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Abstract 
 
In recent years, there has been rapid progress on peridynamics. It has been applied to many 
different material systems, used for coupled field analysis and it is suitable for multi-scale 
analysis. This study mainly focuses on peridynamic analysis for plate-type structures. For this 
purpose, a new peridynamic Kirchhoff plate is developed. The new formulation is 
computationally efficient by having only one degree of freedom for each material point. 
Moreover, it is based on state-based peridynamic formulation which doesn’t impose any 
limitation on material constants. After presenting how to impose simply supported and clamped 
boundary conditions in this new formulation, several numerical studies are considered to 
demonstrate the accuracy and capability of the proposed formulation. 
 
 
1. Introduction   
 
Peridynamic (PD) theory was introduced by Silling (2000) as an alternative formulation to 
Classical Continuum Mechanics (CCM). Instead of expressing equations of motion in partial 
differential equation form as in CCM, peridynamic equations of motion are expressed in 
integro-differential equation form. Moreover, peridynamic equations do not contain any spatial 
derivatives which offer certain advantages especially for the solution of problems including 
displacement discontinuities due to the existence of cracks. Besides, in peridynamics, the state 
of a material point is influenced by material points which are located at a finite distance within 
a domain of influence called as horizon. This feature positions peridynamics within non-local 
continuum mechanics formulations. As highlighted in dell’Isola et al. (2015), the origins of 
peridynamics go back to Piola. Since its introduction, there has been rapid progress on 
peridynamics. The PD formulation has been applied to many different material systems 
including linear elastic materials, metals and composite materials (Oterkus and Madenci, 
2012). The PD theory is not limited to macroscopic analysis which allows researchers to use it 
for analyzing problems at mesoscale (De Meo et al., 2016) and nano-scale (Ebrahimi et. al., 
2015). Moreover, it is currently possible to perform multi-physics analysis in a single 
peridynamic framework by coupling mechanical field to thermal field (Oterkus et. al., 2014a), 
moisture diffusion (Oterkus et. al., 2014b), electric current (Gerstle et. al. 2008), porous flow 
(Oterkus et al., 2017), etc. PD theory has also been effectively used for impact analysis (Amani 
et al., 2016). An in-depth review of PD research is given in Madenci and Oterkus (2014) and 
Javili et al. (2018). 
 
This study mainly focuses on the application of PD theory for the analysis of plate-type 
structures. Several examples of such type of analysis currently exist in the literature. Amongst 
these, Taylor and Steigmann (2015) developed a PD formulation suitable for thin plates. 
O’Grady and Foster (2014) introduced a non-ordinary state-based Kirchhoff-Love plate 
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formulation suitable for modelling thin plates using rotational springs between peridynamic 
bonds. Diyaroglu et al. (2015) developed a bond-based PD Mindlin plate formulation which 
takes into account the effect of shear deformation and is suitable for the analysis of thick plates.  
 
In this study, a new PD Kirchhoff plate formulation is presented. This new formulation has 
certain advantages. First of all, each material point has only one degree of freedom, i.e. 
transverse deflection, as opposed to three-degree of freedom used in Mindlin plate formulation. 
This yields significant computational time and memory reduction in computations. Moreover, 
the formulation is based on PD state-based concept. Therefore, it doesn’t impose any limitation 
on material constants. The paper starts with a derivation of the equation of motion for the new 
PD Kirchhoff plate formulation. It then presents how to apply simply supported and clamped 
boundary conditions in the current formulation. Finally, several numerical cases are 
demonstrated to show the accuracy and capability of the proposed formulation.    
 
 
2. Kinematics of Kirchhoff plate   
 
Unlike the local continuum theory, in PD theory, each state of a material point is not only 
influenced by the material points located in its immediate vicinity but also influenced by 
material points which are located within a region of finite radius named as “horizon”, H.  
Therefore, the general PD equations of motion for material point  kx  can be expressed in 

summation form as (Madenci and Oterkus, 2014) 
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where the summation takes over the family member material points of k and kN  indicates the 

total number of family members,  , u , t, V and b represent the density, displacement, time, 
material point volume and the body load vector, respectively. The interaction force vector, 

  k jf , between material points k and j has a unit of “force per unit volume squared” defined as  

(Madenci and Oterkus, 2014) 
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As shown in Fig. (1), the PD force density vector   k jt  represents the force acting on the main 

material point k by its family member material point j, and, on the contrary,   j kt  represents 

the force acting on material point j by its family member material point, k. They are also related 
to strain energy density function,  kW , as  (Madenci and Oterkus, 2014) 
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Figure 1. Peridynamic interaction force vectors.   

 
Kirchhoff plate theory is based on the assumption that “normals to the mid-surface of the 
undeformed plate remain straight and normal to the mid-surface, and unstretched in length, 
during deformation.” To derive PD force densities of Kirchhoff plate theory (Fig. 2), the strain 
energy densities of material points k and j are expressed as (Leissa and Qatu, 2011) 
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and   
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where  3 212 1D Eh    is the flexural rigidity,   is the Poisson’s ratio and h is the thickness 

of the plate. The linearized curvatures and twist of the plate mid-surface, x , y  and xy , are 

expressed as   
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in which w is the vertical direction displacement component to the plate surface. Substituting 
Eqs. (4a,b) into Eq. (3), the force densities,   k jt  and   j kt , can be expressed in terms of 

curvatures and twist as   
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and   
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The PD form of linearized curvatures and twist can be derived for the material point x from 

Taylor series expansion by ignoring the higher-order terms,  3x  as   
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where x  and y  are the projections of reference length    j k  x x  between material points 

k and j along x- and y- axes, respectively, and they are defined as   
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and  
 

 siny                         (8b) 

 
Note that  represents the angle between the peridynamic interaction and x-axis as shown in 
Fig. 2. Substituting Eq. (8) into Eq. (7) and performing some algebraic manipulations result in   
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As explained in Appendix A, if each term in Eq. (9) is multiplied with trigonometric functions 
of  ig   while integrating over the circular horizon of   the differentiations in Eq. (9) can be 

expressed in terms of integrations as   
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Utilizing Eqs. (10a-d) for material points k and j and discretizing the integral equations, the 
curvatures and twist can be defined as   
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and they are for material point j   
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where the summation indices ki  and ji  represent the material points inside the horizon of the 
main material point k and its family member point j, respectively. Substituting Eqs. (11) and 
(12) into Eqs. (6a,b), and performing some algebraic manipulations, the PD force densities can 
be expressed in terms of displacements, w as   
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Substituting force density vectors   k jt  and   j kt  (Eq. 13) into interaction force vector,   k jf  

(Eq. 2), the PD equation of motion (EOM) of Kirchhoff plate theory can be derived from Eq. 
(1) as   
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Figure 2. PD interactions in Kirchhoff plate theory.  
3. Boundary conditions  
 
The prerequisite of the derivation process of PD EOM is that the material points’ influence 
domain must be completely embedded in a material domain. For this reason, the PD EOM 
derived in Eq. (14) is valid only if the main material point, k and its family member, j have 
intact horizons which are fully embedded in an actual material domain, R, as shown in Fig. 3. 
However, near boundary points, k and j, can have incomplete influence domains. Therefore, 
the supplemental equations valid for the fictitious boundary layer, cR , outside the boundary of 

the actual material domain, are necessary as explained in Madenci and Oterkus (2014). The 
width of this layer can be chosen as the double size of the horizon. The possible types of 
boundary conditions and their corrections are explained below for Kirchhoff plate theory from 
PD point of view.   
 

 
 

Figure 3. The truncated horizons of k and j and the introduction of fictitious boundary layer   
 
 
3.1 The clamped boundary condition   
To implement clamped boundary condition (Fig. 4), a fictitious boundary layer is created 
outside the actual material domain. The horizon size can be chosen as 3 x    in which the 
discretization size is x . This horizon size is sufficient enough to represent macro-scale 
displacements in plate problems (Diyaroglu et al, 2014). Hence, the width of the fictitious 
region is chosen as 2 .   
 
The clamped boundary condition for the vertical edges along the y-axis is obtained by imposing 
zero displacements and zero rotation for the material points adjacent to the clamped end as   
 

 0 0w x     and   
 0 0

w x

x





                   (15) 

 



 
 

in which 0x  is on the boundary line. Therefore, as shown in Fig. 4, the displacements of the 

material points close to the boundary line can be assumed as zero:   
 

     1 1 0    for    1, 2,...k kw w k n                     (16) 

 
where the first subscript represents the number of rows along the y-direction and the second 
subscript is for the number of columns along the x-direction. The displacement field of material 
points near the boundary region are necessarily imposed to be symmetric to the clamped 
boundary as   
 

          for    i 2,3,...6k i k iw w                      (17) 

 

 
 

Figure 4. Clamped boundary condition. 
 
Similarly, the horizontal direction edges parallel to the x-axis has constraint conditions of   
 

 0 0w y     and   
 0 0

w y

x





                   (18) 

 
in which 0y  is on the horizontal boundary line. The corresponding PD boundary conditions 

can be obtained as in Eqs. (16) and (17).   
 
 
3.2. The simply supported boundary condition   
To implement simply supported boundary condition, the fictitious boundary layer is again 
chosen to be equal to 2 . The vertical direction boundaries (along the y-axis) are imposed to 
have zero displacements and curvatures as   
 

 0 0w x     and   
 2

0
2

0
w x

x





                   (19) 

 
In the discretized form of PD formulation, these conditions can be achieved by enforcing anti-
symmetrical displacement fields to the material points in the fictitious region as opposed to the 
actual displacement fields as shown in Fig. 5. Thus, it is defined as   
 

          for    i 1, 2,...6   and   1, 2,...k i k iw w k n                     (20) 

 



 
 

 
Figure 5. Simply supported boundary condition.  

Similarly, the horizontal direction edges have the constraints of   

 0 0w y     and   
 2

0
2

0
w y

y





                   (21) 

 
and in discretized form these conditions take a similar form as in Eq. (20).   
 
4. Numerical Validation  
 
To verify the validity of new PD formulation for a Kirchhoff plate, the PD solutions are 
compared with the corresponding finite element (FE) analysis results.   
 
4.1. Clamped Plate  
A clamped plate with a length and width of 1 mL W   and a thickness of 0.01 mh   is 
considered as shown in Fig. 6. The Young’s modulus and Poisson’s ratio of the plate are 

200 GPaE   and 0.3  , respectively. The model is discretized into one single row of 
material points along with the thickness and the distance between material points is 

0.01 mx  . A fictitious region is introduced outside the edges as the external boundaries with 
a width of 2 . The plate is subjected to a distributed transverse load of 100 N/mp   through 

the y-center line. The line load is converted to a body load of 
 

5 35 10  N/m
2 /

pW
b

W x V
  

 
 

and it is distributed to two columns of material volumes through the center line as shown in 
Fig. 7.   
 

 
Figure 6. The geometry of a clamped Kirchhoff plate.   

 



 
 

 
 

Figure 7. The PD discretization of a clamped plate.   
 

 
                                    (a)                                                                    (b) 
 

Figure 8. The comparison of the vertical displacement components of (a) FE and (b) PD 
results (unit: m).   

 

    
                                    (a)                                                                        (b) 
 

Figure 9. The comparison of the vertical displacements along a) x- and b) y- central axes   
 
The FE model of the plate is created by using SHELL181 element in ANSYS. The PD and FE 
transverse displacement contours are compared in Fig. 8. They yield similar displacement 
variations. The maximum difference between PD and FE results is less than 0.5%. Moreover, 
the vertical displacement components along central x- and y- axes are compared in Fig. 9. These 

Tr
an

sv
er

se
 D

is
pl

ac
em

en
t,

 w
 (

m
)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Location, y (m)

-16

-14

-12

-10

-8

-6

-4

-2

0

2

Tr
an

sv
er

se
 D

is
pl

ac
em

en
t,

 w
 (

m
)

10-6

PD
FE



 
 

results verify the accurateness of the current PD formulation for a Kirchhoff plate theory under 
clamped boundary conditions.   
 
4.2. Simply Supported Plate  
A simply supported plate (Fig. 10) has the same geometrical and material properties as of the 
clamped plate case. Again, it is discretized with a single row of material points along the 
thickness direction and the discretization size is 0.01 mx  . A fictitious region is created 
outside the region of boundaries and its width is equal to two times the size of the horizon,  . 
The plate is subjected to a distributed transverse line load of 100 N/mp   through the y-central 

line. It is imposed to two columns of material points with a body load of 5 35 10  N/mb    as in 
Fig. 7.   
 

 
 

Figure 10. The geometry of a simply supported Kirchhoff plate.   
 

 

 
                                 (a)                                                                   (b) 
 
Figure 11. The comparison of vertical displacement components of (a) FE and (b) PD results 

(unit: m).   
 
 
 



 
 

    
                                    (a)                                                                        (b) 

 
Figure 12. The comparison of vertical displacements along a) x- and b) y- central axes.   

 
The transverse displacement components of FE and PD theory show very close variations as 
shown in Fig. 11. The maximum difference between PD and FE results is less than 0.5%. 
Furthermore, the displacement variations along central x- and y- axes are on top of each other 
for FE and PD results as shown in Fig. 12. This is to confirm the current PD formulation of 
Kirchhoff plate theory under simply supported boundary conditions.   
 
 
5.  Final remarks 
 
This study presents a new state-based peridynamic formulation for Kirchhoff plate theory. The 
constitutive equation is obtained by utilizing the strain energy density of a material point in the 
form of curvatures and twist. Taylor series expansion up to the order of two is utilized to obtain 
PD form of strain energy density function. Due to the nonlocal characteristic of peridynamic 
theory, the boundary condition implementation needs extra care. Thus, implementation of two 
different type boundary conditions, clamped and simply supported, in the current formulation 
is presented. Two different numerical cases incorporating such boundary conditions are 
considered and very good agreement is observed between peridynamic and finite element 
analysis results.  
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Appendix  
 

The Taylor Series expansion up to the second order for the deflection ( )w x  can be written as  

           

             
2 2 2

2 2 2 2 2
2 2

cos sin

1 1
              cos sin cos sin

2 2

w w
w w

x y

w w w

x y x y

    

      

 
   

 

  
  

   

x x
x x

x x x
          (A.1a) 

 
and rearranging its terms yield   
 
           

             

2

2 2 2
2 2

2 2

cos sin

1 1
              cos sin cos sin

2 2

w w w w

x y

w w w

x y x y

  
  

   

   
 

 

  
  
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x x x x

x x x
                       (A.1b) 

 
Considering material point 𝐱 as fixed, multiplying each term in Eq. (A.1) with trigonometric 
functions  ig   with 1, 2,...i   and integrating over a circular horizon with a radius 𝛿 results 

in    
 

           

           

             

2 2

2
0 0 0 0

22 2
2

2
0 0 0 0

2 22 2
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d d cos d d
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sin d d cos d d

2

1 1
sin d d cos sin d d
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i i

i i

i i

w w w
g g

x

w w
g g

y x

w w
g g

y x y
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   


       
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 
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 
 

 

 

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   
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   

x x x

x x

x x

           (A.2) 

 
where  ig   should be constructed based on orthogonality condition. By defining  1 1g    

and substituting into Eq. (A.2), the Laplacian term can be obtained as   
 

         2 2 2
2

2 2 2 2
0 0

4
d d

w w w w
w

x y

  
  

 
   

   
   

x x x x
x              (A.3) 

 
Defining      2 cos sing     and substituting into Eq. (A.2) results in   

 

         
2 2

2 2
0 0

4
2cos sin d d

w w w

x y

  
    

 
  


   

x x x
              (A.4) 

 
Defining      2 2

3 cos  and sing     and substituting into Eq. (A.2), respectively, result in   

 

         2 22 2 2
2

2 2 2
0 0

3
cos d d

16 16

w w w w

x y

       
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 

  
x x x x

           (A.5a) 
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x x x x

          (A.5b) 

 
By solving Eqs. (A.5) simultaneously and performing some algebraic manipulations, the 
second order partial derivatives are obtained as   
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