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The superform construction of supergravity actions, christened the ‘‘ectoplasm method,’’ is based on

the use of a closed super d-form in the case of d space-time dimensions. In known examples, such

superforms are obtained by iteratively solving nontrivial cohomological problems. The latter usually

makes this scheme no less laborious than the normal coordinate method for deriving component actions

for matter-coupled supergravity. In this paper we present an alternative procedure to generate required

superforms in four space-time dimensions, which makes use of self-dual vector multiplets. It provides the

shortest derivation of chiral actions in two different theories: (i) N ¼ 1 old minimal supergravity; and

(ii) N ¼ 2 conformal supergravity. The N ¼ 2 superform construction is developed here for the first

time. Although our consideration is restricted to the case of four dimensions, a generalization to higher

dimensions is plausible.
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I. INTRODUCTION

The power of superspace approaches to supergravity
theories in diverse dimensions consists in the possibility
to write down the most general locally supersymmetric
actions formulated in terms of a few dynamical variables
with simple geometric origin. This generality does not
come without price to be paid. The point is that, being
trivial in principle, a reduction from the parental superfield
action to its component counterpart requires some work
that is technically quite involved and challenging in many
concrete cases.

For off-shell supergravity theories in four dimensions,
the component reduction was originally carried out using
the Wess-Zumino iterative procedure [1] (see [2,3] for
reviews) and its generalizations [4–8]. Broadly speaking,
this is a technique to reconstruct the relevant density
multiplet from its lowest component and the known super-
symmetry transformation law, in a suitably chosen Wess-
Zumino gauge, order by order in powers of so-called
covariant �-variables (of mysterious origin). Although
this technique can always be applied, at least in principle,
in practice it is rather awkward and (unreasonably) labori-
ous. As a result, for some time the issue of component
reduction remained the weakest point of superspace for-
mulations for supergravity.1

This situation has changed with the observation [10] that
the concept of superspace normal coordinates [11] can be
fruitful for component reduction in supergravity, which has

led to the development of more powerful methods [12,13]
(see also [14]). The crucial property of the normal coor-
dinate approaches to component reduction is their univer-
sality. They can be used efficiently for any supergravity
theory formulated in superspace, and for any number of
space-time dimensions. At the same time, these methods
are ultimately related to the earlier Noether-like schemes
of [1,2,5–8], for the fermionic normal coordinates (which
correspond to parallel transport around the bosonic body of
curved superspace) can be seen to coincide with the co-
variant �-variables [13].
Over a decade ago, a new universal method2 for compo-

nent reduction in supergravity [15,16] was proposed,
sometimes referred to as ‘‘ectoplasm,’’ which appears to
be more radical than the normal coordinate approach. It
presents a superform construction of supergravity actions,
and is based on the use of a closed super d-form in the case
of d space-time dimensions. Conceptually, it is very simple
and its key points can be described in just two paragraphs
as follows.

Consider a curved superspace Mdj� with d space-time

and � fermionic dimensions, and letMdj� be parametrized
by local coordinates zM ¼ ðxm̂; ��̂Þ, where m̂ ¼ 1; . . . ; d
and �̂ ¼ 1; . . . ; �. The corresponding superspace geome-
try is described by covariant derivatives

DA ¼ ðDâ;D�̂Þ ¼ EA þ�A; EA :¼ EA
M@M;

�A :¼ �A � J ¼ EA
M�M: (1.1)

Here J denotes the generators of the structure group (with
all indices of Js suppressed), EA is the inverse vielbein, and
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1For supergravity theories possessing prepotential formula-

tions, there exists an alternative, quite systematic scheme for
component reduction [9]. Unfortunately, such prepotential for-
mulations are not available in many cases.

2The mathematical construction underlying the method of
[15,16] happens to be a special case of the theory of integration
over surfaces in supermanifolds developed in [17–19]; see also
[20,21] for related reviews.
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� ¼ dzM�M ¼ EA�A the connection. As usual, the ma-
trices defining the vielbein EA :¼ dzMEM

A and its inverse
EA are such that EA

MEM
B ¼ �A

B and EM
AEA

N ¼ �M
N .

The covariant derivatives obey the algebra

½DA;DBg ¼ TAB
CDC þ RAB � J; (1.2)

with TAB
C the torsion, and RAB the curvature of M.

Next, consider a super d-form

J ¼ 1

d!
dZMd ^ . . . ^ dZM1JM1...Md

¼ 1

d!
EAd ^ . . . ^ EA1JA1...Ad

(1.3)

constrained to be closed

d J ¼ 0 , D½BJA1���Adg �
d

2
T½BA1j

CJCjA2���Adg ¼ 0: (1.4)

Then, the integral over space-time

S ¼ 1

d!

Z
ddx"m̂1...m̂dJm̂1...m̂d

¼ 1

d!

Z
ddx"m̂1...m̂dEm̂d

Ad . . .Em̂1

A1JA1...Ad
(1.5)

possesses the following fundamental properties: (i) S is
independent of the Grassmann variables �’s; and (ii) S is
invariant under general coordinate transformations on

Mdj� and structure group transformations, and therefore

S ¼ 1

d!

Z
ddx"m̂1...m̂dEm̂d

Ad . . .Em̂1

A1JA1...Ad
j�¼0: (1.6)

In physically interesting cases, the superform J has to obey
some additional covariant constraints imposed on its com-
ponents JA1...Ad

. This is how the dependence of J on the

geometric fields in (1.1) and (1.2) occurs.
As is clear from the above discussion, the ectoplasm

method is very general, and its use for component reduc-
tion3 is just one of many possible applications. It is actually
a method for constructing supersymmetric invariants. In
particular, the method has already been applied to study the
structure of higher-order corrections in heterotic string
theory [23], as well as for elucidating the structure of
higher-loop counterterms in maximally supersymmetric
Yang-Mills theories [24]. The last two works are in accord
with comments made at the end of the first work in [15],
where it was even conjectured that the ectoplasmic concept
might find application outside of supersymmetric theories.

Independently of concrete applications, the starting
point of the ectoplasm method is always a closed super
d-form J given explicitly. To construct such a superform,
one has to address the cohomology problem (1.4) that is
nontrivial in general. For instance, if one somehow fixes a

nonvanishing component of JA1...Ad
of lowest mass dimen-

sion and then tries to restore the components of higher
dimension by iteratively solving the cohomology equations
(1.4), the resulting calculation can be argued to be equiva-
lent to that one encounters when applying the normal
coordinate method of [13] (which proves to be more
powerful than the scheme presented in [12]). Therefore,
in the context of component reduction, one does not gain
much if the ectoplasm method is implemented iteratively.
However, the present paper is aimed to show that in con-
junction with additional ideas this method becomes the
most efficient approach to component reduction in
supergravity.
Given a 2n-dimensional symplectic manifold, its vol-

ume 2n-form� is known to coincide, modulo a numerical
factor, with!^n � ! ^ . . . ^!, where! is the symplectic
two-form, d! ¼ 0. In this paper we will try to mimic this
result in the case of four-dimensional supergravity theo-
ries. Specifically, for a given supergravity theory, we will
try to engineer the corresponding four-form J from the
wedge product of closed two-forms. It turns out that for
this purpose it is sufficient to play with self-dual vectors
multiplets (as defined, e.g., in [25] in the flat case) ifN ¼
1 and N ¼ 2 supergravities are considered.
This paper is organized as follows. In Sec. II we illus-

trate our approach by providing a new simplest/shortest
derivation of the closed four-form [16] which corresponds
to the chiral action principle within the old minimal for-
mulation for N ¼ 1 supergravity. Using the idea de-
scribed in Sec. II, in Sec. III we derive a closed four-
form that generates the component form of the chiral
action principle in N ¼ 2 conformal supergravity. The
latter result is then recast in the form of a complete density
projector formula for a general N ¼ 2 locally supersym-
metric action. A brief discussion of the results is given in
Sec. IV. The paper is concluded with two technical appen-
dices in which the superspace geometries for N ¼ 1 old
minimal and N ¼ 2 conformal supergravities are re-
viewed in a concise form.

II. CHIRAL ACTION IN N ¼ 1 OLD MINIMAL
SUPERGRAVITY

The closed four-form, which corresponds to the chiral
action principle within the old minimal formulation for
N ¼ 1 supergravity, was constructed in [16]. As an illus-
tration of our procedure, in this section we present a new,
simplest derivation of this superform. It is based on the use
of a self-dual vector multiplet. The latter is described by a
complex closed two-form

F ¼ 1

2
EB ^ EAFAB; dF ¼ 0 (2.1)

which is characterized by the following components:

3In the context of component reduction, its most recent appli-
cation has been given in [22] where the density projection
formula for 2D N ¼ 4 supergravity was determined.
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F�� ¼ 0; FA
_� ¼ 0; (2.2a)

Fa� ¼ �ð�aÞ� _�
�W

_�; Fab ¼ � i

2
ð~�abÞ _� _� �D _�

�W _�:

(2.2b)

Here the spinor field strength �W _� is covariantly antichiral,

D �
�W _� ¼ 0; (2.3)

and obeys the Bianchi identity

�D _�
�W _� ¼ 0 (2.4)

which implies that the vector multiplet is on-shell. In other
words, the explicit expression for the two-form is

F ¼ �E�Eað�aÞ� _�
�W

_� � i

4
EbEað~�abÞ _� _� �D _�

�W _�: (2.5)

It is an instructive exercise to check explicitly, using the
(anti)commutation relations for the covariant derivatives
DA collected in Appendix A, that the complex two-form F
defined above is indeed closed, dF ¼ 0. Alternatively, the
latter property becomes obvious if one recalls the structure
of an off-shell real vector multiplet in curved superspace
(see [2,3,9] for reviews). Its field strength

F ¼ dV ¼ 1

2
EB ^ EAF AB; V ¼ EAV A; (2.6)

with V the gauge field, is characterized by the following
components:

F �� ¼ F � _� ¼ F _� _� ¼ 0; (2.7a)

F �;� _� ¼ 2"��
�W _�; F _�;� _� ¼ 2" _� _�W �; (2.7b)

F � _�;� _� ¼ i"��ð �D _�
�W _�Þ þ i" _� _�ðD�W �Þ; (2.7c)

where the spinor field strengthW � and its conjugate �W _�

obey the Bianchi identities

�D _�W � ¼ D�
�W _� ¼ 0; D�W � ¼ �D _�

�W _�
:

(2.8)

If the equation of motion for a free vector multiplet is

imposed, D�W � ¼ �D _�
�W _� ¼ 0, the two sectors of F

which involve the chiral W � and antichiral �W _� field
strengths, respectively, become completely independent,
modulo the reality condition. The self-dual vector multi-
plet is formally obtained by setting W � ¼ 0 while keep-

ing the other field strength �W _� nonvanishing.
Consider the closed four-form J ¼ F ^ F,

J ¼ 1

24
ED ^ EC ^ EB ^ EAJABCD; dJ ¼ 0: (2.9)

Using Eqs. (2.2a) and (2.2b) and the relations given in
Appendix A, one can represent the nonvanishing compo-
nents of J as follows:

Jab�� ¼ �8ið�abÞ�� �Lc; (2.10a)

Jabc� ¼ i"abcdð�dÞ� _�
�D _� �Lc; (2.10b)

Jabcd ¼ � 1

4
"abcdð �D2 � 12RÞ �Lc: (2.10c)

Here �Lc is a covariantly antichiral scalar superfield,

D �
�Lc ¼ 0; (2.11)

which is expressed in terms of the vector multiplet strength

as �Lc ¼ i
2
�W2. This representation for �Lc is, however,

completely irrelevant in order to demonstrate the fact that
the four-form J with the nonvanishing components (2.10a)
–(2.10c) is closed, for Eq. (2.11) suffices. At this stage, the
self-dual vector multiplet has completed its role and can be
forgotten.
Using the closed four-form J associated with an arbi-

trary covariantly antichiral scalar superfield �Lc, one can
construct a locally supersymmetric action in accordance
with the general rule (1.6). It only remains to define the
component vierbein em

a :¼ Em
aj�¼0 and its inverse ea

m,
such that

ea
mem

b ¼ �b
a; em

aea
n ¼ �n

m; e :¼ detðemaÞ;
(2.12)

as well as the gravitino�m
� :¼ 2Em

�j�¼0 and its tangent-
space version �a

� :¼ ea
m�m

�. Then, for the action we
obtain

Sc ¼ �
Z

d4xe

�
1

4
�D2 � 3R� i

2
ð�dÞ� _��d

� �D _�

þ ð�abÞ���a
��b

�

�
�Lcj�¼0: (2.13)

This agrees with the results given in [2,3,9].

III. CHIRAL ACTION IN N ¼ 2 CONFORMAL
SUPERGRAVITY

We now turn to constructing a closed four-form destined
to generate the chiral action principle inN ¼ 2 conformal
supergravity. As shown in [26,27], N ¼ 2 conformal
supergravity can be described using the superspace geome-
try proposed by Grimm [28] which is more economical
than the formulation given in [29] (more precisely, the
former is obtained from the latter by partially fixing the
gauge freedom including the super-Weyl invariance).
Appendix B contains all information about the geometric
formulation of [28], which is relevant for this paper. A
complete presentation can be found in [26].
A self-dual N ¼ 2 vector multiplet in curved super-

space is described by a complex two-form, F ¼
1
2E

B ^ EAFAB, with the following components:
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FAj

_� ¼ 0; (3.1a)

Fi j
�� ¼ �2"��"

ij �W; Fa�
j ¼ i

2
ð�aÞ� _� �Dj

_�
�W; (3.1b)

Fab ¼ � 1

8
ðð~�abÞ _� _�½ �D _�k �D

_�
k � 4 �Y _� _��

þ 4ð�abÞ��W��Þ �W: (3.1c)

Thus the field strength FAB is generated by a single scalar
superfield �W which is covariantly antichiral,

D i
�
�W ¼ 0; (3.2)

and subject to the equation of motion

ð �Dði
_�
�D _�jÞ þ 4 �SijÞ �W ¼ 0: (3.3)

Here the tensor superfields W��, �Y _� _� and �Sij are compo-
nents of the superspace torsion; see Appendix B. It follows
from (3.1c) that Fab possesses both self-dual (F _� _�) and

anti-self-dual (F��) components.

F _� _� ¼ 1

8
½ �Dk

_�
�D _�k � 4 �Y _� _��W; F�� ¼ � 1

2
W��W:

(3.4)

However, the latter originates solely due to the curved-
superspace geometry. Indeed, F�� is proportional to the

super-Weyl tensor W��, and hence it vanishes in the flat

superspace limit.
The above relations imply that the two-form F is closed.

dF ¼ 0: (3.5)

To justify this claim, it is sufficient to consider an off-shell
real N ¼ 2 vector multiplet in curved superspace, F ¼
1
2E

B ^ EAF AB, which is described in detail in [26]. Its

components are expressed in terms of a covariantly chiral

superfieldW , �Di
_�W ¼ 0, and its conjugate �W which are

related to each other by the Bianchi identity4

ðD�ðiDjÞ
� þ 4SijÞW ¼ ð �Dði

_�
�DjÞ _� þ 4 �SijÞ �W : (3.6)

On the mass shell, when the expressions in both sides of
(3.6) vanish, one can consistently switch off W while

keeping �W nonvanishing. This results in the self-dual
N ¼ 2 vector multiplet introduced.
Now, consider the closed four-form J ¼ F ^ F,

J ¼ 1

24
ED ^ EC ^ EB ^ EAJABCD; dJ ¼ 0: (3.7)

It is an edifying calculation to verify that the nonvanishing
components of J can be represented as follows:

J i j k l
���� ¼ �32ið"��"��"ij"kl þ "��"��"

ik"lj þ "��"��"
il"jkÞ �Lc; (3.8a)

Ja
jk l
��� ¼ �4ð"��"klð�aÞ� _� �Dj

_� þ "��"
ljð�aÞ� _� �Dk

_� þ "��"
jkð�aÞ� _� �Dl

_�Þ �Lc; (3.8b)

Jab
kl
�� ¼ ið"��"klð~�abÞ _� _�

�D _� _� þ 2ð�abÞ�� �Dkl þ 16ð�abÞ�� �Skl � 8"��"
klðð�abÞ��W�� � ð~�abÞ _� _�

�Y _� _�ÞÞ �Lc; (3.8c)

Jabc
l
� ¼ �i"abcd

�
1

6
ð�dÞ� _�

�D _�
q
�Dlq þ 5

3
ð�dÞ� _�

�Slq �D _�
q � ð~�dÞ _��W��

�Dl
_�
� ð�dÞ� _�

�Y _� _� �Dl
_�
þ 4

3
ð�dÞ� _�ð �D _�

q
�SlqÞ

�
�Lc;

(3.8d)

Jabcd ¼ "abcd

�
1

96
ð �Dij �Dij � �D _� _� �D _� _�Þ þ

2

3
�Sij �Dij � 1

3
�Y _� _� �D _� _� þ

2

3
ð �Di

_�
�SijÞ �D _�j þ 1

6
ð �Dij �SijÞ

þ 3 �Sij �Sij � ð �Y _� _� �Y _� _� �W��W��Þ
�
�Lc: (3.8e)

Here the scalar �Lc is covariantly antichiral,

D i
�
�Lc ¼ 0; (3.9)

and is related to the vector multiplet strength as �Lc ¼
i
4
�W2. The operators �Dij and

�D _� _� in (3.8e) are defined as

�D ij :¼ �D _�ði �D
_�
jÞ;

�D _� _� :¼ �Dð _�
k

�D _�Þk: (3.10)

They possess the following useful identities:

�D _�
i
�D _� _�U ¼ 2

3
ð" _�ð _� �D _�Þk �Dik � 8" _�ð _� �Sij

�D _�Þj

� 8" _�ð _� �Y _�Þ _� �D _�i þ 6 �Yð _� _� �D _�Þ
i ÞU; (3.11a)

�D _� _� �D _� _�U ¼ �ð �Dij �Dij � 8 �Sij �Dij þ 8 �Y _� _� �D _� _�

� 16ð �D _�i
�SijÞ �D _�

j ÞU; (3.11b)

with U a scalar superfield.

4Equation (3.6) is a curved-superspace extension of the
Bianchi identity given in [30].
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Now comes the crucial point of our analysis. Given an

arbitrary covariantly antichiral scalar superfield �Lc, Eq.
(3.9), one can check that the four-form J with components
(3.8a)–(3.8e) is closed.5 At this stage, therefore, we can
completely forget about the on-shell vector multiplet F and

the explicit realization for �Lc in terms of �W given.

Using the closed four-form J constructed, we generate a
locally supersymmetric action in accordance with the gen-
eral rule (1.6). In complete analogy with the N ¼ 1 case,
we define the component vierbein em

a :¼ Em
aj�¼0 and the

gravitino �mi
� :¼ 2Emi

�j�¼0. Then, the resulting action is

Sc ¼
Z

d4xe

�
1

96
�Dij �Dij � 1

96
�D _� _� �D _� _� þ 2

3
�Sij �Dij � 1

3
�Y _� _� �D _� _� þ

2

3
ð �Di

_�
�SijÞ �D _�j þ 1

6
ð �Dij �SijÞ þ 3 �Sij �Sij � �Y _� _� �Y _� _�

þW��W�� � i

6
�dl

�ð�dÞ� _�

�
1

4
�D _�
q
�Dlq � 1

4
�Dl

_�
�D _� _� þ 7 �Slq �D _�

q � 5 �Y _� _� �Dl
_�
þ 4ð �D _�

q
�SlqÞ

�

þ i

2
�dl

�ð~�dÞ _��W��
�Dl

_� þ�ck
��dl

�

�
1

4
ð�cdÞ�� �Dkl þ 2ð�cdÞ�� �Skl � "��"

klð�cdÞ��W�� � 1

8
"��"

klð~�cdÞ _� _�
�D _� _�

� "��"
klð~�cdÞ _� _�

�Y _� _�

�
þ 1

4
"abcdð�aÞ� _��bj

��ck
��d�

k �D _�j þ i

4
"abcd�ai

��b�
i �cj

��d�
j
�
�Lcj�¼0: (3.12)

This component action was first computed by Müller [8]
using different techniques. Its derivation using the ecto-
plasm approach is one of the main results of our paper.

The covariantly antichiral scalar superfield �Lc can be
represented in terms of an unconstrained scalar superfield
L as follows [7,13]:

�Lc ¼ �L;

� ¼ 1

96
ððDij þ 16SijÞDij � ðD�� � 16Y��ÞD��Þ

¼ 1

96
ðDijðDij þ 16SijÞ �D��ðD�� � 16Y��ÞÞ;

(3.13)

where we have defined

D �� :¼ Dk
ð�D�Þk; Dij :¼ D�

ðiDjÞ�: (3.14)

In the special case when L is real, �L ¼ L, Eq. (3.12)
constitutes the component of the general action

Z
d4xd4�d4 ��EL; E ¼ BerðEM

AÞ: (3.15)

It can be brought to a manifestly real form by adding to the
right-hand side of (3.12) its complex conjugate.

IV. DISCUSSION

The traditional approaches to the component reduction
in four-dimensional N ¼ 1 supergravity are reviewed in
the textbooks [2,3,9]. These approaches are known to be
extremely laborious. Our derivation of the component
action principle (2.13) took only a few hours of calculation,

and its technical description requires half a page only. This
shows that the ectoplasm method becomes very efficient if
the problem of constructing a required closed super d-form
(in the case of d space-time dimensions) can be recast as
that of engineering this superform from some closed super-
forms of lower rank. This idea was successfully applied in
Sec. III to construct the closed four-form (3.7), (3.8), and
(3.9) in N ¼ 2 conformal supergravity, which is associ-
ated with an arbitrary covariantly antichiral scalar super-

field �Lc and generates the locally supersymmetric action
(3.12). The four-form (3.7), (3.8), and (3.9) is a new origi-
nal result derived for the first time in the present paper. As
to the N ¼ 2 chiral action (3.12), it was computed 20
years ago by Müller6 [8] using a technique closely resem-
bling the normal coordinate construction of [13]. Our
derivation of the action (3.12) is much more simpler as
compared with the calculation in [8].
With the component action (3.12) at our disposal, the

projective-superspace formulation for N ¼ 2 matter-
coupled supergravity given in [13,26,27,32] is completely
developed. In particular, any N ¼ 2 supergravity-matter
action can be readily reduced to components.
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APPENDIX A: N ¼ 1 OLD MINIMAL
SUPERGRAVITY

Here we collect the key relations used in this paper
concerning the superspace geometry within the old mini-
mal formulation forN ¼ 1 supergravity; see [9] for more
details. Our notation and conventions correspond to [9];
they are similar to those used in [2] except for the normal-
ization of the Lorentz generators, including a sign defini-
tion of the sigma-matrices �ab and ~�ab.

The superspace geometry is described by covariant de-
rivatives

D A ¼ ðDa;D�;
�D _�Þ ¼ EA þ�A;

�A ¼ 1

2
�A

bcMbc ¼ �A
��M�� þ�A

_� _� �M _� _�;
(A1)

with �A the Lorentz connection and Mbc , ðM��; �M _� _�Þ
the Lorentz generators,

½M��;D�� ¼ "�ð�D�Þ; ½ �M _� _�;D�� ¼ 0: (A2)

The covariant derivatives obey the following algebra:

f �D _�;
�D _�g ¼ 4R �M _� _�; (A3a)

fD�;
�D _�g ¼ �2iD� _�; (A3b)

½ �D _�;D� _�� ¼ �i" _� _�ðRD� þG�
_� �D _�Þ � iðD�RÞ �M _� _�

þ i" _� _�ð �D _�G�
_�Þ �M _� _� � 2i" _� _�W�

��M��;

(A3c)

where the tensors R, Ga ¼ �Ga andW��� ¼ Wð���Þ satisfy

the Bianchi identities

�D _�R ¼ �D _�W��� ¼ 0; �D _�G� _� ¼ D�R;

D�W��� ¼ iDð�
_�G�Þ _�:

(A4)

APPENDIX B: N ¼ 2 CONFORMAL
SUPERGRAVITY

This appendix contains a summary of the superspace
geometry corresponding to N ¼ 2 conformal supergrav-
ity; see [26] for more details. Consider a curved 4D N ¼
2 superspace M4j8 parametrized by local bosonic (x) and
fermionic ð�; ��Þ coordinates zM ¼ ðxm; ��i ; ��i _�Þ, where

m ¼ 0; 1; . . . ; 3, � ¼ 1, 2, _� ¼ 1, 2 and i ¼ 1, 2. The
Grassmann variables �

�
i and ��i� are related to each other

by complex conjugation: ���i ¼ �� _�i. Following [28], the
structure group is chosen to be SLð2;CÞ � SUð2Þ, and the

covariant derivatives DA ¼ ðDa;Di
�;

�D _�
i Þ have the form

D A ¼ EA þ�A
��M�� þ ��A

_� _� �M _� _� þ�A
klJkl: (B1)

Here Jkl ¼ Jlk are the generators of SU(2), and�A
klðzÞ the

corresponding connection. The action of the SU(2) gener-
ators on the covariant derivatives is defined as follows:

½Jkl;Di
�� ¼ ��i

ðkDlÞ�; ½Jkl; �D _�
i � ¼ �"iðk �D _�

lÞ:

(B2)

The covariant derivatives obey the (anti)commutation re-
lations

f �D _�
i ;

�D
_�
j g ¼ �4 �Sij �M

_� _� � 2"ij"
_� _� �Y _� _� �M _� _� � 2"ij"

_� _�W��M�� � 2"ij"
_� _� �SklJkl � 4 �Y _� _�Jij; (B3a)

fDi
�;

�D
_�
j g ¼ �2i�i

jð�cÞ� _�Dc þ 4�i
jG

� _�M�� þ 4�i
jG� _�

�M _� _� þ 8G�
_�Jij; (B3b)

½Da;
�D

_�
j � ¼ �ið�aÞ�ð _�G� _�Þ �D _�j þ i

2
ðð~�aÞ _�� �Sjk � "jkð�aÞ� _�W�� � "jkð�aÞ� _�

�Y _� _�ÞDk
� þ i

2
ðð�aÞ� _�Tcdj

� þ ð�cÞ� _�Tadj
�

� ð�dÞ� _�Tacj
�ÞMcd þ i

2
ð�ð�aÞ� _��

ðk
j D

lÞ
� �Y

_� _� � ð�aÞ� _��ðk
j D

lÞ
�W

�� þ 1

2
ð�aÞ� _�D�

j
�SklÞJkl; (B3c)

where

T _ab�
k ¼ � 1

4
ð�abÞ�� �Dk

_�Y�� þ 1

4
ð~�abÞ _� _� �Dk

_�
�W _� _� � 1

6
ð~�abÞ _� _�

�D
_�
l S

kl: (B4)

Here the real four-vector G� _� and the complex tensors Sij ¼ Sji, W�� ¼ W��, Y�� ¼ Y�� obey the Bianchi identities:

�D _�
k
�Skl þ �Dl

_�
�Y _� _� ¼ 0; �D _�

ði �SjkÞ ¼ D�
ði �SjkÞ ¼ 0; �Dð _�

i
�Y
_� _�Þ ¼ 0; �D _�

i W
�� ¼ 0; (B5a)

�D _�
i G

� _� ¼ 1

4
D�

i
�Y _� _� � 1

12
" _� _�D�l �Sil þ 1

4
" _� _�D�iW

��; (B5b)

Dk
�D�kW

�� � �D _�k
�Dk

_�
�W _� _� ¼ 4W��Y�� � 4 �W _� _�

�Y _� _�: (B5c)
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B191, 549 (1981).

[5] M. Müller, Z. Phys. C 16, 41 (1982).
[6] C. Ramirez, Z. Phys. C 28, 281 (1985); 33, 455 (1987);

Ann. Phys. (N.Y.) 186, 43 (1988).
[7] M. Müller, Consistent Classical Supergravity Theories,

Lecture Notes in Physics Vol. 336 (Springer, Berlin,
1989).

[8] M. Müller, Max Planck Institute for Physics, Munich
Report No. MPI-PAE/PTh 64/89, 1989.

[9] I. L. Buchbinder and S.M. Kuzenko, Ideas and Methods of
Supersymmetry and Supergravity, Or a Walk Through
Superspace (IOP, Bristol, 1998).

[10] J. J. Atick and A. Dhar, Nucl. Phys. B284, 131 (1987).
[11] I. N. McArthur, Classical Quantum Gravity 1, 233 (1984).
[12] M. T. Grisaru, M. E. Knutt-Wehlau, and W. Siegel, Nucl.

Phys. B523, 663 (1998).
[13] S.M. Kuzenko and G. Tartaglino-Mazzucchelli, J. High

Energy Phys. 04 (2009) 007.
[14] D. Tsimpis, J. High Energy Phys. 11 (2004) 087.
[15] S. J. Gates, Jr., in Supersymmetries and Quantum

Symmetries, edited by J. Wess and E.A. Ivanov
(Springer, Berlin, 1999), p. 46; Nucl. Phys. B541, 615
(1999).

[16] S. J. Gates, Jr., M. T. Grisaru, M. E. Knutt-Wehlau, and W.
Siegel, Phys. Lett. B 421, 203 (1998).

[17] A. V. Gaiduk, O.M. Khudaverdian, and A. S. Schwarz,

Teor. Mat. Fiz. 52, 375 (1982) [Theor. Math. Phys. 52, 862
(1982)].

[18] M.A. Baranov and A. S. Schwarz, Funkts. Anal. Prilozh.
18, 53 (1984) [Functional Anal. Appl. 18, 130 (1984)];
Funkts. Anal. Prilozh. 18, 69 (1984) [Functional Anal.
Appl. 18, 236 (1985)].

[19] T. Voronov, Sov. Sci. Rev. Sect. C 9, 1 (1992).
[20] O.M. Khudaverdian and A. P. Nersessian, J. Math. Phys.

(N.Y.) 37, 3713 (1996).
[21] O.M. Khudaverdian, in Geometry and Integrable Models,

edited by P. N. Pyatov and S. N. Solodukhin (World
Scientific, Singapore, 1996), p. 144.

[22] S. J. Gates, Jr. and G. Tartaglino-Mazzucchelli,
arXiv:0907.5264.

[23] N. Berkovits and P. S. Howe, arXiv:0803.3024.
[24] G. Bossard, P. S. Howe, and K. S. Stelle, Gen. Relativ.

Gravit. 41, 919 (2009); arXiv:0908.3883.
[25] W. Siegel arXiv:hep-th/9912205.
[26] S.M. Kuzenko, U. Lindström, M. Roček, and G.
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