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Abstract

We propose a complete axiomatization for the total variation distance of finite labelled Markov chains. Our axiomatization is
given in the form of a quantitative deduction system, a framework recently proposed by Mardare, Panangaden, and Plotkin (LICS
2016) to extend classical equational deduction systems by means of inferences of equality relations t ≡ε s indexed by rationals,
expressing that “t is approximately equal to s up to an error ε”. Notably, the quantitative equational system is obtained by
extending our previous axiomatization (CONCUR 2016) for the probabilistic bisimilarity distance with a distributivity axiom for
the prefix operator over the probabilistic choice inspired by Rabinovich’s (MFPS 1983).
Finally, we propose a metric extension to the Kleene-style representation theorem for finite labelled Markov chains w.r.t. trace
equivalence due to Silva and Sokolova (MFPS 2011).

Keywords: Behavioral Distances, Markov Chains, Axiomatization, Quantitative Deductive Systems.

1 Introduction

In [12], Kleene introduced an algebra of regular events to represent behaviors of finite automata. Kleene’s
approach was essentially equational, but he did not provide a completeness result for his characterization.
The first sound and complete axiomatization of regular expressions is due to Salomaa [20], later refined by
Kozen [13].

The above programme was applied by Milner [16] to nondeterministic process behaviors, providing a sound
and complete axiomatization for bisimilarity of labelled transition systems. Milner’s work inspired a number
of extensions [5,17,8,21,7], among which it is notable the work of Rabinovich [19] who axiomatized trace
equivalence of labelled transition systems. The key observation in Rabinovich’s work is that trace equivalence
satisfies a distributivity law for the prefix operator over nondeterministic choice. A similar idea was used by
Silva and Sokolova [22] for axiomatizing probabilistic trace equivalence of (generative) labelled Markov chains.
Their equational characterization extends Stark and Smolka’s [23] axiomatization for probabilistic bisimilarity
by introducing a distributivity axiom for the prefix operator over probabilistic choice.

The attractiveness towards sound and complete axiomatizations for process behaviors comes from the fact
that one can reason about their equivalence in a purely syntactic way by means of classical logical deduction
of valid equational statements.

Giacalone, Jou, and Smolka [11,10], however, observed that for reasoning about the behavior of proba-
bilistic systems (more generally, all types of quantitative systems) a notion of distance is preferable to that
of equivalence, since the latter is not robust w.r.t. small variations of numerical values. This motivated the
development of metric-based semantics for probabilistic systems, initiated by Desharnais et al. [9] on labelled
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Markov chains and greatly developed and explored by van Breugel, Worrell and others [25,26,3,2]. It consists
in proposing a pseudometric which measures the dissimilarities between quantitative behaviors.

Recently, in [4], we provided a sound and complete axiomatization for the probabilistic bisimilarity distance
of Desharnais et al. [9] on labelled Markov chains. The axiomatization was given in the form of a quantita-
tive deduction system, a concept introduced by Mardare, Panangaden, and Plotkin [15] with the purpose of
developing a general research programme for a quantitative algebraic theory of effects [18]. The key idea is
to use “quantitative equations” of the form t ≡ε s indexed by positive rationals to be interpreted as “t is
approximately equal to s up to an error ε”. The main result in [15] is that completeness for a quantitative
theory always holds on the freely-generated algebra of terms equipped with a metric that is freely-induced by
the axioms.

In this paper, we present a sound and complete axiomatization for the total variation distance on labelled
Markov chains, i.e. a natural metric-lifting of probabilistic trace equivalence. Interestingly, completeness is
obtained by extending our axiomatization for the probabilistic bisimilarity distance [4] with the distributivity
axiom for the prefix operator over probabilistic choice introduced in [22]. This shows that Rabinovich’s idea
applies also in a quantitative equational scenario.

The similarities with Rabinovich’s work, however, are limited only to the style of the axioms. For our
proof of completeness we had to face a number of problems that do not occur in the classical equational
case [19,22]. One of the difficulties was that the recursion operator does not satisfy non-expansiveness w.r.t.
the total variation distance (cf. Example 5.10). This prevented us from directly apply the general completeness
result of [15], which specifically requires non-expansiveness for all algebraic operators. This issue was overcome
by using a convergence result from [2], that characterizes the total variation distance as the point-wise limit
of a convergent net of certain multi-steps probabilistic bisimilarity distances, that approach the total variation
distance by extending the probabilistic observations from single labels to words on labels of increasing length.
Then, by generalizing a proof technique used in [4], we were able to prove completeness for each of these
bisimilarity-like distances, and we extended it to the total variation distance (hence, to their point-wise limit)
by means of the Archimedean axiom.

As a final result we give a metric extension to the Kleene’s representation theorem of Silva and Sokolova [22]
(see also [21,6]) for finite labelled Markov chains up-to trace equivalence. Specifically, we show that process
expressions, equipped with the pseudometric freely-induced by the axioms, are in isometric correspondence
with finite labelled Markov chains metrised by the total variation distance.

2 Preliminaries and Notation

For R ⊆ M ×M an equivalence relation, M/R is its quotient set. For M,N sets, M �N is the disjoint union,
[M → N ] (or NM ) the set of functions from M to N .

A discrete sub-probability on M is a function μ : M → [0, 1], such that μ(M) ≤ 1, where, for E ⊆ M ,
μ(E) =

∑
m∈E μ(m); it is a probability distribution if μ(M) = 1. The support of μ is the set supp(μ) =

{m ∈ M | μ(m) > 0}. We denote by Δ(M) and D(M) the set of discrete probability and finitely-supported
sub-probability distributions on M , respectively.

A 1-bounded pseudometric on M is a function d : M×M → [0, 1] such that, for any m,n, u ∈ M , d(m,m) =
0, d(m,n) = d(n,m) and d(m,n) + d(n, u) ≥ d(m,u); d is a metric if, in addition, d(m,m) = 0 implies m = n.
The pair (M,d) is called (pseudo)metric space. Recall that, 1-bounded pseudometrics on M ordered point-wise
by d 	 d′ iff d(m,n) ≤ d′(m,n), for all m,n ∈ M , form a complete lattice (we denote by 0 and 1 the bottom
and top of 1-bounded pseudometrics, respectively).

3 Quantitative Equational Theories

We recall the main definitions and results from [15]. Let Σ be a signature of function symbols f : n ∈ Σ of arity
n ∈ N. Fix a countable set of metavariables X, ranged over by x, y, z, . . . ∈ X. Let T(Σ, X) denote the set of
Σ-terms freely generated over X; terms will be ranged over by t, s, u, . . . A substitution of type Σ is a function
σ : X → T(Σ, X) that is homomorphically extended to terms as σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)); by S(Σ)
we denote the set of substitutions of type Σ.

A quantitative equation of type Σ is an expression of the form t ≡ε s, where t, s ∈ T(Σ, X) and ε ∈ Q+. We
denote by E(Σ) the set of quantitative equations of type Σ; subsets of E(Σ) will be ranged over by Γ,Θ,Π, . . .

Let 
 ⊆ 2E(Σ)×E(Σ) be a relation from the powerset of E(Σ) to E(Σ). We write Γ 
 t ≡ε s if (Γ, t ≡ε s) ∈ 
;
by 
 t ≡ε s we denote ∅ 
 t ≡ε s, and by Γ 
 Θ we mean that Γ 
 t ≡ε s, for all t ≡ε s ∈ Θ. The relation 
 is
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called quantitative deduction system of type Σ if it satisfies the following axioms and rules

(Refl) 
 t ≡0 t ,

(Symm) {t ≡ε s} 
 s ≡ε t ,

(Triang) {t ≡ε u, u ≡ε′ s} 
 t ≡ε+ε′ s ,

(Max) {t ≡ε s} 
 t ≡ε+ε′ s , for all ε′ > 0 ,

(Arch) {t ≡ε′ s | ε′ > ε} 
 t ≡ε s ,

(NExp) {t1 =ε s1, . . . , tn =ε sn} 
 f(t1, . . . , tn) ≡ε f(s1, . . . , sn) , for all f : n ∈ Σ ,

(Subst) If Γ 
 t ≡ε s, then σ(Γ) 
 σ(t) ≡ε σ(t), for all σ ∈ S(Σ) ,
(Cut) If Γ 
 Θ and Θ 
 t ≡ε s, then Γ 
 t ≡ε s ,

(Assum) If t ≡ε s ∈ Γ, then Γ 
 t ≡ε s .

where σ(Γ) = {σ(t) ≡ε σ(s) | t ≡ε s ∈ Γ}.
The rules (Subst), (Cut), (Assum) are those of classical logical deduction. The axioms (Refl), (Symm),

(Triang) are reflexivity, symmetry, and triangular inequality for a pseudometric, respectively; (Max) is inclusion
of neighborhoods of increasing diameter; (Arch) is the Archimedean law; and (NExp) is non-expansiveness of
f ∈ Σ.

A quantitative equational theory is a set U of universally quantified quantitative inferences, (i.e., expressions
of the form {t1 ≡ε1 s1, . . . , tn ≡εn sn} 
 t ≡ε s, with a finite set of hypotheses) closed under 
-deducibility.
A set A of quantitative inferences is said to axiomatize U , if U is the smallest quantitative equational theory
containing A. A theory U is called inconsistent if 
 x ≡0 y ∈ U , for distinct metavariables x, y ∈ X, it is called
consistent otherwise 2 .

The models of quantitative equational theories are quantitative algebras.

Definition 3.1 A quantitative Σ-algebra is a tupleA = (A,ΣA, dA), consisting of a pseudometric space (A, dA)
and a set ΣA =

{
fA : An → A | f : n ∈ Σ

}
of interpretations for f ∈ Σ, required to be non-expansive w.r.t.

dA, i.e., for all 1 ≤ i ≤ n and ai, bi ∈ A, dA(ai, bi) ≥ dA(fA(a1, . . . , an), fA(b1, . . . , bn)).

A quantitative algebra A = (A,ΣA, dA) satisfies the inference Γ 
 t ≡ε s, written Γ |=A t ≡ε s, if for any
assignment of the meta-variables ι : X → A,(

for all t′ ≡ε′ s
′ ∈ Γ, dA(ι(t′), ι(s′)) ≤ ε′

)
implies dA(ι(t), ι(s)) ≤ ε ,

where, for a term t ∈ T(Σ, X), ι(t) denotes the homomorphic interpretation of t in A. A quantitative algebra
A is said to satisfy (or is a model for) the quantitative theory U , if whenever Γ 
 t ≡ε s ∈ U , then Γ |=A t ≡ε s.

In [15] it is shown that any quantitative theory U has a universal model TU (the freely generated 
-
model) satisfying exactly those quantitative equations belonging to U . Moreover, [15, Theorem 5.2] proves a
completeness theorem for quantitative equational theories U , stating that a quantitative inference is satisfied
by all the algebras satisfying U iff it belongs to U .

4 The Algebra of Probabilistic Behaviors

In this section we present the algebra of open Markov chains from [4]. Open Markov chains extend the familiar
notion of discrete-time generative Markov chain with “open” states taken from a fixed countable set X of
names ranged over by X,Y, Z, . . . ∈ X . Names indicate states at which the behavior of the Markov chain can
be extended by substitution of another Markov chain, in a way which will be made precise later.

In what follows we fix a countable set L of labels, ranged over by a, b, c, . . .

Definition 4.1 An open Markov chain M = (M, τ) consists of a set M of states and a transition probability
function τ : M → D((L ×M) � X ).

Intuitively, if M is in a state m ∈ M , then it emits a ∈ L and moves to n ∈ M with probability τ(m)(a, n),
or it moves to a name X ∈ X without emitting any label with probability τ(m)(X). A state m ∈ M is
terminating if τ(m)((L ×M) � X ) = 0. A name X ∈ X is unguarded in the state m ∈ M , if τ(m)(X) > 0.

2 Note that for an inconsistent theory U , by Subst, we have � t ≡0 s ∈ U , for all t, s ∈ T(Σ, X).
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A pointed open Markov chain (M,m) ∈ OMC is an open Markov chain M with distinguished initial state
m. Hereafter, we use M = (M, τ), N = (N, θ) to denote generic open Markov chains, and (M,m), (N , n) for
pointed open Markov chains.

Definition 4.2 An equivalence relation R ⊆ M ×M is a probabilistic bisimulation on M if whenever m R m′,
then, for all a ∈ L, X ∈ X and C ∈ M/R,

(i) τ(m)(X) = τ(m′)(X),

(ii) τ(m)({a} × C) = τ(m′)({a} × C).

Two states m,m′ ∈ M are probabilistic bisimilar w.r.t. M, written m ∼M m′, if there exists a probabilistic
bisimulation relation on M relating them.

The above definition is a straightforward adaptation of Larsen and Skou’s probabilistic bisimulation [14].
We say that (M,m), (N , n) ∈ OMC are bisimilar, written (M,m) ∼ (N , n), if m and n are bisimilar w.r.t.
the disjoint union of M and N (denoted by M ⊕ N ) defined as expected. Note that ∼ is an equivalence
relation.

Next we turn to a simple algebra of pointed open Markov chains. The signature of algebraic operator
symbols is defined as follows.

Σ = {X : 0 | X ∈ X} ∪ (names)

{a.(·) : 1 | a ∈ L} ∪ (prefix)

{+e : 2 | e ∈ [0, 1]} ∪ (probabilistic choice)

{recX : 1 | X ∈ X} . (recursion)

It consists of a constant X for each name in X ; a prefix a.· and a recursion recX unary operators, for each
a ∈ L and X ∈ X ; and a probabilistic choice +e binary operator for each e ∈ [0, 1]. For t ∈ T(Σ,M), fn(t)
denotes the set of free names in t, where the notions of free and bound name are defined in the standard way,
with recX acting as a binding construct. A term is closed if it does not contain any free variable. Throughout
the paper we consider two terms as syntactically identical if they are identical up to renaming of their bound
names (α-equivalence). For t, s1, . . . , sn ∈ T(Σ,M) and an n-vector X = (X1, . . . , Xn) of distinct names,
t[s/X] denotes the simultaneous capture avoiding substitution of Xi in t with si, for i = 1, . . . , n. A name X
is guarded 3 in a term t if every free occurrence of X in t occurs within a context the following forms: a.[·],
s+1 [·], or [·] +0 s.

Since from now on we will only refer to terms constructed over the signature Σ, we will simply write T(M)
and T, in place of T(Σ,M) and T(Σ, ∅), respectively.

To give the interpretation of the operators in Σ, we define an operator U on open Markov chains, taking
M to the open Markov chain U(M) = (T(M), μM), where the transition probability function μM is defined
as the least solution (over the complete partial order of the set of functions mapping elements in T(M) to a
[0, 1]-valued function from (L × T(M)) � X , ordered point-wise) of the equation

μM = PM
(
μM

)
.

The functional operator PM is defined by structural induction on T(M), for arbitrary functions θ : T(M) →
[(L × T(M)) � X → [0, 1]], as follows:

PM(θ)(m) = τ(m)

PM(θ)(X) = 1{X}

PM(θ)(a.t) = 1{(a,t)}
PM(θ)(t+e s) = eθ(t) + (1− e)θ(s)

PM(θ)(recX.t) = θ(t[recX.t/X]) ,

where 1E denotes the characteristic function of the set E.
Notice that requiring μM to be the least solution is essential for its well definition as a transition probability

function. As a consequence of this definition, for all X ∈ X , recX.X is a terminating state in U(M), i.e.,
μM(recX.X)((L × T(M)) � X ) = 0.

3 This notion, coincides with the one in [23], though our definition may seem more involved due to the fact that we allow the
probabilistic choice operators +e with e ranging in the closed interval [0, 1].
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Fig. 1. Compositional step-by-step construction of the semantics of recX.(a.X + 1
2
Z).

Remark 4.3 The definition of μM corresponds essentially to the operational semantics given by Stark and
Smolka in [23]. The only differences are that the above is given over generic terms in T(M) and our formulation
is simpler because it avoids the construction of a labelled transition system. For more details see [1,23].

Definition 4.4 Let M∅ = (∅, τ∅) be the open Markov chain with τ∅ the empty transition function. The
universal open Markov chain is U(M∅).

The reason why it is called universal will be clarified soon. As for now just note that U(M∅) has T as the
set of states and transition probability function equal to the one defined in [23]. To ease the notation we will
denote U(M∅) as U = (T, μT).

The algebra of open pointed Markov chains is defined by (OMC,Σomc), where the interpretations
fomc : OMCn → OMC ∈ Σomc for the symbols f : n ∈ Σ is given, for arbitrary (M,m), (N , n) ∈ OMC
as

Xomc = (U, X) ,

(a.(M,m))omc = (U(M), a.m) ,

(M,m) +omc
e (N , n) = (U(M⊕N ),m+e n) ,

(recX.(M,m))omc = (U(M∗
X,m), recX.m) ,

where, for M = (M, τ), M∗
X,m denotes the open Markov chain (M, τ∗X,m) with transition function defined, for

all m′ ∈ M and E ⊆ (L ×M) � X , as

τ∗X,m(m′)(E) = τ(m′)(X)τ(m)(E \ {X}) + τ(m′)(Xc)τ(m′)(E \ {X}) .

where Xc = ((L × M) � X ) \ {X}. Intuitively, τ∗X,m removes the name X ∈ X from the support of τ(m′)
replacing it with the probabilistic behavior of m.

The semantics of terms is given via the Σ-homomorphism �·� : T → OMC, defined by induction on terms
as follows

�X� = Xomc ,

�a.t� = (a.�t�)omc ,

�t+e s� = �t� +omc
e �s� ,

�recX.t� = (recX.�t�)omc .
(semantics)

Figure 1 shows how terms are interpreted to pointed open Markov chains.
The next result states that it is equivalent to reason about the equivalence of the behavior of �t� and �s� by

just considering bisimilarity between the corresponding states t and s in the universal open Markov chain U.

Theorem 4.5 (Universality) For all t ∈ T, �t� ∼ (U, t).

5 Axiomatization of the Total Variation Distance

We present a quantitative deduction system and we prove its soundness and completeness w.r.t. the total
variation distance.

5.1 Probabilistic Trace Equivalence and the Total Variation Distance

To ease the technical presentation of the forthcoming results, it is convenient to interpret sub-probability
transition functions τ : M → D((L × M) � X ) fully-probabilistically as τ∗ : M → Δ((L × M) � X⊥), where
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X⊥ = X �{⊥} and τ∗ is the extension of τ such that τ∗(m)(⊥) = 1−τ(m)((L×M)�X ). These representations
are equivalent and do not alter the validity of the previous results.

The type of observable traces that open Markov chains can emit are either finite traces of the form
a1 . . . anχ ∈ L∗X⊥ starting with a sequence of labels a1 . . . an ∈ L∗ and ending in χ ∈ X⊥ (this indicates the
chain ends either in a open name or ⊥) or infinite sequences of labels a1a2a3 . . . ∈ Lω. We write Π = Lω∪L∗X⊥
for the set of observable traces and (Π,ΣΠ) for the measurable space of traces with σ-algebra ΣΠ generated by
the set C(Π) of cylinders of the form

C(w) = {w}Π and C(wχ) = {wχ} , for w ∈ L∗ and χ ∈ X⊥ .

Given a pointed open Markov chain (M,m), its probability of emitting traces in (Π,ΣΠ) starting from m
is given by the distribution PM(m) defined as follows:

Definition 5.1 Let PM : M → D(Π,ΣΠ) be such that, for all m ∈ M , PM(m) is the unique probability
measure on (Π,ΣΠ) such that,

PM(m)(C(χ)) = τ∗(m)(χ) , for all χ ∈ X⊥ ,

PM(m)(C(aw)) =
∫
PM(·)(C(w)) dτa(m) , for all a ∈ L and w ∈ L∗ ∪ L∗X⊥ ,

where τa : M → D(M) is given as τa(m)(n) = τ(m)(a, n), for arbitrary m,n ∈ M .

The existence and unicity of the family of probability measures (PM(m))m∈M satisfying the equations
above follows by the Hahn-Kolmogorov extension theorem.

Definition 5.2 Two states m,m′ ∈ M are probabilistic trace equivalent w.r.t. M, written m ≈M m′, if for all
cylinders C ∈ C(Π), PM(m)(C) = PM(m′)(C).

A pseudometric lifting probabilistic trace equivalence is the following.

Definition 5.3 The total variation distance tvM : M ×M → [0, 1] on M is defined, for arbitrary m,m′ ∈ M ,
as tvM(m,m′) = supE∈ΣΠ

|PM(m)(E)− PM(m′)(E)|.

Hereafter, when M is clear from the context super/subscripts will be omitted.
The proof of completeness in Section 5.5 relies on a result from [2], stating that tv is the point-wise limit

of a net of k-multistep bisimilarity pseudometrics dk à la Desharnais et al. [9], whose definition will be made
precise later.

Theorem 5.4 ([2]) Let K be the poset of positive integers ordered by divisibility. Then, the net (dk)k∈K

converges point-wise to tv and, for all k ∈ K, tv 	 dk.

The intuitive idea of the convergence is that tv can be approached by stretching the observations from single-
step transitions to k-multistep transitions. Here, the pseudometric dk measures the k-multistep behavioral
similarities of states.

For k ≥ 1 and M = (M, τ) be an open Markov chain, the k-multistep transition probability function
τk : M → Δ((Lk ×M) � L<kX⊥) of M is defined by induction on k, for arbitrary m,m′ ∈ M , χ ∈ X⊥, a ∈ L,
u ∈ L<k, w ∈ Lk, as follows

τ1 = τ∗ ,
τk+1(m)(auχ) =

∫
τk(·)(uχ) dτa(m) ,

τk+1(m)((aw,m′)) =
∫
τk(·)((w,m′)) dτa(m) .

The definition of the multistep bisimilarity distances is based on the Kantorovich (pseudo)metric between
probability distributions over finite (pseudo)metric spaces (A, d), defined for arbitrary μ, ν ∈ Δ(A) as follows

K(d)(μ, ν) = min
{∫

d dω | ω ∈ Ω(μ, ν)
}
.

where Ω(μ, ν) denotes the set of couplings for (μ, ν), i.e., probability distributions ω ∈ Δ(A × A) such that,
for all E ⊆ A, ω(E ×A) = μ(E) and ω(A× E) = ν(E).
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Definition 5.5 For any integer k ≥ 1, the probabilistic k-bisimilarity pseudometric dM
k : M×M → [0, 1] on M

is the least fixed-point of the following functional operator on 1-bounded pseudometrics (ordered point-wise),

ΨM
k (d)(m,m′) = K(Λk(d))(τk(m), τk(m

′)) (k-Kantorovich Operator)

where Λk(d) is the greatest 1-bounded pseudometric on (Lk × M) � L<kX⊥ such that for all w ∈ Lk and
m,m′ ∈ M , Λk(d)((w,m), (w,m′)) = d(m,m′).

The well definition of dk follows by Knaster-Tarski fixed-point theorem and monotonicity of Ψk (which is
implied by the monotonicity of K and Λk). Note that d1 corresponds to the probabilistic bisimilarity distance
of Desharnais et al. [9,25].

Definition 5.6 An equivalence relation R ⊆ M×M is a k-probabilistic bisimulation onM if wheneverm R m′,
then, for all w ∈ Lk, u ∈ L<k, χ ∈ X⊥, and C ∈ M/R,

(i) τk(m)(uχ) = τk(m
′)(uχ),

(ii) τk(m)({w} × C) = τk(m
′)({w} × C).

Two states m,m′ ∈ M are k-probabilistic bisimilar w.r.t. M, written m ∼M
k m′, if there exists a k-probabilistic

bisimulation relation on M relating them.

Lemma 5.7 dk(m,m′) = 0 iff m ∼k m′.

For each k ≥ 1, the k-bisimilarity distance can be alternatively obtained as dk =
�

i∈ω Ψ̃i
k(1), i.e., the

ω-limit of the decreasing chain 1 � Ψ̃k(1) � Ψ̃2
k(1) � . . . , where Ψ̃k is the operator

Ψ̃k(d)(m,m′) =
{
0 if m ∼k m′,
Ψk(d)(m,m′) otherwise.

Lemma 5.8 Ψ̃k is ω-cocontinuous, i.e., for any countable decreasing chain d0 � d1 � d2 � . . . , it holds�
i∈ω Ψ̃k(di) = Ψ̃k(

�
i∈ω di). Moreover, dk =

�
i∈ω Ψ̃i

k(1).

5.2 A Quantitative Algebra of Open Markov Chains

We turn the algebra of pointed open Markov chains (OMC,Σomc) given in Section 4 into a relaxed quantitative
algebra by endowing it with the total variation distance. The term “relaxed” is used to stress the fact that
differently from Definition 3.1, we do not require non-expansiveness for the algebraic operators. This relaxation
is necessary because the recursion operator does not satisfy non-expansiveness.

We define the total variation distance tvomc on OMC as the total variation distance between the initial
states on the disjoint union of the two open Markov chains. Equivalently, one can compute it simply as

tvomc((M,m), (N , n)) = supE∈ΣΠ
|PM(m)(E)− PN (n)(E)| .

We define the (relaxed) quantitative algebra of OMC as (OMC,Σomc, tvomc).
In Example 5.10 we show that the operator recX fails to be non-expansive w.r.t. the total variation distance.

Our proof relies on the following technical lemma.

Lemma 5.9 For arbitrary m,n ∈ M , tv(m,n) < 1 iff one of the following holds

(i) P(m)(C(w)) > 0 and P(n)(C(w)) > 0 for some w ∈ L∗X⊥,
(ii) τ|w|(m)((w,m′)) > 0 and τ|w|(n)((w, n′)) > 0, for some m′ ≈ n′ and w ∈ L∗.

Example 5.10 (Recursion is not non-expansive!) Let 0 < ε < 1
2 and consider the two pointed open

Markov chains depicted below.

(M,m) =
m

u

n

X

b, 1
2

a, 1
2

b, 1
2

a, 1
2

1

(M′,m′) =
m′

u′

n′

X

b, 1
2
+ ε

a, 1
2
− ε

b, 1
2
+ ε

a, 1
2
− ε

1
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Since P(m)(C(aX)) = 1
2 and P(m′)(C(aX)) = 1

2 − ε > 0, by Lemma 5.9 (i), tv(m,m′) < 1. Consider the
application of the operator (recX)omc on these two pointed open Markov chains. The resulting chains have
the following behavior.

(recX.(M,m))omc ∼
recX.m

n

b, 1
2

a, 1
2

a, 1
2

b, 1
2

(recX.(M′,m′))omc ∼
recX.m′

n′
b, 1

2
+ ε

a, 1
2
− ε

a, 1
2
− ε

b, 1
2
+ ε

Note that P(recX.m)(C(u)) = P(recX.m′)(C(u)) = 0, for all u ∈ L∗X⊥ (the chains are fully-probabilistic
and there are no “open states”). Moreover, by the assumption that 0 < ε < 1

2 , none of the states in
(recX.(M,m))omc is trace equivalent with any of the states in (recX.(M′,m′))omc. Hence, by Lemma 5.9,
tv((recX.(M,m))omc, (recX.(M′,m′))omc) = 1. This proves that (recX)omc fails to be non-expansive w.r.t.
the total variation distance.

The following result is a direct consequence of Theorem 4.5 and the fact that bisimilarity implies trace
equivalence.

Theorem 5.11 For all t, s ∈ T, tvomc(�t�, �s�) = tvU(t, s).

5.3 A Quantitative Deduction System

Now we present a relaxed quantitative deduction system which will be later shown to be sound and complete
w.r.t. the total variation distance. The deduction system we propose is not a quantitative deduction system
in the sense of [15], because it does not include the (NExp) axiom of non-expansiveness of the operators (cf.
Section 3).

The quantitative deduction system 
 ⊆ 2E(Σ) ×E(Σ) of type Σ that we consider satisfies the axioms (Refl),
(Symm), (Triang), (Max), (Arch) and rules (Subst), (Cut) (Assum) from Section 3 and the following additional
axioms

(B1) 
 t+1 s ≡0 t ,

(B2) 
 t+e t ≡0 t ,

(SC) 
 t+e s ≡0 s+1−e t ,

(SA) 
 (t+e s) +e′ u ≡0 t+ee′ (s+ e′−ee′
1−ee′

u) , for e, e′ ∈ [0, 1) ,

(Unfold) 
 recX.t ≡0 t[recX.t/X] ,

(Unguard) 
 recX.(t+e X) ≡0 recX.t ,

(Fix) {s ≡0 t[s/X]} 
 s ≡0 recX.t , for X guarded in t ,

(Cong) {t ≡0 s} 
 recX.t ≡0 recX.s ,

(DP) 
 a.(t+e s) ≡0 a.t+e a.s ,

(Top) 
 t ≡1 s ,

(Pref) {t ≡ε s} 
 a.t ≡ε a.s ,

(IB) {t ≡ε s, t
′ ≡ε′ s

′} 
 t+e t
′ ≡ε′′ s+e s

′ , for ε′′ ≥ eε+ (1− e)ε′ .

Note that the axiom (NExp) is not included in the definition.
(B1), (B2), (SC), (SA) are the axioms of barycentric algebras due to Stone [24], used here to axiomatize the

convex set of probability distributions. (SC) stands for skew commutativity and (SA) for skew associativity.
The axioms (Unfold), (Unguard), (Fix), (Cong) are the recursion axioms of Milner [16], used here to axiom-

atize coinductive behaviors. (Unfold) and (Fix) state that, whenever X is guarded in a term t, recX.t is the
unique solution of the recursive equation s ≡0 t[s/X]. The axiom (Unguard) deals with unguarded recursive
behavior, and (Cong) states the congruential properties of the recursion operator.
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The axiom (DP) is the distributivity law of the prefix operator over the probabilistic choice of Silva and
Sokolova [22].

The last three axioms are the only truly quantitative one. (Top) states that the distance is bounded
by 1; (Pref) is the non-expansiveness for the prefix operator; and (IB) is the interpolative barycentric axiom
introduced in [15] for axiomatizing the Kantorovich distance on finitely-supported probability distributions (cf.
§10 in [15]).

It is important to remark that the quantitative deduction system given above subsumes the equational
systems of Stark and Smolka [23] axiomatizing probabilistic bisimilarity, and of Silva and Sokolova [22] for
probabilistic trace equivalence.

5.4 Soundness

In this section we show the soundness of our quantitative deduction system w.r.t. the bisimilarity distance
between pointed open Markov chains.

Recall that, by Theorem 5.11, for all t, s ∈ T, |=OMC t ≡ε s is equivalent to |=U t ≡ε s. To ease the
notation, in the following we simply write |= t ≡ε s.

Theorem 5.12 (Soundness) For any t, s ∈ T, if 
 t ≡ε s then |= t ≡ε s.

Proof. The axioms (Refl), (Symm), (Triang), (Max), and (Arch) are sound since tv is a pseudometric. The
soundness of the classical logical deduction rules (Subst), (Cut), and (Assum) is immediate. By ∼ ⊆ ≈, the
axioms (B1), (B2), (SC), and (SA) along with (Unfold) and (Unguard) follow directly by the soundness theorem
proven in [23]. The soundness of (Cong), (Fix), (DP) follow by the soundness of [22].

The soundness of (Top) follows from the fact that tv is 1-bounded. To prove the soundness of (Pref) it
suffices to show tv(t, s) ≥ tv(a.t, a.s).

tv(a.t, a.s) = supE∈ΣΠ
|P(a.t)(E)− P(a.s)(E)| (def. tv)

= supE∈ΣΠ
|P(a.t)({a}E)− P(a.s)({a}E)| (P(a.t)(C(a)) = P(a.s)(C(a)) = 1)

= supE∈ΣΠ
|P(t)(E)− P(s)(E)| = tv(t, s) (def. μT, PU, tv)

The soundness of (IB) follows by e tv(t, s) + (1− e) tv(t′, s′) ≥ tv(t+e t
′, s+e s

′).

tv(t+e t
′, s+e s

′) = supE∈ΣΠ
|P(t+e t)(E)− P(s+e s

′)(E)| (def. tv)

= supE∈ΣΠ

∣∣e(P(t)(E)− P(s)(E)
)
+ (1− e)

(
P(t′)(E)− P(s′)(E)

)∣∣ (def. μT, PU)

≤ e supE∈ΣΠ
|P(t)(E)− P(s)(E)|+ (1− e) supE∈ΣΠ

|P(t′)(E)− P(s′)(E)|
≤ e tv(t, s) + (1− e) tv(t′, s′) (def. tv)

The above concludes the proof. �

5.5 Completeness

In this section we prove completeness of our quantitative deduction system w.r.t. the total variation distance
between pointed open Markov chains.

For the sake of readability we introduce the following notation for formal sums of terms (or convex combi-
nations of terms). For n ≥ 1, t1, . . . , tn ∈ T terms, and e1, . . . , en ∈ [0, 1] positive reals such that

∑n
i=1 ei = 1,

we define ∑n
i=1 ei · ti =

{
t1 if e1 = 1

t1 +e1

(∑n
i=2

ei
1−e1

· ti
)

otherwise .

Following the pattern of [16,23], the completeness theorem hinges on a couple of important transformations.
The first of these is the Bekič-Scott construction of solutions of simultaneous recursive definitions. This is
embodied in the next theorem, which is [16, Theorem 5.7].

Theorem 5.13 (Unique Solution of Equations) Let X = (X1, . . . , Xk) and Y = (Y1, . . . , Yh) be distinct
names, and t = (t1, . . . , tk) terms with free names in (X,Y ) in which each Xi is guarded. Then there exist
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terms s = (s1, . . . , sk) with free names in Y such that


 si ≡0 ti[s/X] , for all i ≤ k.

Moreover, if for some u = (u1, . . . , uk) with free variables in Y , 
 ui ≡0 ti[u/X], for all i ≤ k, then 
 si ≡0 ui,
for all i ≤ k.

The second transformation provides a deducible “k-steps normal form” for terms, where k is a parameter
counting the number of nested prefixes. This result is embodied in the following theorem (when k = 1, this is
[23, Theorem 5.9] 4 ).

Theorem 5.14 (Eq. Characterization) For any k ≥ 1 and any term t, with free names in Y , there exist
terms t1, . . . , tn with free names in Y , s.t. 
 t ≡0 t1 and


 ti ≡0

∑h(i)
j=1 pij · sij , for all i ≤ n ,

where the terms sij are enumerated without repetitions, each sij is either of the form a1ij ....a
k
ij .tf(i,j), or

b1ij ....b
uij

ij . recX.X, or c1ij ....c
wij

ij .Yg(i,j), for some uij , wij < k.

The last lemma relates the proposed deduction system with the Kantorovich distance. So far this is the only
transformation embodying the use of the interpolative barycentric axiom (IB) to deduce nontrivial quantitative
information on terms.

Lemma 5.15 Let d be a 1-bounded pseudometric over T and μ, ν ∈ Δ(T) probability measures with supports
supp(μ) = {t1, . . . , tk} and supp(ν) = {s1, . . . , sr}. Then

{ti ≡ε su | ε ≥ d(ti, su), 1 ≤ i ≤ k and 1 ≤ u ≤ r} 

k∑

i=1

μ(ti) · ti ≡ε′

r∑
u=1

ν(su) · su ,

for all ε′ ≥ K(d)(μ, ν).

Now we are ready to prove the main result of this section. The proof of completeness can be sketched as
follows. Given t, s ∈ T such that tv(t, s) ≤ ε, to prove 
 t ≡ε s, we first show that, for any k ≥ 1, εk ≥ dk(t, s)
implies 
 t ≡εk s, then, by Theorem 5.4 and (Arch), we deduce 
 t ≡ε s.

Theorem 5.16 (Completeness) For any t, s ∈ T, if |= t ≡ε s, then 
 t ≡ε s.

Proof. Let t, s ∈ T and ε ∈ Q+. By Theorem 5.4 and (Arch), to prove that tv(t, s) ≤ ε implies 
 t ≡ε s, it
suffices to show that for any k ≥ 1, ε ≥ dk(t, s) implies 
 t ≡ε s. Let k ≥ 1. The case ε ≥ 1 trivially follows
by (Top) and (Max). Let ε < 1. By Theorem 5.14, there exist terms t1, . . . , tm and s1, . . . , sr with free names
in X and Y , respectively, such that 
 t ≡0 t1, 
 s ≡0 s1, and


 ti ≡0

∑h(i)
j=1 pij · t′ij , for all i ≤ m, (1)


 su ≡0

∑n(u)
v=1 quv · s′uv , for all u ≤ r, (2)

where the terms t′ij (resp. s′uv) are enumerated without repetitions, and t′ij (resp. s′uv) have either the form

a1ij ....a
k
ij .tf(i,j) (resp. b1uv....b

k
uv.sz(u,v)), or a1ij ....a

αij

ij . recZ.Z (resp. b1uv....b
βuv
uv . recZ.Z) , or a1ij ....a

γij

ij .Xg(i,j)

(resp. b1uv....b
δuv
uv .Yw(u,v)), for some αij , γij < k (resp. βuv, δuv < k). If we can prove that for all σ ∈ ω,


 ti ≡ε su , for all i ≤ m, u ≤ r, and ε ≥ Ψ̃σ
k(1)(ti, su) , (3)

then, by Lemma 5.8 and (Arch), we get 
 ti ≡ε su, for all ε ≥ dk(ti, su). Since 
 t ≡0 t1, 
 s ≡0 s1, by
(Triang), we deduce 
 t ≡ε s, for all ε ≥ dk(t, s).

4 The formulation given here is slightly simpler than the original one in [23], since our deduction system satisfies the axiom (B1),
which is not included in the equational deduction system of [23].
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In the remainder of the proof we prove (3), by induction on σ ∈ ω.

(Base case: σ = 0) Ψ̃0
k(1)(ti, su) = 1(ti, su). Since 1(ti, su) = 0 whenever ti = su and 1(ti, su) = 1 if

ti �= su, then (3) follows by the axioms (Refl), (Top) and (Max).
(Inductive step: σ > 0). We consider the cases ti ∼k su and ti �∼k su separately. Assume ti ∼k su. By

following the same proof strategy of [23, Theorem 3] (using Theorem 5.14 in place of [23, Theorem 2]) from

ti ∼k su we get 
 ti ≡0 su. By (Max), 
 ti ≡ε su, for all ε ≥ Ψ̃σ
k(1)(ti, su) = 0. Assume ti �∼k su and let t′ij

and s′uv be the terms occurring in the formal sums of (1), (2), respectively. Then, by (1), (2), and definition
of (μT)k, for x, y ∈ (Lk × T) � L<kX⊥,

(μT)k(ti)(x) =

{
pij if ξ(x) = t′ij
0 otherwise ,

(μT)k(su)(y) =

{
quv if ξ(y) = s′uv
0 otherwise .

where ξ is the mapping s.t. for all t ∈ T, a1, . . . , ak ∈ L, k′ < k, and X ∈ X , ξ((a1 . . . ak, t)) = a1....ak.t,
ξ(a1 . . . ak′X) = a1....ak′ .X, and ξ(a1 . . . ak′⊥) = a1....ak′ . recZ.Z. If we can prove that, for all i ≤ m, j ≤ h(i),
u ≤ r, and v ≤ n(u),


 t′ij ≡ε s
′
uv , for all ε ≥ Λk(Ψ̃

σ−1
k (1))(ξ(t′ij), ξ(s

′
uv)) , (4)

then, by Lemma 5.15, for all ε ≥ K(Λk(Ψ̃
σ−1
k (1)))((μT)k(ti), (μT)k(su)) we can deduce 
 ti ≡ε su. By this and

definitions of Ψ̃σ
k and Ψk, since we assumed ti �∼k su, we conclude (3).

Next we prove (4). The only interesting case is when t′i,j = a1....ak.tf(i,j) and s′u,v = a1....ak.sz(u,v) —
the others follow by (Refl), if t′i,j = s′u,v, (Top) otherwise, and then (Max). By definitions of ξ and Λk,

we have Λk(Ψ̃
σ−1(1))(ξ(t′ij), ξ(s

′
uv)) = Ψ̃σ−1(1)(tf(i,j), sz(u,v)). By inductive hypothesis on σ − 1, we have


 tf(i,j) ≡ε sz(u,v), for all ε ≥ Ψ̃σ−1(1)(tf(i,j), sz(u,v)), and by repeatedly applying (Pref) we get (4). �

6 A Quantitative Kleene’s Theorem

In this section we provide a metric extension to the quantitative Kleene’s representation theorem of Silva
and Sokolova [22] (see also [21,6]). Specifically, we have that any (finite) pointed open Markov chains can
be represented up to bisimilarity as a Σ-term and, vice versa, for any Σ-term t there exist a (finite) pointed
open Markov chain bisimilar to �t�. Moreover, by endowing the set of Σ-terms with the pseudometric freely-
generated by the quantitative deduction system 
 presented in Section 5.3 (in a way which will be made precise
later in Definition 6.1) we get that the correspondence stated above is metric invariant.

Next we recall from [15] the definition of initial quantitative model for a quantitative deduction system.

Definition 6.1 The initial 
-model is the quantitative algebra (T,Σ, dT), where (T,Σ) is the initial algebra
of Σ-terms and dT : T × T → [0, 1] is the 1-bounded pseudometric defined, for arbitrary terms t, s ∈ T, as
dT(t, s) = inf {ε | 
 t ≡ε s}.

By (Refl), (Symm), (Triang), (Top) it is easy to prove that dT is a well-defined 1-bounded pseudometric.
Moreover, (T,Σ, dT) is a sound model for 
.

Next we show that there is a strong correspondence between the initial 
-model and the quantitative algebra
of finite pointed open Markov chains.

Theorem 6.2 (Quantitative Kleene’s Theorem)

(i) For any pair (M,m), (N , n) of finite open Markov chains, there exist t, s ∈ T such that �t� ∼ (M,m),
�s� ∼ (N , n), and tv((M,m), (N , n)) = dT(t, s);

(ii) For any t, s ∈ T, there exist finite pointed open Markov chains (M,m), (N , n), such that �t� ∼ (M,m),
�s� ∼ (N , n), and tv((M,m), (N , n)) = dT(t, s).

7 Conclusions and Future Work

In this paper we proposed a sound and complete axiomatization for the total variation distance of Markov
chains. The proposed axiomatic system comes as a natural generalization of the one in [22] for probabilistic
trace equivalence.
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Similarly to [4], where we provided a sound and complete axiomatization for the bisimilarity distance of
Desharnais et al., also this case recursion was not sound w.r.t. the non-expansiveness axiom (NExp). Still we
were able to prove completeness for the axiomatization. This further result entails the possibility of generalizing
the original quantitative framework of Mardare, Panangaden, and Plotkin [15], maybe allowing for algebraic
operators that are simply required to be continuous.

Another appealing direction of future work is to apply our results on quantitative systems described as
coalgebras in a way similar to one proposed in [6,21,7]. By pursuing this direction we would be able to obtain
metric axiomatizations for a wide variety of quantitative systems, including non-generative probabilistic models,
weighted transition systems, Segala’s systems, stratified systems, Pnueli-Zuck systems, etc.
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