SC) .

(5.13)

By (Top), we deduce ` a.t ≡1 Z and, by (Refl), ` Z ≡0 Z. Hence, by (Pref) and applying
(IB) twice on a.t+ 1

6
(a.t+ 2

5
Z) and Z + 1

6
(a.s+ 2

5
Z), we obtain the quantitative inference

{t ≡ε s} ` a.t+ 1
6

(a.t+ 2
5
Z) ≡ 1

3
ε+ 1

6
Z + 1

6
(a.s+ 2

5
Z) (5.14)

Combining (5.12), (5.13), (5.14) we deduce the following

{t ≡ε s} ` t ≡ 1
3
ε+ 1

6
s . (5.15)
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The above quantitative inference along with (Top) ` t ≡1 s, can be thought of as a greatest
fixed-point operator, taking an over approximation ε ≤ 1 of the distance between t and s
and refining it to 1

3ε+ 1
6 . This interpretation is not bizarre, because it is exactly how the

functional operator Ψ̃(d) operates on t, s on a 1-bounded pseudometric such that d(t, s) = ε.
The deduction of the distance d(t, s) = 1

4 follows by proving that for all 1 ≥ δ > 1
4 we

can deduce (in a finite number of steps!) ` t ≡δ s and then applying (Arch).
The case δ = 1 follows by (Top). As for 1 > δ > 1

4 , notice that T : [0, 1]→ [0, 1] defined

as T (ε) = 1
3ε+ 1

6 is a 1
3 -Lipschitz continuous map. Hence, by Banach fixed-point theorem,

T has a unique fixed point, namely 1
4 , and the following inequality holds for q = 1

3

Tn(1)− 1

4
≤ qn

1− q
(T 0(1)− T 1(1)) .

The above reduces to Tn(1) ≤ 1
2 · (

1
3)n−1. Hence by applying (5.15) n-times, starting from

(Top) ` t ≡1 s, for some integer n ≤ log3( 1
2δ ) + 1, we deduce ` t ≡Tn(1) s and we know that

Tn(1) ≤ δ. Then, by (Max), we deduce ` t ≡δ s, i.e., the required deduction.

6. Axiomatization of the Discounted Bisimilarity Distance

Next we describe how the deductive system in Section 5.3 can be adapted to obtain soundness
and completeness theorems w.r.t. the discounted bisimilarity distance of Deshainais et al.

The distance d that we considered so far is a special case (a.k.a. undiscounted bisimilarity
distance) of the original definition by Deshainais et al. [DGJP04], which was parametric on
a discount factor λ ∈ (0, 1]. An equivalent definition of this distance (due to van Breugel
and Worrell [vBW01]) adapted to the case of open Markov chains is the following.

Definition 6.1 (Discounted Bisimilarity Distance). For λ ∈ (0, 1], the λ-discounted proba-
bilistic bisimilarity pseudometric dλM : M ×M → [0, 1] on M is the least fixed-point of the
following functional operator on 1-bounded pseudometrics (ordered point-wise),

Ψλ
M(d)(m,m′) = K(Λλ(d))(τ∗(m), τ∗(m′)) (λ-Kantorovich Operator)

where Λλ(d) is the greatest 1-bounded pseudometric on
(
(L ×M) ] X

)
⊥ such that, for all

a ∈ L and t, s ∈ T, Λ(d)((a, t), (a, s)) = λ · d(t, s).

Clearly, for λ = 1 the above reduces to Definition 5.2, hence d = d1. In [CvBW12,
Theorem 6], Chen et al. noticed that when λ < 1, Ψλ is a λ-Lipschitz continuous operator,
i.e., for all d, d′ : M ×M → [0, 1], ‖Ψλ(d′)−Ψλ(d)‖ ≤ λ‖d′ − d‖, where ‖f‖ = supx |f(x)| is
the supremum norm. So, by Banach fixed-point theorem dλ is the unique fixed point of Ψλ.
For the same reason dλ =

d
α∈N(Ψλ)α(1). Moreover, the following also holds.

Lemma 6.2. For any λ < 1, dλ(m,m′) = 0 iff m ∼ m′.
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6.1. A Quantitative Deduction System for the Discounted Case. In this section we
provide a quantitative deduction system that is proved to be sound and complete w.r.t. the
λ-discounted probabilistic bisimilarity distance.

The quantitative deduction system `λ ⊆ 2E(Σ) × E(Σ) that we propose contains the one
presented in Section 5.3, where we add the following axiom

(λ-Pref) {t ≡ε s} `λ a.t ≡ε′ a.s , for ε′ ≥ λε .
Notice that, when λ < 1, (λ-Pref) and (Max) imply (Pref) —hence one may remove (Pref)
from the definition, since is redundant.

The proof of soundness and completeness follow essentially in the same way of Theo-
rems 5.13 and 5.17. In the reminder of the section we only highlight the parts where some
adjustments are needed.

Notice that due to Lemma 6.2 a similar result to Theorem 5.10 holds also in the
discounted case, i.e., for all t, s ∈ T, dλOMC(JtK, JsK) = dλU(t, s). So that, as done previously,

we will use dλOMC and dλU, interchangebly, often simply denoted as dλ. Similarly, |=λ t ≡ε s
will stand for dλ ≤ ε.

Theorem 6.3 (λ-Soundness). For arbitrary t, s ∈ T, if `λ t ≡ε s then |=λ t ≡ε s.

Proof. The proof follows as Theorem 5.13. We only need to check the soundness of (λ-Pref).
To do so it suffices to show that dλ(t, s) ≥ λ · dλ(a.t, a.s).

dλ(a.t, a.s) = K(Λλ(dλ))(µ∗T(a.t), µ∗T(a.s)) (dλ fixed-point & def. Ψλ)

= K(Λλ(dλ))(1{(a,t)},1{(a,s)}) (def. µT & PU)

= Λλ(dλ)((a, t), (a, s)) (def. K)

= λ · dλ(t, s) . (def. Λλ)

For the proof of completeness note that, since the quantitative deduction system `λ is a
conservative extension of `, we have that Theorems 5.14, 5.15, and Lemma 5.16 still hold.
Moreover, for λ < 1, the proof of completeness is somehow simplified, since we do not need
to introduce a new operator Ψ̃λ to obtain the convergence to the λ-discounted bisimilarity
distance from above. Indeed, as noticed before dλ =

d
α∈N(Ψλ)α(1).

Theorem 6.4 (λ-Completeness). For arbitrary t, s ∈ T, if |=λ t ≡ε s, then `λ t ≡ε s.

Proof. The proof follows as in Theorem 5.17. The only edits needed in are (i) syntactically

replace ` with `λ; (ii) replacing Ψ̃ with Ψλ in the proof of (5.9); and (iii) applying (λ-Pref)
in place of (Pref) for proving (5.10).

7. A Quantitative Kleene’s Theorem for Open Markov Chains

In this last section we give a “quantitative Kleene’s theorem” for pointed open Markov
chains. Specifically, we show that any (finite) pointed open Markov chains (M,m) can be
represented up to bisimilarity as a Σ-term t(M,n) and, vice versa, for any Σ-term t, there
exist a (finite) pointed open Markov chain bisimilar to JtK. This establishes a representability
theorem for finite open Markov chains similar to the celebrated Kleene’s theorem [Kle56],
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stating the correspondence between regular expressions and deterministic finite automata
(DFAs) up to language equivalence.

Even more interestingly, we show that by endowing the set of Σ-terms with the pseudo-
metric freely-generated by the quantitative deduction system presented in Section 5.3 (in a
way which will be made precise later) we get that the correspondence stated above is metric
invariant. We think of this result as ‘quantitative extension’ of a Kleene’s representation
theorem for finite open Markov chains.

7.1. Representability. We show that the class of expressible open Markov chains corre-
sponds up to bisimilarity to the class of finite open Markov chains. Note that the results in
this section can be alternatively obtained as in [SBBR11] by observing that open Markov
chains are coalgebras of a quantitative functor.

A pointed Markov chain (M,m) is said expressible if there exists a term t ∈ T such that
JtK ∼ (M,m). The next result is a corollary of Theorems 4.7, 5.14, and 5.13.

Corollary 7.1. If (M,m) is finite then it is expressible.

Proof. We have to show that there exists t ∈ T such that JtK ∼ (M,m). Since the set of
states M = {m1, . . . ,mk} is finite and, for each mi ∈M , τ(mi) is finitely supported, then
the sets of unguarded names {Y i

1 , . . . , Y
i
h(i)} = supp(τ(mi)) ∩ X and labelled transitions

{αi1, . . . , αil(i)} = supp(mi)∩ (L×M) of mi are finite. Let us associate with each αij a name

Xi
j , for all i ≤ k and j ≤ l(i). For each i ≤ k, we define the terms

ti =
∑l(i)

j=1 τ(mi)(α
i
j) · aij .Xi

j +
∑h(i)

j=1 τ(mi)(Y
i
j ) · Y i

j ,

where αij = (aij ,m
i
j), for all i ≤ k and i ≤ l(i). By Theorem 5.14, for i ≤ k, there exists

terms si = (si1, . . . , s
i
l(i)) such that ` si ≡0 ti[si/Xi], so that by soundness (Theorem 5.13),

JsiK ∼ Jti[si/Xi]K. Hence, by Theorem 4.7, we have (U, si) ∼ (U, ti[si/Xi]).

Let mi = (mi
1, . . . ,m

i
l(i)) and Xi = (Xi

1, . . . , X
i
l(i)), for i ≤ k. It is a routine check

to prove that the smallest equivalence relation Ri containing {(mi, ti[mi/Xi]) | i ≤ k} is

a bisimulation for (M,mi) and (U(M), ti[mi/Xi]), hence (M,mi) ∼ (U(M), ti[mi/Xi]).

Similarly, one can prove (U(M), ti[mi/Xi]) ∼ (U, ti[si/Xi]) by taking the smallest equiva-

lence relation containing {(ti[mi/Xi], ti[si/Xi]) | i ≤ k} and {(mi
j , s

i
j) | i ≤ k, j ≤ l(i)}. By

transitivity of ∼, (M,mi) ∼ JsiK, for all i ≤ k, hence (M,m) is expressible.

The converse (up to bisimilarity) of the above result can also be proved, and it follows
as a corollary of Theorems 4.7, 5.13, and 5.15.

Corollary 7.2. If (M, n) is expressible then it is finite up-to-bisimilarity.

Proof. Let t ∈ T. We have to show that there exists (M,m) ∈ OMC with a finite set of
states such that JtK ∼ (M,m). From Theorem 5.15, there exist t1, . . . , tk with free names in
Y , such that ` t ≡0 t1 and

` ti ≡0
∑h(i)

j=1 pij · sij +
∑l(i)

j=1 qij · Yg(i,j) , for all i ≤ k,

where the terms sij and names Yg(i,j) are enumerated without repetitions, and sij is either

recX.X or has the form aij .tf(i,j). Let Z1, . . . , Zk be fresh names distinct from Y , and
define t′i as the term obtained by replacing in the right end side of the equation above each
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occurrence of ti with Zi. Then, clearly ` ti ≡0 t
′
i[t/Z]. By soundness (Theorem 5.13), we

have that JtiK ∼ Jt′i[t/Z]K, so that, by Theorem 4.7, (U, ti) ∼ (U, t′i[t/Z]).
DefineM = (M, τ) by setting M = {t1, . . . , tk}, m = t1, and, for all i ≤ k, taking as τ(ti)

the smallest sub-probability distribution on (L ×M) ] X such that τ(ti)((aij , tf(i,j))) = pij
and τ(ti)(Yg(i,e)) = qie, for all i ≤ k, j ≤ h(i), and e ≤ l(i). Notice that since the equation
above is without repetitions, τ is well defined. Moreover, 1 − τ(mi)((L ×M) ] X ) = piw
whenever there exists w ≤ h(i) such that siw = recX.X. It is not difficult to prove that
(M, ti) ∼ (U, t′i[t/Z]) (take the smallest equivalence relation containing the pairs (ti, t

′
i[t/Z]),

for i ≤ k), so that by transitivity of ∼, (M, ti) ∼ JtiK, for all i ≤ k. By ` t ≡0 t1 and
Theorem 5.13, we also have JtK ∼ Jt1K, thus JtK ∼ (M,m).

7.2. A Quantitative Kleene’s Theorem. We provide a metric analogue to Kleene’s
representation theorem for finite pointed open Markov chains.

In [MPP16], Mardare et al. gave a construction for the free model of a quantitative
theory of a generic quantitative deduction system. Here we present their definition only
for the specific case of the quantitative deduction system presented in Section 5.3. Note
that since our quantitative deduction system does not require all algebraic operators to be
non-expansive, by applying this construction we obtain a relaxed quantitative algebra, not a
proper one in the of sense of [MPP16] .

Definition 7.3 (Initial `-model). The initial `-model is defined as the relaxed quantitative
algebra (T,Σ, dT), where (T,Σ) is the initial algebra of Σ-terms and dT is the 1-bounded
pseudometric on T defined, for arbitrary terms t, s ∈ T, as dT(t, s) = inf {ε | ` t ≡ε s}.

Note that by (Refl), (Symm), (Triang), (Top) it is easy to prove that dT is a well-defined
1-bounded pseudometric. Moreover, (T,Σ, dT) is clearly a sound model for `.

The attractiveness of the above model, as opposed to an operational one looking directly
at the operational semantics of terms, is that it is purely equational. Indeed, one can reason
about its properties by just proving statements about the distance between terms using
classical equational deduction in the system `.

Next we show that there is a strong correspondence between the initial `-model and
the quantitative algebra of finite pointed open Markov chains.

Theorem 7.4 (Quantitative Kleene’s Theorem).

(i) For every pair (M,m), (N , n) of finite pointed open Markov chains, there exist terms
t, s ∈ T such that JtK ∼ (M,m), JsK ∼ (N , n), and d((M,m), (N , n)) = dT(t, s);

(ii) for every pair t, s ∈ T, there exist finite pointed open Markov chains (M,m), (N , n),
such that JtK ∼ (M,m), JsK ∼ (N , n), and d((M,m), (N , n)) = dT(t, s).

Proof. Before proving (i) and (ii), we show that, for all t, s ∈ T
dT(t, s) = d(JtK, JsK) . (7.1)

The equality follows trivially by definition of dT and the soundness and completeness theorems
(Theorems 5.13 and 5.13). Indeed,

dT(t, s) = inf {ε | ` t ≡ε s} = inf {ε | |= t ≡ε s} = inf {ε | d(JtK, JsK) ≤ ε} = d(JtK, JsK) .
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(i) Given (M,m), (N , n) finite pointed open Markov chains, we construct the Σ-terms
t, s as in Corollary 7.1, obtaining that JtK ∼ (M,m), JsK ∼ (N , n). Now the results follows
by (7.1) and Theorem 5.10.

(ii) Given t, s ∈ T, we construct the finite pointed Markov chains (M,m), (N , n) as in
Corollary 7.2, obtaining that JtK ∼ (M,m), JsK ∼ (N , n). Again the results follows by (7.1)
and Theorem 5.10.

Remark 7.5 (The discounted case). Note that, by using the quantitative deduction system
`λ presented in Section 6, adjusting the proof of Theorem 7.4 in the obvious way, a
quantitative Kleene’s theorem can be obtained also for the λ-discounted bisimilarity distance.

8. Conclusions and Future Work

In this paper we proposed a sound and complete axiomatization for the bisimilarity distance
of Desharnais et al., later extended to its discounted variant. The axiomatic system
proposed comes as a natural generalization of Stark and Smolka’s one [SS00] for probabilistic
bisimilarity, to which we added only three extra axioms, namely (Top), (Pref), (IB) —along
those required by the quantitative equational framework.

Although the use of the recursion operator does not fit the general framework of Mardare
et al. [MPP16], we were able to prove completeness in a way that we believe is general enough
to accommodate the axiomatization of other behavioral distances for probabilistic systems.
A concrete example of this statement is provided in [BBLM18], where we axiomatized
the total variation distance for Markov chains. In the light of our result it would be nice
to see how much of the work in [MPP16] truly bases on the non-expansivity assumption
for the algebraic operators. As as possible future work, it would be interesting to extend
the general quantitative framework to algebraic operators that are only required to be
Lipschitz-continuous (indeed, our proof uses the fact that the functional fixed point operator
defining the recursion is q-Lipschitz continuous for some q < 1).

Another appealing direction of future work is to apply our results on quantitative
systems described as coalgebras in a way similar to one proposed in [SBBR11, BMS13]. By
pursuing this direction we would be able to obtain metric axiomatization for a wide variety
of quantitative systems, including weighted transition systems, Segala’s systems, stratified
systems, Pnueli-Zuck systems, etc.

A very recent related work worth to be mentioned is [BMPP18], where Markov processes
have been axiomatised via the standard framework of quantitative equational theories via
disjoint union of theories. The signature used there is very similar to the one presented in the
present work, but they managed to obtain completeness with no need of a recursion operator.
Completeness was obtained by taking as the complete model the Cauchy completion of the
standard quantitative initial algebra —intuitively, Cauchy completion introduces recursive
behaviours as the limit of infinitely many unfolding operations.
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