BLOQUES DE TIERRA COMPRIMIDA CON ADICIÓN DE RESIDUOS DE CONCRETO Y CEMENTO COMO SOLUCIÓN SOSTENIBLE PARA LA CONSTRUCCIÓN DE MUROS NO ESTRUCTURALES

INVESTIGADOR PRINCIPAL:
GLORIA MILENA MOLINA VINASCO MSC
Ingeniera civil

INVESTIGADORES AUXILIARES: CAMILO ESCOBAR GALVIS JUAN SEBASTIÁN LEÓN GÓMEZ VANESSA SALAZAR BEDOYA

UNIVERSIDAD LIBRE DE PEREIRA SEDE BELMONTE FACULTAD DE INGENIERÍA CIVIL GRUPO DE INVESTIGACIÓN 2016

BLOQUES DE TIERRA COMPRIMIDA CON ADICIÓN DE RESIDUOS DE CONCRETO Y CEMENTO COMO SOLUCIÓN SOSTENIBLE PARA LA CONSTRUCCIÓN DE MUROS NO ESTRUCTURALES

INVESTIGADOR PRINCIPAL:
GLORIA MILENA MOLINA VINASCO MSC
Ingeniera civil

INVESTIGADORES: CAMILO ESCOBAR GALVIS JUAN SEBASTIÁN LEÓN GÓMEZ VANESSA SALAZAR BEDOYA

PROYECTO DE GRADO PARA OPTAR AL TÍTULO DE INGENIERO CIVIL

UNIVERSIDAD LIBRE DE PEREIRA SEDE BELMONTE FACULTAD DE INGENIERÍA CIVIL GRUPO DE INVESTIGACIÓN 2016

TABLA DE CONTENIDO

				pag.
1. N	//ARCC	OS C	DE REFERENCIA	18
1.1	. МА	RC	O TEÓRICO	18
1	.1.1	Re	esistencia al corte de los suelos	18
	1.1.1	.1	Criterio de falla de mohr-coulomb	18
	1.1.1	.2	Inclinación del plano de falla causado por cortante	19
	1.1.1	.3	Prueba de corte directo	21
	1.1.1	.2	Prueba triaxial de corte	23
	1.1.1	.4	Prueba consolidada-drenada	25
	1.1.1	.5	Prueba de compresión simple sobre arcilla saturada	26
1.2	MA	RC	O CONCEPTUAL	27
1	.2.1	Со	onstrucción en tierra	27
1	.2.2	Blo	oques de tierra comprimida	28
1	.2.3	Ad	lobes	28
1	.2.4	Ma	ateriales	29
	1.2.4	.1	Concreto	29
	1.2.4	.2	Cenizas Volcánicas	29
	1.2.4	.3	Cemento Portland	30
	1.2.4	.4	Escombros	30
1	.2.5	Cir	nva ram	31
	1.2.5	.1	Ventajas	31
	1.2.5	.2	Desventajas	31
1	.2.6	Blo	oques de suelo cemento	32
1	.2.7	۷i۷	vienda sostenible	32
1.3	MA	RC	O HISTÓRICO	33
1.4	AN	TEC	CEDENTES	1
1.5	MA	RC	O LEGAL	17
16	MAD	\sim	GEOGRÁFICO	20

2	. 0	BJETIVOS	22
	2.1.	OBJETIVO GENERAL	22
	2.2.	OBJETIVOS ESPECÍFICOS	22
3	. М	IETODOLOGÍA	23
	3.1	FASE 1: REALIZAR LA CARACTERIZACIÓN DEL SUELO	23
	3.2 DIF	FASE 2: ESTABLECER LA RESISTENCIA MECÁNICA DEL SUELO CON ERENTES DOSIFICACIONES DE CEMENTO	24
	3.3 CON	FASE 3: ESTABLECER DOSIFICACIONES DE LOS BLOQUES DE TIERRA MPRIMIDA Y ELABORACIÓN DE ESTOS	26
	3.4 LOS	FASE 4: DETERMINAR LA RESISTENCIA MECÁNICA A LA COMPRESIÓN D S BLOQUES DE TIERRA COMPRIMIDA	
	3.5 LA F	FASE 5: ELABORAR MURETES CON LAS DOSIFICACIONES Y DETERMINA RESISTENCIA MECÁNICA DE ESTOS	
	3.6	FASE 6: REALIZACIÓN TRABAJO ESCRITO	33
4	R	ESULTADOS	34
	4.1	CARACTERIZACIÓN DEL SUELO	34
	4.2 DE (RESISTENCIA MECÁNICA DEL SUELO CON DIFERENTES DOSIFICACIONE	
	4.3 TIEF	RESISTENCIA MECÁNICA A LA COMPRESIÓN DE LOS BLOQUES DE RRA COMPRIMIDA	39
	4.4	RESISTENCIA MECÁNICA DE LOS MURETES REALIZADOS CON BTC	40
5.	. Al	NÁLISIS DE RESULTADOS	41
	5.1	CARACTERIZACIÓN DEL SUELO	41
	_	RESISTENCIA MECÁNICA DEL SUELO CON DIFERENTES DOSIFICACIONES CEMENTO	43
		RESISTENCIA MECÁNICA A LA COMPRESIÓN DE LOS BLOQUES DE TIERRA MPRIMIDA	
	5.4	RESISTENCIA MECÁNICA DE LOS MURETES REALIZADOS CON BTC	45
6	. C	ONCLUSIONES	47
7.	R	ECOMENDACIONES	48

LISTA DE TABLAS

pág
Tabla 1. Antecedentes de la investigación2
Tabla 2. Normatividad utilizada17
Tabla 3. Ensayos de laboratorio realizados24
Tabla 4. Ensayos de la realización de las probetas de suelo-cemento25
Tabla 5. Ensayos a compresión realizados para las probetas de suelo-cemento. 26
Tabla 6. Ensayos a compresión realizados para BTC30
Tabla 7. Ensayos a compresión realizados para los muretes de BTC31
Tabla 8. Resultados de los ensayos de caracterización32
Tabla 9. Resultados de la resistencia a compresión de las probetas de suelo cemento para diferentes porcentajes de cemento35
Tabla 10. Resultados de la resistencia a compresión de los BTC para diferentes porcentajes de escombro39
Tabla 11.Resultados de la resistencia a compresión de los muretes de BTC para diferentes porcentajes de escombro40
Tabla 12. Análisis de resultados de los ensayos de caracterización41
Tabla 13. Análisis de resultados de la resistencia a compresión de las probetas de suelo cemento para diferentes porcentajes de cemento43
Tabla 14. Análisis de resultados de la resistencia a compresión de los BTC para diferentes porcentajes de escombro44
Tabla 15. Análisis de los resultados de la resistencia a compresión de los muretes de BTC para diferentes porcentajes de escombro

LISTA DE GRÁFICAS

	pág.
Gráfica 1. Densidad vs. Resistencia de los cilindros de suelo cemento	36
Gráfica 2. Esfuerzo vs. Deformación de Probetas de 0% de cemento	37
Gráfica 3. Esfuerzo vs. Deformación de Probetas de 3% de cemento	37
Gráfica 4. Esfuerzo vs. Deformación de Probetas de 4% de cemento	38
Gráfica 5. Esfuerzo vs. Deformación de Probetas de 5% de cemento	38

LISTA DE FIGURAS

	,		
_	$\overline{}$	\sim	
1)	~	(1	

Figura 1: Inclinación del plano de falla en el suelo con respecto al plano principa mayor	
Figura 2: Círculo de Mohr y envolvente de falla	.20
Figura 3. Esquema del ensayo de corte	.22
Figura 4. Dispositivo para el ensayo del corte directo	.22
Figura 5: Diagrama del equipo de prueba triaxial.	.24
Figura 6: Envolvente de falla por esfuerzo efectivo de pruebas drenadas en arer y arcilla normalmente consolidada	
Figura 7: Prueba de compresión simple	.27
Figura 8: Ubicación del corregimiento de La Florida	.20
Figura 9. Extracción de suelo en el corregimiento de La Florida	.23
Figura 10. Realización de probetas de suelo-cemento.	.25
Figura 11. Ensayo a la compresión no confinada de las probetas de suelo- cemento	.26
Figura 12. Mezcla de suelo, cemento, escombro y agua	.27
Figura 13. Máquina para realizar adoquines y losetas	.28
Figura 14. Dimensiones BTC	.29
Figura 15. Realización de los BTC en la Cinva Ram	.29
Figura 16. BTC una vez realizada la compactación	30

Figura 17. Curado de los bloques3	1
Figura 18. Fraccionamiento de los bloques para la construcción de los muretes3	2
Figura 19. Dimensiones de los muretes3	2

LISTA DE ANEXOS

pág.
Anexo 1. Cuadro resumen ensayo de laboratorio de contenido de materia orgánica 54
Anexo 2. Cuadro resumen ensayo de laboratorio de límite líquido y límite plástico del suelo
Anexo 3. Cuadro resumen ensayo de laboratorio de gravedad específica del suelo 56
Anexo 4. Cuadro resumen ensayo de laboratorio de cantidad de material fino que pasa el tamiz 200 en los agregados
Anexo 5. Cuadro resumen ensayo de laboratorio de próctor modificado 58
Anexo 6. Cuadro resumen ensayo de laboratorio de granulometría del suelo 59
Anexo 7. Cuadro resumen ensayo de laboratorio de gravedad específica del escombro de concreto (Fino)
Anexo 8. Cuadro resumen ensayo de laboratorio de gravedad específica del escombro de concreto (Grueso)
Anexo 9. Cuadro resumen ensayo de laboratorio de contenido de humedad del suelo 62
Anexo 10. Cuadro de resultados resistencia a la compresión no confinada y densidades de probetas de suelo-cemento
Anexo 11. Cuadro de resultados resistencia a la compresión no confinada y deformaciones de probetas de suelo-cemento
Anexo 12. Cuadro resumen de la dosificación para elaborar los BTC
Anexo 13. Resultados de prueba a compresión de BTC con 0% de escombro
Anexo 14. Resultados de prueba a compresión de BTC con 10% de escombro 72
Anexo 15. Resultados de prueba a compresión de BTC con 15% de escombro

Anexo 16. Resultados de prueba a compresión de BTC con 20% de escombro	74
Anexo 17. Resultados de prueba a compresión de los muretes de BTC con 0% de escombro	75
Anexo 18. Resultados de prueba a compresión de los muretes de BTC con 10% de escombro	76
Anexo 19. Resultados de prueba a compresión de los muretes de BTC con 15% de escombro	77
Anexo 20. Resultados de prueba a compresión de los muretes de BTC con 20% de escombro	79
Anexo 21. Tabla de clasificación de suelos	79

RESUMEN

La industria de la construcción es uno de los factores de desarrollo más importantes de las sociedades actuales, pero también es una amenaza constante para el medio ambiente; los materiales con los que se realiza, por ejemplo, son elementos que representan un peligro, ya que a futuro sus escombros no serán reutilizables y se convertirán en un contaminante del suelo y en un acaparador de las zonas verdes de la ciudad.

Teniendo en cuenta este problema, la investigación que se presenta a continuación, plantea el uso de un material más amigable con el medio ambiente, que resulta también mucho más económico en comparación con los que actualmente se usan en la construcción de viviendas.

A partir de la revisión de antecedentes bibliográficos y experiencias de otros investigadores, se determinó la viabilidad de ciertos tipos de suelo que pueden sustituir e incluso aprovechar algunos materiales de construcción desechados, que de no ser reutilizados, se volverían escombros no biodegradables.

Después de varias pruebas técnicas, se descubrió que el suelo derivado de ceniza volcánica, mezclado con los restos de concreto que quedan después de una demolición, puede ser un buen candidato para reemplazar el ladrillo, el cual requiere de un proceso de cocido que también es un fuerte contaminante y que dicho suelo no necesita.

Con este descubrimiento se podría estar a punto de encontrar una forma de construir sin comprometer al medio ambiente, además de tener la posibilidad de desarrollar un material que pueda ser asequible para millones de personas que no pueden pagar los altos costos que requiere la construcción de una vivienda hoy en día.

Aunque se tengan evidencias de que en otros países ya se buscan e implementan materiales alternativos para la construcción, en Colombia el uso de suelos para ella, sigue siendo una actividad que no es certificada por la norma sismo resistente 'NSR 10'; aun así, la importancia de investigaciones como esta e iniciativas similares, se basa en la posibilidad de encontrar alternativas que demuestren la eficacia y seguridad de estos materiales, para así poder cambiar la norma que rige en la actualidad.

Es importante resaltar que es solo el inicio de un descubrimiento que se debe estudiar con rigurosidad para no comprometer la seguridad de nadie; pero frente a las conclusiones que se pudieron sacar de la investigación y los experimentos realizados, es posible que con materiales similares y nuevos procesos, se creen estructuras más grandes que las que aquí se analizan y se certifican como viables.

ABSTRACT

Nowadays the building industry is one of the more important factors in the development of most societies, but it is also a great the danger for the environment; it is made with materials that are a big threat, because in the future its rubbish won't be reusable and they will become a pollutant that will occupy the parklands of the cities.

Having this concern in mind, the research that's presented here, proposes the use of a material that's more eco-friendly and that turns out to be also a lot more economic than the ones that are currently used in the building of households.

From the revision of previous bibliographical statements and the experiences from other researches it was determined the viability of certain kinds of soil that can replace and even exploit some discarded residuals from other construction materials, that in case of not being used, they would become rubbish that can't be biodegradable.

After several experiments, it was discovered that the soil derived from volcanic ashes, mixed with remaining of the concrete left after a demolition can be a good candidate to replace brick, which requires a cooking process that is also an important pollutant and that the soil studied doesn't even need.

With this discovery, could be find a new way to build without compromising the environment; besides, having the possibility of developing a material that can be achieved by millions of people that can't afford the high prices that requires the construction of a household nowadays.

Even knowing that other countries are already researching and using alternative materials for construction, in Colombia the use of soils is an activity that is not certified by the norma sismo resistente (earthquake resistant standard) NSR 10; still, the importance of researches and initiatives such as this it's based in the possibility of finding new ways that show the efficiency and security of this materials, so someday the norm can be rearranged.

It's important to remark that this is only the beginning of a discovery that has to be studied with rigorousness, so no one's safety can be compromised; but from the conclusions that we're made by this investigation it's possible that similar materials and new processes, bigger structures can be made.

INTRODUCCIÓN

Al pasar de los años se han implementado técnicas constructivas pensando en un bienestar no colectivo, debido a que hay materiales utilizados que son inasequibles para las personas de pocos recursos, adicionalmente el poco aprovechamiento de los residuos de la industria constructiva, según Romero¹, hasta el momento son pocas las técnicas utilizadas para el reciclaje de los escombros de construcción.

En la actualidad son pocos los materiales constructivos aprobados por la Norma sismo resistente (NSR-10), teniendo en cuenta que la mayoría de los requerimientos son para elementos estructurales. Esta investigación se enfoca en la elaboración de Bloques De Tierra Comprimida (BTC) para divisiones y muros no estructurales, aun así la norma tiene parámetros de resistencia para dichos elementos; este proyecto pretende fabricar BTC que cumplan con dichas exigencias.

No se cuenta con la aprobación de la NSR-10 con respecto a este material actualmente, lo cual influye en el poco uso de este. La facilidad de producción implica un factor positivo en tiempos de ejecución y la utilización de escombros de concreto junto con la no cocción con respecto al ladrillo lo cual son aportes ambientales a favor del BTC.

Se logra evidenciar la falta de investigaciones acerca del tema comparado con otros métodos constructivos como el concreto que cuenta con un gran base de información, aunque se encuentran algunas fuentes de datos sobre la construcción en tierra como trabajos anteriormente realizados y un gran soporte por parte de la norma para saber cuál es el objetivo en cuanto a resistencia se refiere.

Instituciones como las Corporaciones autónomas regionales CAR se podrán interesar en este proyecto gracias a que los BTC son amigables con el medio ambiente, también la Presidencia ya que brinda viviendas de interés social para la gente de escasos recursos, los cuales podrán verse beneficiados por este método constructivo, quizás ferreterías o centros de venta del material que vean en este cierto potencial después de haberle realizado pruebas adecuadas y debidos procesos para su posterior comercialización.

¹ ROMERO, Emilio. Residuos de construcción y demolición. Universidad de Huelva. 2007

Vásquez et al² plantean que la industria de la construcción ha asumido un rol protagónico en el desarrollo de las sociedades, debido a que es responsable directa de la creación de proyectos a través de los cuales además de gestarse cultura, se contribuye al crecimiento económico. A su vez es uno de los responsables principales del consumo de recursos, generación de residuos, transformación del entorno y contaminación. Por tal motivo, es pertinente que desde esta industria se planteen soluciones alternativas que contribuyan a disminuir su impacto sobre el ambiente.

El proceso de producción de los BTC desarrollado en esta investigación, empezó por una inspección visual seguido de la caracterización del material trabajado por medio de ensayos de laboratorio. Dependiendo del tipo de suelo tratado se realizaron probetas de suelo/cemento ensayadas a compresión, y se consultaron investigaciones anteriores, para definir la proporción de cemento recomendada para la fabricación de BTC. Con esta mezcla en su humedad óptima de compactación se realizaron los bloques, utilizando ya como variable la presencia de escombro de concreto, se probaron a la compresión para encontrar el porcentaje ideal de escombro y por último se hizo un análisis detallado de los resultados.

2 1

² VASQUEZ HERNANDEZ, Alejandro; BOTERO BOTERO, Luis Fernando; CARVAJAL ARANGO, David. Fabricación de bloques de tierra comprimida con adición de residuos de construcción y demolición como reemplazo del agregado pétreo convencional. Medellín, 2015. Trabajo de grado (Ingeniería Civil). Universidad EAFIT. Facultad De Ingeniería.

1. MARCOS DE REFERENCIA

A continuación se observan los diferentes marcos de referencia que contribuyen a la información recolectada para la realización de este proyecto.

1.1. MARCO TEÓRICO

El marco teórico contiene los fundamentos para entender el comportamiento a compresión de los BTC, como lo son los parámetros de resistencia al corte de los suelos.

1.1.1 Resistencia al corte de los suelos

Según lo planteado por Das³, la resistencia interna por unidad de área que la masa de suelo puede ofrecer a la falla y el deslizamiento a lo largo de cualquier plano en su interior es conocido como la resistencia cortante de un suelo. Los ingenieros deben entender los principios de la resistencia al cizallamiento del suelo para analizar los problemas.

La resistencia al cizallamiento es en general una función de:

- La resistencia a la fricción entre las partículas sólidas.
- La cohesión que se genera entre las partículas de suelo.

Serán presentados a continuación los conceptos fundamentales acerca de la resistencia al cortante, además las pruebas de laboratorio que son realizadas para la determinación de los parámetros de resistencia del suelo.

1.1.1.1 Criterio de falla de mohr-coulomb

Mohr⁴ presentó una teoría para la ruptura de los materiales. Esta teoría plantea que un material llega a la falla debido a una combinación crítica de esfuerzo

³ DAS, Braja M. Resistencia cortante del suelo. En: Fundamentos de ingeniería geotécnica. 1 ed. Sacramento: Bill Stenquist, Suzanne Jeans, 2001. pág. 212.

⁴ MOHR, O. ¿Qué circunstancias hacen que el límite elástico y la ruptura a un material?. Revista de la Asociación de Ingenieros Alemanes, citado por Das, Braja. Fundamentos de ingeniería geotécnica. Sacramento: Bill Stenquist, Suzanne Jeans, 2001.

cortante y esfuerzo normal, y no de cualquier esfuerzo máximo normal o cortante solo. Debido a esto, la relación funcional entre el esfuerzo cortante y el esfuerzo normal se puede expresar en la siguiente forma en un plano de falla.

$$\tau_f = f(\sigma) \tag{1.1}$$

Donde τ_f = esfuerzo cortante sobre el plano de falla. σ = esfuerzo normal sobre el plano de falla.

Para Coulomb⁵ la mayoría de los problemas de mecánica de suelos, es suficiente aproximar el esfuerzo cortante sobre el plano de falla como una función lineal del esfuerzo normal. Esta relación se escribe como:

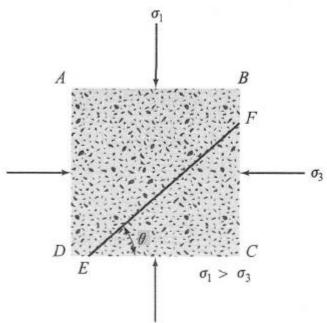
$$\tau_f = c + \sigma \tan \emptyset \tag{1.2}$$

Donde c =cohesión.

 \emptyset = ángulo de fricción interna.

La ecuación previa es denominada criterio de falla de Mohr-Coulomb.

1.1.1.2 Inclinación del plano de falla causado por cortante


$$\theta = 45 + \frac{\emptyset}{2} \tag{1.3}$$

De nuevo, de la figura 2, tenemos

$$\frac{\overline{ad}}{\overline{fa}} = \operatorname{sen} \emptyset \tag{1.4}$$

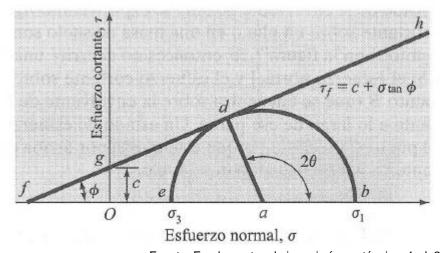

⁵COULOMB, C. A. "Ensayo sobre la aplicación de las normas de máximos y mínimos en algunos problemas de estática, en la arquitectura. Memorias de Matemáticas y Física, citado por Das, Braja. Fundamentos de ingeniería geotécnica. Sacramento: Bill Stenquist, Suzanne Jeans, 2001.

Figura 1: Inclinación del plano de falla en el suelo con respecto al plano principal mayor.

Fuente: Fundamentos de ingeniería geotécnica. 1ed. 2001; pág. 209

Figura 2: Círculo de Mohr y envolvente de falla

Fuente: Fundamentos de ingeniería geotécnica. 1ed. 2001; pág. 210.

$$\overline{fa} = fO + Oa = c \cot \emptyset + \frac{\sigma_1 + \sigma_3}{2}$$
 (1.5)

También,

$$\overline{ad} = \frac{\sigma_1 + \sigma_3}{2} \tag{1.6}$$

Remplazando las ecuaciones (1.5) y (1.6) en la ecuación (1.4), tenemos:

$$sen \emptyset = \frac{\frac{\sigma_1 + \sigma_3}{2}}{c \cot \emptyset + \frac{\sigma_1 + \sigma_3}{2}}$$

0

$$\sigma_1 = \sigma_3 \left(\frac{1 + sen \emptyset}{1 - sen \emptyset} \right) + 2c \left(\frac{\cos \emptyset}{1 - sen \emptyset} \right) \tag{1.7}$$

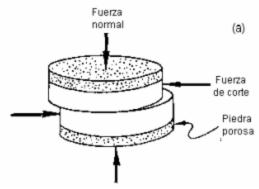
Sin embargo,

$$\frac{1+sen\ \emptyset}{1-sen\ \emptyset}=tan^2\left(45+\frac{\emptyset}{2}\right)$$

У

$$\frac{\cos\emptyset}{1-\operatorname{sen}\emptyset}=\tan\left(45+\frac{\emptyset}{2}\right)$$

Entonces,

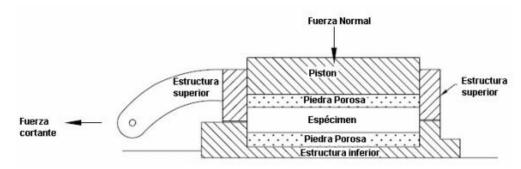

$$\sigma_1 = \sigma_3 \tan^2 \left(45 + \frac{\emptyset}{2} \right) + 2c \tan \left(45 + \frac{\emptyset}{2} \right)$$
 (1.8)

Esta es la relación del criterio de falla de Mohr-Coulomb dada en términos de esfuerzos de falla.

1.1.1.3 Prueba de corte directo

Para esta prueba se establece el procedimiento para determinar la resistencia al corte de una muestra de suelo consolidada y drenada. Este ensayo se puede ejecutar para cualquier tipo de suelos finos.

Figura 3. Esquema del ensayo de corte



Fuente: Determinación de la resistencia al corte método de corte directo (cd) (consolidado drenado). (I.N.V. E – 154 – 07); pág. 1

"Los resultados de este ensayo pueden ser aplicados en situaciones de campo, en las cuales ha ocurrido la consolidación completa bajo la sobrecarga existente y se produce lentamente la falla, así que el exceso de las presiones de poros se disipa. En el ensayo también se puede determinar la resistencia máxima al corte del material utilizado. Los resultados del ensayo se pueden ver afectados por partículas de roca presentes en la muestra, en la superficie de la falla"⁶.

"El ensayo consiste en: (a) Colocación de la muestra de ensayo en el dispositivo de corte directo; (b) Aplicación de una carga normal determinada; (c) Disposición de los medios de drenaje y humedecimiento de la muestra; (d) Consolidación de la muestra bajo la carga normal; (e) Liberación de los marcos que sostienen la muestra; (f) Aplicación de la fuerza de corte para hacer fallar la muestra (véanse Figuras 3 y 4)".

Figura 4. Dispositivo para el ensayo del corte directo

Fuente: Determinación de la resistencia al corte método de corte directo (cd) (consolidado drenado). (I.N.V. E – 154 – 07); pág. 2

⁶ INSTITUTO NACIONAL DE VIAS. Suelos: determinación de la resistencia al corte método de corte directo (cd) (consolidado drenado). I.N.V. E – 154 – 07. Bogotá: INVIAS, 2007. pág. 1 ⁷ Ibíd., p. 2

El dispositivo de corte directo deberá sostener con seguridad entre dos piedras porosas la probeta en cada cara para que esta no presente movimientos torsionales, y también permitiendo el drenaje del agua. Este debe disponer de los dispositivos necesarios para aplicar una carga normal en las caras de la muestra, para determinar las deformaciones del espécimen de suelo. El equipo debe estar en la capacidad de aplicar y controlar una carga cortante para generar la falla en cierto plano (corte simple), Estos estarán ubicados en sentido paralelo a las caras de la muestra y deben proporcionar los desplazamientos laterales de ésta.

.

El esfuerzo normal se calcula como:

$$\sigma = \frac{\mathit{fuerza\,normal}}{\mathit{area\,de\,la\,seccion\,transversal\,del\,espcimen}} \qquad (1.9)$$

El esfuerzo cortante resistente se calcula como:

$$\tau = esfuerzo \ cortante = \frac{fuerza \ cortante \ resistente}{area \ de \ la \ seccion \ transversal \ del \ espcimen} \quad (1.10)$$

1.1.1.2 Prueba triaxial de corte

La definición de Das⁸ acerca de la prueba triaxial es que es utilizada para determinar los parámetros de resistencia al corte del suelo. Este ensayo es considerado confiable por razones como, brindar flexibilidad en términos de trayectoria de carga, en comparación con el ensayo de corte directo proporciona condiciones más uniformes de esfuerzo a lo largo del plano de falla y suministra los datos acerca del comportamiento esfuerzo-deformación unitaria.

En general en el ensayo de corte triaxial es usada una muestra de 76mm de longitud y 36mm de diámetro, esta queda confinada por una membrana delgada de hule la cual es instalada dentro de una cámara plástica en forma de cilindro llenada posteriormente con glicerina o agua. A través de un embolo vertical es aplicado un esfuerzo en dirección a la muestra lo cual causa la falla por cortante del espécimen. Este queda en un estado de confinamiento ocasionado por el líquido que se encuentra en la cámara.

⁸ DAS. Op. Cit., p. 217-218.

El esfuerzo se suma en una de dos maneras, la aplicación de presión hidráulica o pesos muertos incrementando igualmente hasta llegar a la falla de la muestra y el empleo de deformación axial constantemente por medio de una prensa de carga con engranes o hidráulica. Ésta es una prueba por deformación unitaria controlada.

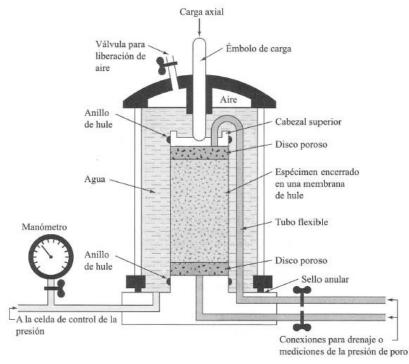


Figura 5: Diagrama del equipo de prueba triaxial.

Fuente: Fundamentos de ingeniería geotécnica. 1ed. 2001; pág. 219

Se suministran también conexiones para calcular la presión de poro del agua⁹. Estas son los tipos de pruebas triaxiales que se pueden llevar a cabo:

- 1. Prueba consolidada-drenada o prueba drenada (prueba CD).
- 2. Prueba consolidada-no drenada (prueba CU).
- 3. Prueba no consolidada-no drenada o prueba no drenada (prueba UU).

⁹ DAS, Braja M. Propiedades geotécnicas del suelo y del suelo esforzado. En: Principios de ingeniería de cimentaciones. 4 ed. Sacramento: International Thomson Editores, 2001. P 56

1.1.1.4 Prueba consolidada-drenada

Das 10 plantea el proceso explicativo de esta prueba, primero se somete la muestra a una presión de confinamiento σ_3 en su alrededor mediante compresión del líquido que se encuentra de la cámara (figura 6). Igual cuando se aplica la presión de confinamiento, la presión de poro del agua del espécimen se incrementa en la cantidad u_c ; dicho aumento de la presión de poro del agua se expresa en forma de:

$$B = \frac{u_c}{\sigma_3} \tag{1.13}$$

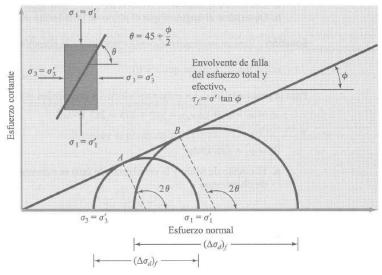
donde $B = \text{parámetro de la presión de poro de Skempton}^{11}$.

La velocidad lenta de aplicación del esfuerzo desviador y la conexión al drenaje abierta, permite la disipación completa de cualquier presión de poro del agua que se desarrolle como consecuencia ($\Delta \sigma_d = 0$). Como la presión de poro del agua desarrollada durante la prueba se disipa completamente, se tiene:

Esfuerzo de confinamiento total y efectivo = $\sigma_3 = \sigma'_3$

Υ

Esfuerzo axial total y efectivo en la falla = $\sigma_3 + (\Delta \sigma_d)_f = \sigma_1 = \sigma_1'$


En una prueba triaxial, $\sigma_{1}^{'}$ es el esfuerzo efectivo principal mayor en la falla y $\sigma_{3}^{'}$ es el esfuerzo efectivo principal menor en la falla.

La porción be de la envolvente de falla representa una etapa normalmente consolidada del suelo y obedece a la ecuación $\tau_f = \sigma^{'} \tan \emptyset^{12}$.

¹⁰ DAS. Op. Cit., p. 219

SKEMPTON, A. W. Coeficientes A y B en presión de poros. En: Geotécnica, citado por Das, Braja. Fundamentos de ingeniería geotécnica. Sacramento: Bill Stenquist, Suzanne Jeans, 2001 DAS. Op. Cit., p. 220-221

Figura 6: Envolvente de falla por esfuerzo efectivo de pruebas drenadas en arena y arcilla normalmente consolidada.

Fuente: Fundamentos de ingeniería geotécnica. 1ed. 2001; pág. 223

1.1.1.5 Prueba de compresión simple sobre arcilla saturada

El ensayo de compresión simple es un tipo especial de prueba no consolidada-no drenada la cual se realiza usualmente para muestras de arcilla. En esta prueba, la presión de confinamiento σ_3 es 0. Para generar la falla al espécimen se aplica una carga axial rápidamente. En ésta, el esfuerzo principal menor total es 0 y el esfuerzo principal mayor total es σ_1 (figura 7). Como la resistencia de corte no drenada es independiente de la presión de confinamiento, tenemos:

$$\tau_f = \frac{\sigma_1}{2} = \frac{q_u}{2} = c_u \tag{1.14}$$

Donde q_u es la *resistencia a compresión*. En teoría cuando se utiliza material similares al arcilla saturada, la prueba triaxial y de compresión simple deben dar los mismos valores de c_u . No obstante, en la práctica, las pruebas de compresión simple sobre arcillas saturadas dan valores menores para c_u que los alcanzados en pruebas no consolidadas-no drenadas 13 .

¹³ DAS. Op. Cit., p. 235

 $\frac{1}{\sigma_1} = 0$ Circulo de Mohr en la falla para el esfuerzo total $\frac{1}{\sigma_1} = q_u$ Esfuerzo normal

Figura 7: Prueba de compresión simple

Fuente: Fundamentos de ingeniería geotécnica. 1ed. 2001; pág. 235

1.2 MARCO CONCEPTUAL

A continuación se presentan los principales fundamentos teóricos que sirven de base para el desarrollo de la investigación, ellos involucran los principales conceptos de mecánica de suelos.

1.2.1 Construcción en tierra

La tierra como técnica constructiva ha estado presente a lo largo de la Historia en diversas y heterogéneas civilizaciones, tanto para la ejecución de pequeñas edificaciones de carácter austero, como para la construcción de estructuras más nobles, como son los casos de murallas, castillos, fortalezas... Ejemplos de ello son las construcciones realizadas por las primeras sociedades que se establecieron en la Mesopotamia del tercer milenio antes de Cristo, aquellas que formaron la génesis del Antiguo Egipto o los pueblos que se reunían en torno a las "kasbahs" marroquíes. Asimismo, la arquitectura oriunda del Yemen o buena parte del patrimonio rural español de muy diversas épocas son buena muestra de la riqueza de esta técnica constructiva milenaria.

Dichas construcciones quedan definidas por la utilización de un determinado módulo, de tamaño variable, el cual se repite multitud de veces hasta generar el cerramiento o partición a realizar, el cual, junto a la colaboración de elementos estructurales de madera, generan el conjunto de la edificación. En función de su tamaño, se suele diferenciar entre tierra en masa, el adobe (módulos de pequeño tamaño, del tamaño del ladrillo tradicional)

y el tapial (módulos de gran tamaño, que suelen superar el metro cuadrado de superficie).¹⁴

Los bloques de tierra comprimida son un material constructivo implementado desde la antigüedad por civilizaciones por diferentes partes del mundo debido a su abundancia en el terreno y su facilidad de construcción. A su misma vez sus características permiten que este material ayude a controlar temperaturas y humedad, brindando beneficios como material primitivo natural. La construcción en tierra es una alternativa ecológica que podrá solucionar un problema latente en la sociedad el cual es la escasez de recursos de los estratos bajos para adquirir vivienda propia.

1.2.2 Bloques de tierra comprimida

Se obtienen a partir de la mezcla de tierra, arena y cemento, para luego ser compactada. El material debe ser cernido previamente al mezclado y estabilizado. La máquina utilizada para la compactación es conocida como prensa o bloquera; la más conocida es la CINVA RAM, que tiene una caja metálica de 16 cm de alto, 29 cm de largo y 14 cm de ancho. Se compone también de una barra metálica o palanca, la cual es accionada por un operador humano.

Para realizar un bloque se debe preparar el material, abrir la caja e introducir la tierra estabilizada. La caja es cerrada para poner la barra metálica, se aplica la presión necesaria hasta que la barra baja. Posteriormente el bloque es sacado del molde y trasladado para el curado o secado, en el que puede durar de dos días a una semana, dependiendo del contenido de humedad que presente el bloque luego de la compactación.¹⁵

1.2.3 Adobes

Pons¹⁶ plantea que aparte de sus ventajas conocidas como su baja conductividad térmica, este material brinda facilidad a las construcciones, por el hecho que la materia prima está siempre presente en el lugar de la obra con el ahorro consiguiente en su transporte. Ventaja apreciable dado el alto volumen de material necesario para construirlas.

¹⁴ LOPEZ VIEJO, Jorge Luis; LORENZANA FERNANDEZ, Marta. Construcción con Tierra. 2008. P. 3.

¹⁵ARTEAGA MEDINA, Karen Tatiana; MEDINA, Oscar Humberto; GUTIERREZ JUNCO, Oscar Javier. Bloque de tierra comprimida como material constructivo. 2011. P.60.

¹⁶PONS, Gabriel. La tierra como material de construcción. http://ieham.org/html/docs/La tierra como material de construcion.pdf. (Citado el 11 de Agosto de 2016).

A pesar de que en la actualidad puede utilizarse maquinaria para la producción de adobes, puede ser tan anticuado para la construcción como arrojar bolas de lodo a un muro, esta es una labor que no requiere de herramientas ni equipo alguno, tal vez una pala y fibra.

Las desventajas que presenta este material son muy conocidas, tales como sus propiedades higrófilas que absorben la humedad atmosférica en ambientes con el aire saturado, perdiendo así resistencia a los esfuerzos. En ambientes de alta precipitación los muros tienden a debilitarse hasta colapsar.

Las resistencias a compresión que presentan los adobes se consideran bajas entre 3 y 5 Kg/cm2, cuando se encuentran secos se anula su resistencia a la tensión. Esto dificulta el transporte cuando el material no ha recibido el curado adecuado para moverlos y en el proceso se fracturan.

1.2.4 Materiales

A continuación se explicarán algunos de los materiales utilizados en la investigación, ya sea empleado en la fase experimental o como referencia comparativa.

1.2.4.1 Concreto

"Es un material modesto y de elaboración sencilla, cuyo uso tiene una tradición de dos mil años aproximadamente. Híbrido por excelencia donde su esencia radica en la mezcla o aleación que se componga. Es una masa eficaz y barata, considerada la piedra artificial" 17.

1.2.4.2 Cenizas Volcánicas

La ceniza volcánica es una composición de partículas de roca y mineral muy finas (de menos de 2 milímetros de diámetro) eyectadas por un viento volcánico. La ceniza se genera a partir de la roca cuarteada y separada en partículas diminutas durante un episodio de actividad volcánica explosiva. La naturaleza normalmente violenta de una erupción, incluyendo chorros de vapor de agua (erupción freática),

¹⁷ GONZALEZ, Andrés. Cemento-Concreto espacio y materialidad. [Diapositivas]. 2011. http://es.slideshare.net/archieg/concreto-8189329. (Citado el 11 de agosto de 2016).

produce como resultado una gran cantidad de magma y tal vez roca sólida que rodea el viento volcánico, torneando las partículas hasta reducirlas al tamaño de granos de arena.

La pluma que se ve a menudo sobre un volcán en erupción está compuesta principalmente de cenizas y vapor. La eyección de grandes cantidades de ceniza provoca un cono de estas. La acumulación de cenizas tiende a cementarse hasta formar capas de una roca llamada toba volcánica. Las partículas más finas pueden ser arrastradas por el viento a lo largo de muchos kilómetros, que dan al paisaje un aspecto "polvoriento" al depositarse. El término piroclasto se refiere a cualquier material volcánico sólido arrojado al aire durante una erupción. Si se eyecta magma líquido en forma de aerosol, las partículas se solidifican en el aire formando pequeños fragmentos de vidrio volcánico.¹⁸

1.2.4.3 Cemento Portland

Es una sustancia de polvo fino hecha de argamasa de yeso capaz de formar una pasta blanda al mezclarse con el agua y se endurece espontáneamente en contacto con el aire. Este es producido mediante la pulverización del Clinker, compuesto inicialmente de silicatos de calcio hidráulicos y que contiene generalmente una o más formas de éste como una adición durante la molienda.

1.2.4.4 Escombros

Escombros son el conjunto de fragmentos o restos de ladrillos, hormigón, argamasa, acero, hierro, madera, etc., provenientes de los desechos de construcción, remodelación y/o demolición de estructuras, como edificios, residencias, puentes, etc. Podemos identificar, en los escombros que se producen durante una construcción, la existencia de dos tipos de residuos: • los residuos (fragmentos) de elementos prefabricados, como materiales de cerámica, bloques de cemento, demoliciones localizadas, etc.; • los residuos (restos) de materiales elaborados en la obra, como hormigón y argamasas, que contienen cemento, cal, arena y piedra. Los escombros de construcción se componen de restos y fragmentos de materiales, mientras los de demolición están formados prácticamente sólo por estos últimos, teniendo por eso mayor potencial cualitativo comparativamente con los escombros de construcción.¹⁹

¹⁹ CEMPRE. Manual de gestión integral. Uruguay. 2008. P. 250.

¹⁸ INSTITUTO NACIONAL DE LA PROPIEDAD INDUSTRIAL ARGENTINA. Boletines Temáticos: Cenizas volcánicas. En Línea, 2008. < http://www.ibepi.org/wp-content/uploads/2014/12/Cenizas1.pdf>. (Citado el 11 de agosto de 2016).

1.2.5 Cinva ram

Máquina manual para fabricar bloques de suelo-cemento sin o con núcleos de diferente forma. La máquina se fundamenta en la "palanca de fuerza infinita" o "togle", de tal manera que en la medida en que se va comprimiendo la mezcla se incrementa la presión sobre ésta. Se produce un bloque de construcción de buena resistencia y durabilidad.

Un equipo de 2 operarios experimentados fabrica entre 400 y 500 bloques de 9x14x29 cm con una resistencia de 14 a 35 kg/cm² (200 a 500 psi) y en mezclas más ricas de 25 a 50 kg/cm².

1.2.5.1 Ventajas

Se fabrican bloques para interiores con 10 a 14 partes de tierra arenosa, dos de cal apagada y una de cemento. Para exteriores con 6 a 10 partes de tierra-arena 2 partes de cal y una parte de cemento. Se crean dos puestos de trabajo con una inversión en bienes de capital del orden de US\$ 150.00.

1.2.5.2 Desventajas

Se requieren conocimientos especiales para garantizar la calidad de la materia prima. La construcción en bloque sin repellar deja intersticios en los cuales se pueden alojar insectos en el trópico. Socialmente es común considerar una casa " hecha de tierra" como un retroceso, así el material posea cualidades iguales o superiores a las de la mampostería convencional²⁰.

Esta máquina manual CINVA RAM fue un invento supremamente importante para la innovación en la creación de materiales para la construcción. Da la oportunidad de fabricar bloques de tierra comprimida de buena resistencia, ya que aumenta la capacidad de resistencia del suelo mediante la compactación de la materia prima. "La máquina fue desarrollada por el ingeniero Raúl Ramírez (RAM) del CINVA-Centro Interamericano de Vivienda y Planeamiento dentro del Proyecto 22 de la OEA. Está considerada como una de las tecnologías latinoamericanas más difundidas en el mundo²¹. "Esta máquina es un aporte muy importante a la lucha

²⁰ PROGRAMA DE LAS NACIONES UNIDAS PARA EL DESARROLLO TECNOLOGIAS EN LA ERRADICACION DE LA POBREZA. Cinva – Ram Máquina Para Fabricar Bloques De Suelo – Cemento. Bogotá.

²¹ PROGRAMA DE LAS NACIONES UNIDAS PARA EL DESARROLLO TECNOLOGIAS EN LA ERRADICACION DE LA POBREZA. Cinva – Ram Máquina Para Fabricar Bloques De Suelo – Cemento. Bogotá.

en contra la pobreza, es una tecnología que permite avanzar investigaciones sobre la fabricación de dichos bloques para encontrar un la alternativa de material de construcción que devolverá a la población de estrato bajo una mejor calidad de vida adquiriendo vivienda propia.

1.2.6 Bloques de suelo cemento

EL bloque de suelo cemento es un paralelepípedo de suelo, estabilizado con cemento Portland Comprimido y desmoldado inmediatamente. Tiene una resistencia a la compresión entre 2 y 6 MPa (NTC 5324). Es una alternativa constructiva ecológica por lo que el mayor insumo de esta es el propio suelo. Los bloques comprimidos en la maquina CINVA RAM nos permite tener unidades de los tamaños de los ladrillos de arcilla cocidos en horno, es decir, reduciendo el tamaño de las unidades comparado con adobes tradicionales. El costo de material para la construcción es gradualmente reducido, ya que la mayor parte de la materia prima proviene del propio terreno. ²²

1.2.7 Vivienda sostenible

Cada uno de los edificios y casas que habitamos produce una huella ecológica sobre el planeta. Su construcción, operación y, eventualmente, su demolición consume una gran cantidad de recursos y producen muchos residuos contaminantes. Se calcula que el sector residencial y de oficinas consume el 40% de los recursos de todo el mundo, especialmente de energía, y es responsable del 40% de las emisiones de CO2 que van a la atmósfera. El concreto, uno de los principales materiales de construcción en todo el mundo, es particularmente contaminante. Para producirlo se necesita mezclar piedra caliza y arcilla a temperaturas que rondan los 1.500 °C. El consumo de combustibles, y por supuesto de energía, es enorme: se requieren alrededor de 100 kg de carbón para producir sólo una tonelada de concreto.

Los "edificios verdes", aquellos que se construyen siguiendo pautas y criterios que están en armonía con la naturaleza y la salud humana, son la solución a la vista. Apostarle a la construcción sostenible puede traducirse en un ahorro del 40% de agua y entre 30 y 50% de energía, además de una reducción del 35% de las emisiones de CO2 y del 70% de los desechos. Combinar materiales ecológicos y un buen biodiseño permite crear ambientes iguales o más cómodos que los

²² CHOQUE, Godofredo Edgar; HUAMAN MEZA, Julio. Adobes comprimidos Suelo-Cemento, una alternativa ecológica. En: Congreso nacional de ingeniería civil: 2009: Lima. P.1.

convencionales, de la misma calidad, y con un saldo positivo para el planeta y nuestra salud. ²³

La vivienda sostenible es la solución para el problema que enfrenta a la población vulnerable Colombiana. Con la implementación de esta alternativa de material de construcción, será posible la adquisición de vivienda propia para muchos colombianos. A la misma vez de estar cumpliendo sus sueños, estarán ayudando al medio ambiente, utilizando materiales reciclables y en este caso materia prima amigable con el medio ambiente: la tierra. El precio de cada bloque de tierra comprimida fabricada tendrá un bajo costo, ya que se minimiza los procesos de producción que no solamente implican altos costos de energía y combustible, también un deterioro en el medio ambiente mediante estas prácticas.

1.3 MARCO HISTÓRICO

Desde los inicios de la humanidad ya los primeros hombres construían con tierra, formando con ella paredes protectoras para tapar las entradas de sus cavernas. La tierra ha sido material de construcción usado en diversas partes del mundo. Los hombres se familiarizaron con sus características y aprendieron a mejorarlas agregándole materiales, como fibras naturales.

Una variedad del uso de la tierra en combinación con otros materiales, principalmente de origen vegetal, son las construcciones de bahareque. En latino América, la construcción en bahareque es símbolo de patrimonio cultural. En lugares como Perú, la construcción en tierra en Huaca Pucllana, fue por medio de adobes rectangulares. Esta técnica es bastante interesante ya que consiste en la acomodación en forma de librero de los adobes, y en su parte de arriba y abajo con argamasa pero sin ser aplicada entre ellos y Pedro Villar Córdova la bautizó como la técnica del librero debido a su parecido con un librero.²⁴

Un método constructivo usado en América latina es la tapia o la tapia pisada, que consiste en llenar por capas el interior de dos formaletas de madera con tierra y aprisionarlas. Estas construcciones han sido empleadas especialmente en la zona central de Colombia como lo es en Antioquia, Caldas o Risaralda²⁵. Actualmente en Berlín existe una edificación la cual fue fabricada con tapia, se trata de la Capilla de la Reconciliación, considerada como un referente europeo ya que es el

²³ EL TIEMPO. Soy colombiano: Vivienda y Construcción sostenible. P.67.

²⁴ AGÜERO, Johnny; CERÓN, Javier; GONZALEZ, Juan Carlos y MENDEZ, María Teresa. Análisis estructural de dos muros de adobe con diferente sistema de aparejo. Universidad Ricardo Palma, Perú. <u>En</u>: SEMINARIO IBEROAMERICANO DE ARQUITECTURA Y CONSTRUCCION CON TIERRA (15°: 2015: Ecuador). P.2-3.

²⁵ BEDOYA MONTOYA, Carlos Mauricio. Diversas expresiones de la construcción sostenible. <u>En:</u> Construcción sostenible. Cataluña: Universidad politécnica de Cataluña, 2011. p. 51-125.

primer edificio público construido con este método en los últimos 150 años de Alemania²⁶.

En los centros arqueológicos de Pachacamac y Huaca Pucllana se hizo un estudio relacionado con sismo-resistencia de las construcciones en tierra y este menciona que la implementación de técnicas constructivas que permitieran mejorar su desempeño sismo-resistente mejoró la resistencia mecánica de los adobes. Tal como las juntas verticales que logran darle ductilidad permitiendo movimiento en fuerzas sísmicas.²⁷

En el año 1970 en la costa central de Perú, se presentó un sismo catastrófico en el cual se evidenciaron más de 40.000 muertos por causa del derribamiento de casas las cuales estaban construidas con adobe, los ingenieros y arquitectos del país estaba comentando sobre de prohibición definitiva de la fabricación de edificaciones con este tipo de material, pero al llegar a una localidad ubicada a 40 metros del epicentro del sismo se pudo evidenciar que viviendas construidas con adobe estaban en buen estado ya que se encontraban encima de suelo rocoso. Esto llevo a que varios profesores y estudiantes llevaran a cabo varias investigaciones las cuales consistían en brindarle mayor estabilidad a las construcciones hechas con este material. En 1985 se aprobó una nueva norma para la realización de edificaciones con adobe²⁸.

Se debe hacer una recuperación ancestral de cómo se empleaban revoques con morteros de arena y cal. Tienen propiedades de transpiración y respiración lo que los hace muy compatibles para permitir la evaporación a pesar de que debido a su porosidad impiden el paso del agua.²⁹ La piedra calcárea, ladrillo de tierra apisonada y ladrillo cocido fueron empleadas en la elaboración de edificaciones que figuran con muchos siglos, cerca de los 8000-6000 años a.C. como la muralla china en el siglo V a.C., las bóvedas del templo de Ramsés y el Turquestán.³⁰

²⁶ BESTRATEN, S.; HORMÍAS, E. y ALTEMIR, A.. Construccion con tierra en el siglo XXI. Cataluña: Universidad Politécnica de Cataluña, 2010. p. 5-20. Vol. 63.

²⁷ POZZI-ESCOT, Denise. BERNUY, Katiusha.; TORRES, Henry. P; ACHING, Jorge. V. (2009). Sismo-resistencia de las construcciones en tierra del santuario arqueológico de Pachacamac. P.1-3.

²⁸ TORRES, Rafael E.. Investigaciones de estructuras para viviendas de bajo costo y el rol del cismid. Perú: CISMID, 1990. p. 424-445.

²⁹ AGUIRRE, Ramón; GUERRERO, Luis Fernando. Refuerzos y protecciones superficiales sostenibles para bóvedas de adobe recargado en México. Universidad Autónoma Metropolitana-Xochimilco. Mexico. En: SEMINARIO IBEROAMERICANO DE ARQUITECTURA Y CONSTRUCCION CON TIERRA (15°: 2015: Ecuador). P. 3.

³⁰ GARCIA, Adriana Beatriz; MAZZEO, Juan Pablo; MARTINEZ, Armenia. Metodología de control de calidad en producción de paneles con suelos estabilizados. Universidad Tecnológica Nacional de Buenos Aires. Argentina. En: SEMINARIO IBEROAMERICANO DE ARQUITECTURA Y CONSTRUCCION CON TIERRA (15°: 2015: Ecuador). P.2.

1.4 ANTECEDENTES

A continuación, se presentan un compendio de los antecedentes relacionados con el proyecto trabajado, en ellos se incluyen las referencias de los trabajos realizados en la región, en materia de mecánica de suelos, así como en la caracterización de los mismos

Tabla 1. Antecedentes de la investigación

ANTECEDENTES DE LA INVESTIGACIÓN						
INVESTIGACIÓN	METODOLOGÍA	RESULTADOS	PUBLICACIÓN			
1. DETERMINACIÓN DE LA RESISTENCIA A COMPRESIÓN DE LOS BLOQUES DE TIERRA COMPRIMIDA ADICIONADA CON UN 17,5% DE ESCOMBRO DE LADRILLO Y CAL.	1. Preparar el material, el suelo debe pasar por el tamiz N°4, picar el ladrillo a un tamaño máximo de 1". 2. Determinar el contenido de humedad. 3. Pesar el material dependiendo de las dosificaciones dadas. 4. Realizar los bloques. 5. medir y pesar los bloques 15 días después de secado, y determinar la prueba a compresión para determinar la resistencia.	Gravedad especifica= 2,75	(Diego Alejandro Lobo Morales, Emma Londoño Zuluaga, Paula Yulieth Marín Gaviria, Stefania Osorio Ceballos, Paola Melisa Valencia Restrepo) Universidad Libre Seccional de Pereira 2015 ³¹ .			

³¹ LOBO MORALES, Diego Alejandro; LONDOÑO ZULUAGA, Emma; MARÍN GAVIRIA, Paula Yulieth; OSORIO CEBALLOS, Stefania; VALENCIA RESTREPO, Paola Melissa. Determinación de la resistencia a compresión de los bloques de tierra comprimida adicionada con un 17,5% de escombro de ladrillo y cal. Universidad Libre Seccional de Pereira. 2015.

INVESTIGACIÓN	METODOLOGÍA	RESULTADOS	PUBLICACIÓN
2. DETERMINACIÓN DE LA RESISTENCIA A COMPRESIÓN DE LOS BLOQUES DE TIERRA COMPRIMIDA ADICIONADA CON UN 12,5% DE ESCOMBRO DE LADRILLO Y CAL.	 Preparar el material, el suelo debe pasar por el tamiz N°4, picar el ladrillo a un tamaño máximo de 1". Determinar el contenido de humedad. 3. Pesar el material dependiendo de las dosificaciones dadas. 4. 	Resistencia promedio a compresión=	(Cristian David López Jaramillo, Elsy Rubiela Martínez, Julián Felipe Martínez Parra, Edwin Tapasco Benjumea, Juan Esteban Vaca, Yigal Velásquez Zuluaga) Universidad Libre Seccional de Pereira 2015 ³² .

_

³²VELÁSQUEZ ZULUAGA, Yigal; MARTÍNEZ, Elsy Rubiela; MARTÍNEZ PARRA, Julián Felipe; TAPASCO BENJUMEA, Edwin; VACA, Juan Esteban y LÓPEZ JARAMILLO, Cristian David. Determinación de la resistencia a compresión de los bloques de tierra comprimida adicionada con un 12,5% de escombro de ladrillo y cal. Universidad Libre Seccional de Pereira. 2015.

INVESTIGACIÓN	METODOLOGÍA	RESULTADOS	PUBLICACIÓN
3. DETERMINACIÓN DE LA RESISTENCIA A COMPRESIÓN DE LOS BLOQUES DE TIERRA COMPRIMIDA ADICIONADA CON UN 17,5% DE ESCOMBRO DE LADRILLO Y CAL.	 Preparar el material, el suelo debe pasar por el tamiz N°4, picar el ladrillo a un tamaño máximo de 1". Determinar el contenido de humedad. Pesar el material dependiendo de las dosificaciones dadas. 		(Alejandra Cardona Rincón, Daniela Duran Santa, Manuela Gómez Echeverry, Mateo Lotero Valencia, Andrés Felipe Mendoza Herrera) Universidad Libre Seccional de Pereira 2015 ³³ .

³³ CARDONA RINCÓN, Alejandra; MENDOZA HERRERA, Andrés Felipe; GÓMEZ ECHEVERRY, Manuela; LOTERO VALENCIA, Mateo y DURAN SANTA, Daniela. Determinación de la resistencia a compresión de los bloques de tierra comprimida adicionada con un 17,5% de escombro de ladrillo y cal. Universidad Libre Seccional de Pereira. 2015.

INVESTIGACIÓN	METODOLOGÍA	RESULTADOS	PUBLICACIÓN
4. DETERMINACIÓN DE LA RESISTENCIA A COMPRESIÓN DE LOS BLOQUES DE TIERRA COMPRIMIDA ADICIONADA CON UN 12,5% DE ESCOMBRO DE LADRILLO Y CAL.	1. Preparar el material, el suelo debe pasar por el tamiz N°4, picar el ladrillo a un tamaño máximo de 1". 2. Determinar el contenido de humedad. 3. Pesar el material dependiendo de las dosificaciones dadas. 4. Realizar los bloques. 5. medir y pesar los bloques 15 días después de secado, y determinar la prueba a compresión para determinar la resistencia.	Humedad Optima= 16,5% Porcentaje de Materia Orgánica= 14,95% Resistencia promedio a compresión= 0,45MPa.	(Lina Marcela Agudelo Montes, Jennifer Mejía Jiménez, Jorge Andrés Mosquera, Brian Osorio González, Juan David Puerta Rivera, Andrés Felipe Toro) Universidad Libre Seccional de Pereira 2015 ³⁴ .

³⁴AGUDELO MONTES, Lina Marcela; MEJÍA JIMÉNEZ, Jennifer; TORO, Andrés Felipe; OSORIO GONZÁLEZ, Brian; PUERTA RIVERA, Juan David y MOSQUERA, Jorge Andrés. Determinación de la resistencia a compresión de los bloques de tierra comprimida adicionada con un 12,5% de escombro de ladrillo y cal. Universidad Libre Seccional de Pereira. 2015.

INVESTIGACIÓN	METODOLOGÍA	RESULTADOS	PUBLICACIÓN
5. DETERMINACIÓN DE LA RESISTENCIA A COMPRESIÓN DE LOS BLOQUES DE TIERRA COMPRIMIDA ADICIONADA CON UN 7,5% DE ESCOMBRO DE LADRILLO Y CAL.		Pasante tamiz 200= 72,46% de finos Gravedad especifica= 2,578 Contenido de materia orgánica= 18,05% Resistencia promedio a compresión= 0,3 Mpa.	(Aura Cristina

³⁵CAICEDO, Aura Cristina; GOMEZ MORALES, Laura Francelly; LOAIZA LEAL, Laura; MURILLO SALAZAR, Lizeth; SALAZAR BEDOYA, Vanessa y YUSTI CANO, Daniela. Determinación de la resistencia a compresión de los bloques de tierra comprimida adicionada con un 12,5% de escombro de ladrillo y cal. Universidad Libre Seccional de Pereira. 2015.

INVESTIGACIÓN	METODOLOGÍA	RESULTADOS	PUBLICACIÓN
6. ANALISIS ESTRUCTURAL DE DOS MUROS DE ADOBE CON DIFERENTE SISTEMA DE APAREJO.	1. Construcción de los o tipos de mui (acomodación de ado vertical y horizontal). 2. Se realiza prueba comportamiento estructu simulando la fuerza sísm que actúa en el mumediante un pist hidráulico de doble efecto 3. Para la toma de datos	El muro de acomodación vertical (muroA) disipó más energía sin fallar a comparación del muro de acomodación horizontal (muroB). Deriva muroA=0.0212 sin llegar a la rotura. Deriva muroB=0.0047 con rotura. Se de el o a ón el	(Jhonny Agüero, Javier Cerón, Juan Carlos

³⁶ AGÜERO, Johnny; CERÓN, Javier; GONZALEZ, Juan Carlos y MENDEZ, María Teresa. Análisis estructural de dos muros de adobe con diferente sistema de aparejo. Universidad Ricardo Palma, Perú. En: SEMINARIO IBEROAMERICANO DE ARQUITECTURA Y CONSTRUCCION CON TIERRA (15°: 2015: Ecuador).

INVESTIGACIÓN	METODOLOGÍA	RESULTADOS	PUBLICACIÓN
7. COMPARACION ENTRE PROPIEDADES FISICAS Y MECANICAS DE ADOBES TRADICIONALES Y BTC ESTABILIZADOS QUIMICAMENTE.	 Análisis granulométrico del suelo. Determinación de índice de plasticidad. modificación granulométrica del suelo (60% arena, 40% finos). Determinación de los materiales adicionales, en el cual se eligieron el cloruro de sodio con cal y cascara de arroz. Se efectúan ensayos de compresión, absorción por capilaridad y humectación. 	BTC cascara de arroz (3%)= 2.612MPa. BTC cascara de arroz (6%)= 2.302MPa. BTC cascara de arroz (10%)= 2.849MPa. BTC NaCl (3%)+ Cal (2%)= 1.708MPa. BTC NaCl (6%)+ Cal (2%)= 1.159MPa.	(Marcelo Vásquez, Daniel Sebastián Guzmán, Jorge Mateo Iñiguez) Universidad de Cuenca - Ecuador, 2015 ³⁷ .

³⁷ VASQUEZ, Marcelo; GUZMÁN, Daniel Sebastián; IÑIGUEZ, Jorge Mateo. Comparación entre propiedades físicas y mecánicas de adobes tradicionales y btc estabilizados químicamente. Universidad de Cuenca - Ecuador, 2015. En: SEMINARIO IBEROAMERICANO DE ARQUITECTURA Y CONSTRUCCION CON TIERRA (15°: 2015: Ecuador).

INVESTIGACIÓN	METODOLOGÍA	RESULTADOS	PUBLICACIÓN
8. METODOLOGÍA DE CONTROL DE CALIDAD EN PRODUCCIÓN DE PANELES CON SUELOS ESTABILIZADOS.	- El suelo a adoptar debe provenir de una zona próxima Ensayos y análisis (físicomecánicos, características físicas, organolépticas, densidad máxima de compactación, humedad óptima de moldeo) Extracción de muestras Granulometría Constantes físicas (Límite líquido, límite plástico, índice de plasticidad) Clasificación de suelos Ensayo de compactación Ensayo de las mezclas Ensayos mecánicos Construcción de modelos experimentales para ensayo.	No tiene resultados, la idea de la investigación es establecer una metodología para el control de calidad de los BTC.	(Adriana Beatriz García, Juan Pablo Mazzeo, Armenis G Martínez) Universidad Tecnológica Nacional - Argentina, 2015 ³⁸ .

³⁸ GARCIA, Adriana Beatriz; MAZZEO, Juan Pablo; MARTINEZ. Armenis G. Metodología de control de calidad en producción de paneles con suelos estabilizado. Universidad Tecnológica Nacional - Argentina, 2015. En: SEMINARIO IBEROAMERICANO DE ARQUITECTURA Y CONSTRUCCION CON TIERRA (15°: 2015: Ecuador).

INVESTIGACIÓN	METODOLOGÍA	RESULTADOS	PUBLICACIÓN
9. BLOQUES DE TIERRA COMPRIMIDA CON SUELOS DERIVADOS DE CENIZA VOLCÁNICA Y MATERIALES RECICLABLES: UNA ALTERNATIVA ECOLÓGICA.	 Extracción y análisis de suelos. Dosificación de los materiales. suelo/aditivos. Elaboración del bloque de tierra comprimida. Construcción de murales de BTC. Realización de ensayos a compresión y de absorción. 	Rango de resistencias para la mezcla que más se acercó a la norma: BTC+Carton(5%)+Arena(10%)+cal(3%)=4.41MPa - 9.59MPa . Resistencia promedio de muretes de BTC 1.35MPa.	(Gloria Milena Molina Vinasco, Mónica Andrea Arenas Castaño, Alejandro Londoño, Oscar Andrés Parra, Lina Marcela Vallejo) Universidad Libre Seccional Pereira - Colombia, 2015 ³⁹ .

³⁹ MOLINA VINASCO, Gloria Milena; ARENAS CASTAÑO, Mónica Andrea; LONDOÑO, Alejandro; PARRA, Oscar Andrés; VALLEJO, Lina Marcela. Bloques de tierra comprimida con suelos derivados de ceniza volcánica y materiales reciclables: una alternativa ecológica. Universidad Libre Seccional Pereira - Colombia, 2015. En: SEMINARIO IBEROAMERICANO DE ARQUITECTURA Y CONSTRUCCION CON TIERRA (15°: 2015: Ecuador).

INVESTIGACIÓN	METODOLOGÍA	RESULTADOS	PUBLICACIÓN
10. TÉCNICAS ADOPTADAS EN LA ELABORACIÓN DE HORMIGÓN PARA TENER UNA MATRIZ A BASE DE TIERRA.	1. Ubicación del material de estudio y cuantificación. 2. Definición de las variables de estudio e la identificación de la unidad de análisis tomando como patrón los bloques realizados con barro de excavación estabilizados con cemento. 3. Análisis de los requisitos de ensayos. 4. Investigación de ensayos en casos de estudio similares. 5. Caracterización del material utilizado determinación del porcentaje de cemento para estabilizar el suelo. 6. Diseño de metodología para resguardo y almacenaje. 7. Confección de planillas para la recolección de datos con codificación de las muestras para su mejor identificación. 8. Ensayos de los especímenes. 9. Análisis de los resultados y conclusiones.	Las resistencias de estas mezclas aumentan con el tiempo en los BTC elaborados con agregado reciclado, sin embargo los BTC con piedra partida natural no sucede esto. La resistencia a la tracción por compresión diametral de las probetas cilíndricas alcanzó a los 90 días un valor que oscila entre 85% y 95% del valor de compresión simple.	(Mirta A. Sánchez, Silva N. Casenave, Javier Fornari, Susana Keller, Federico Amaya, Lucia Belinde, Marilina Beltramo) Universidad Tecnológica Nacional - Argentina, 2015 ⁴⁰ .

⁴⁰ SANCHEZ, Mirta A.; CASENAVE, Silva N.; FORNARI, Javier; KELLER, Susana; AMAYA, Federico; BELINDE, Lucia; BELTRAMO, Marilina. Técnicas adoptadas en la elaboración de hormigón para tener una matriz a base de tierra. Universidad Tecnológica Nacional - Argentina, 2015. En: SEMINARIO IBEROAMERICANO DE ARQUITECTURA Y CONSTRUCCION CON TIERRA (15°: 2015: Ecuador).

INVESTIGACIÓN	METODOLOGÍA	RESULTADOS	PUBLICACIÓN
11. BLOQUES DE TIERRA COMPRIMIDA COMO MATERIAL CONSTRUCTIVO.	1. Elaboración de los bloques con 82,75% de mezcla de suelo, arena 6,20% y cemento 11,03%. 2. Construcción de muretes con los bloques de tierra comprimida cuyas dimensiones fueron 30cm x 14cm x 45cm. 3. Se realizan muretes de bloques de tierra comprimida con refuerzo, con las siguientes dimensiones 46cm x 14cm x 45cm.	Resistencia al corte de Muretes con	(Karen Tatiana Arteaga Medina, Óscar Humberto Medina, Óscar Javier Gutiérrez junco) Universidad Pedagógica y Tecnológica de Colombia, 2011 ⁴¹ .

⁴¹ ARTEAGA MEDINA, Karen Tatiana; MEDINA, Oscar Humberto; GUTIERREZ JUNCO, Oscar Javier. Bloques de tierra comprimida como material constructivo. Universidad Pedagógica y Tecnológica de Colombia, 2011. En: SEMINARIO IBEROAMERICANO DE ARQUITECTURA Y CONSTRUCCION CON TIERRA (15°: 2015: Ecuador).

INVESTIGACIÓN	METODOLOGÍA	RESULTADOS	PUBLICACIÓN
12. EL BLOQUE DE SUELO CEMENTO (BSC) AL BLOQUE DE SUELO GEOPOLIMERIZADO (BSG).	1. Caracterización del suelo. 2. Realiza el diseño de las mezclas. 3. Elaboración de cilindros seguido del secado a temperatura ambiente. 4. Fallar los cilindros a los 7 días. 5. Interpretación y comparación de resultados.	Humedad del suelo= 14,3% Mezcla de 100% suelo + 5% geopolímero= Resistencia= 5,1 Mpa Mezcla de 90% suelo + 10% cenizas volantes + 5% geopolímero= Resistencia a compresión= 2,9 Mpa Mezcla de 90% suelo + 5% cenizas volantes + 5% cemento + 5%	(Olga Nallive Yepes Gaviria, Carlos Mauricio Bedoya Montoya) Universidad

⁴² YEPES GAVIRIA, Olga Nallive y BEDOYA MONTOYA, Carlos Mauricio. El bloque de suelo cemento (bsc) al bloque de suelo geopolimerizado (bsg). Universidad Nacional de Colombia sede Medellín. Medellín. 2013. 77p.

INVESTIGACIÓN	METODOLOGÍA	RESULTADOS	PUBLICACIÓN
13. LADRILLO ECOLÓGICO COMO MATERIAL SOSTENIBLE PARA LA CONSTRUCCIÓN.	 Determinar la composición de las mezclas a utilizar. Determinar la humedad óptima y densidad máxima de compactación. Preparar la muestra. 4. Establecer la resistencia a compresión. Realizar ensayos de absorción y heladicidad. 	Mezcla de 15% cemento= Resistencia a compresión a los 96 días= 14,4 Mpa. Mezcla de 15% cal hidráulica= Resistencia a compresión a los 96 días= 14,1 Mpa. Mezcla de 5% cal hidráulica= Resistencia a compresión a los 96 días= 12,2 Mpa. Mezcla de 5% cemento= Resistencia a compresión a los 96 días= 13 Mpa.	(María Cabo Laguna) Universidad Pública de Navarra, España ⁴³ .

⁴³ CABO LAGUNA, María. Ladrillo ecológico como material sostenible para la construcción. Universidad Pública de Navarra. Navarra. 2011. 117p.

INIVECTICACIÓN	METODOLOGÍA	DECILI TADOC	DUDI ICACIÓN
INVESTIGACIÓN	METODOLOGÍA	RESULTADOS	PUBLICACIÓN
14. FABRICACIÓN	1. Clasificar los suelos	•	(Fernando
DE MAMPUESTOS	determinando	(0,075 mm) = 10,13%, Límite líquido =	Galíndez)
TIPO BTC SIN	granulometría, límite líquido		Universidad
AÑADIR CEMENTO,	y límite plástico. 2. Usar	plasticidad = 33,1-19,72 = 13,38, peso	Católica de
LOGRANDO BUENAS	suelos de tipo arcillosos o	específico = 1,74gr/cm ³ , Resistencia a la	Salta. 2009 ⁴⁴ .
CUALIDADES	arenas de mediana	compresión de 0,78Mpa= 3,45Mpa.	
FÍSICAS Y	plasticidad.	Tierra tipo T2: Pasante tamiz 200	
MECÁNICAS, CON	3. Aumentar la presión de		
EL MENOR COSTO	compactación mínima de	33,10, Límite plástico = 19,72, Índice de	
ENERGÉTICO	xxx utilizando la prensa	plasticidad = 26,3-18,82 = 7,48, peso	
POSIBLE.	CBR y el molde para el	específico = 1,62gr/cm³ , Resistencia a	
	ensayo de Próctor	la compresión de 0,78Mpa= 2,39Mpa	
	Modificado.		
	4. Impermeabilizar la		
	superficie.		

⁴⁴ GALINDEZ, Fernando. Fabricación de mampuestos tipo btc sin añadir cemento, logrando buenas cualidades físicas y mecánicas, con el menor costo energético posible. <u>En</u>: Seguridad y medio ambiente. Septiembre, 2009. no. 145. p. 64-73

INVESTIGACIÓN	METODOLOGÍA	RESULTADOS	PUBLICACIÓN
INVESTIGACIÓN 15. FABRICACIÓN DE BLOQUES DE TIERRA COMPRIMIDA CON ADICIÓN DE RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN COMO REEMPLAZO DEL AGREGADO PÉTREO CONVENCIONAL	 Preparar la mezcla con las diferentes dosificaciones. Limpiar y lubricar el recipiente de la CINVA RAM. Verter la mezcla en tres capas, ejerciendo presión 	Mezcla de 25% tierra + 5% cemento + 70% arena= Resistencia a compresión a los 28 días= 2,78 MPa Mezcla de 25% tierra + 5% cemento + 70% residuos de construcción= Resistencia a compresión a los 28 días=	PUBLICACIÓN (Luis Fernando Botero Botero, Alejandro Vásquez Hernández, David Carvajal Arango). Universidad EAFIT Medellín. 2015 ⁴⁵ .

⁴⁵BOTERO BOTERO, Luis Fernando; VÁSQUEZ HERNANDEZ, Alejandro y CARVAJAL ARANGO, David. Fabricación de bloques de tierra comprimida con adición de residuos de construcción y demolición como reemplazo del agregado pétreo convencional. Medellín: Universidad EAFIT, 2015. p. 197-220.

1.5 MARCO LEGAL

En la Tabla 2 se enuncian las normas de ensayos usadas para el desarrollo de la investigación, especificando el nombre, número y objetivo.

Tabla 2. Normatividad utilizada

NOMBRE	CÓDIGO	OBJETIVO
DETERMINACIÓN DEL LÍMITE LÍQUIDO DE LOS SUELOS	I.N.V. E – 125 – 07	Describe el método de ensayo para la determinación del límite líquido de los suelos cohesivos.
DESCRIPCIÓN E IDENTIFICACIÓN DE SUELOS (PROCEDIMIENTO VISUAL Y MANUAL)	I.N.V. E – 102 – 07	Identificar suelos y se basa en el sistema de clasificación unificada. La identificación se hace mediante un examen visual y mediante ensayos manuales, lo cual debe indicarse claramente al elaborar el respectivo informe.
DETERMINACIÓN DEL LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD DE SUELOS	I.N.V. E – 126 – 07	Describe el método de ensayo para la determinación del límite plástico y del índice de plasticidad de los suelos cohesivos.
DETERMINACIÓN DE LA GRAVEDAD ESPECÍFICA DE LOS SUELOS Y DEL LLENANTE MINERAL	I.N.V. E – 128 – 07	Este método de ensayo se utiliza para determinar la gravedad específica de los suelos y del llenante mineral (filler) por medio de un picnómetro.
ENSAYO DE CANTIDAD DE MATERIAL FINO QUE PASA EL TAMIZ 200 EN LOS AGREGADOS.	I.N.V. E – 214 – 13	Establece dos procedimientos para determinar el lavado, la cantidad de material más fino que el tamiz 75 æm en agregados. Las partículas de arcilla y otras partículas del agregado que se dispersan por el lavado con agua, así como los materiales solubles en el agua, se separa del agregado durante el ensayo.

NOMBRE	CÓDIGO	OBJETIVO
RELACIONES DE HUMEDAD – MASA UNITARIA SECA EN LOS SUELOS (ENSAYO MODIFICADO DE COMPACTACIÓN).	I.N.V. E – 142 – 07	Este método de ensayo se emplea para determinar la relación entre la humedad y la masa unitaria del suelo.
GRAVEDAD ESPECÍFICA Y ABSORCIÓN DE AGREGADOS GRUESOS	I.N.V. E – 223– 13	Determinar la densidad y la absorción del agregado grueso. La densidad se puede expresar como densidad aparente, densidad aparente (SSS) (saturada y superficialmente seca), o densidad nominal. La densidad nominal (SSS) y la absorción se basan en el humedecimiento en agua del agregado después de 24 h.
MÉTODO DE ENSAYO PAR A DETERMINAR EN EL LABORATORIO EL CONTENIDO DE AGUA (HUMEDAD) DE SUELOS Y ROCAS, CON BASE EN LA MASA	I.N.V. E – 122– 13	Determinación en laboratorio del contenido de agua (humedad) de suelos, rocas y materiales similares con base en la masa, en donde la reducción de la masa por secado, se debe a la pérdida de agua.
ANÁLISIS GRANULOMÉTRICO POR MEDIO DEL HIDRÓMETRO	I.N.V. E – 124 – 07	Aplicar un método para obtener aproximadamente la distribución granulométrica de los suelos finos que pasan por tamiz N° 200.
PREPARACIÓN Y CURADO DE PROBETAS DE SUELO CEMENTO PARA PRUEBAS DE COMPRESIÓN Y FLEXIÓN EN EL LABORATORIO	I.N.V. E – 808 – 07	Procedimiento para moldear y curar en el laboratorio probetas de suelo-cemento, utilizadas en pruebas de compresión y flexión, bajo condiciones precisas de ensayo y de materiales.

NOMBRE	CÓDIGO	OBJETIVO
RESISTENCIA A LA COMPRESIÓN DE CILINDROS PREPARADOS DE SUELO CEMENTO	I.N.V. E – 809 – 07	Determinación de la resistencia a la compresión del suelo cemento empleando cilindros moldeados como especímenes de ensayo
BLOQUES DE SUELO CEMENTO PARA MUROS Y DIVISIONES. DEFINICIONES. ESPECIFICACIONES. MÉTODOS DE ENSAYO. CONDICIONES DE ENTREGA	NTC 5324	Esta norma define las características generales que deben cumplir los bloques macizos de suelo cemento para muros y divisiones. Describe los ensayos propios para determinar dichas características.
MÉTODO DE ENSAYO PARA DETERMINAR LA RESISTENCIA A LA COMPRESIÓN DE MURETES DE MAMPOSTERÍA	NTC 3495	Este método de ensayo comprende los procedimientos para la elaboración y ensayo de muretes de mampostería y los procedimientos para determinar la resistencia a la compresión de la mampostería.

1.6 MARCO GEOGRÁFICO

El presente proyecto se realizará con suelo perteneciente al corregimiento de La Florida. A continuación se describirá la locación del lugar trabajado, para tener una clara ubicación del origen de la muestra de tierra tomada para la elaboración de los BTC.

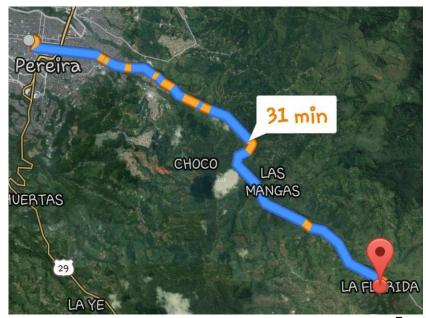


Figura 8: Ubicación del corregimiento de La Florida.

Fuente: Google Maps

El corregimiento de La Florida se encuentra ubicado en la cuenca media del río Otún en el sector nor-oriente de Pereira. Limita al Norte con el río Otún, al Sur con el municipio de Salento (Quindío), y lo corregimientos de Tribunas y la Bella, al Occidente con el área urbana de la Ciudad de Pereira y al Oriente con el departamento del Tolima.

La Florida inicia en los años 20, cuyos pobladores de estas tierras se encontraban concentradas en las familias Cardona, Ramírez, Zapata y Arias, cuyas familias aún persisten. Se declaró corregimiento en el año 1994, cuenta con una extensión de 12.197,3 hectáreas y está compuesto por 9 veredas que son:

- Libaré
- La Laguna
- Porvenir

- San José
- La Bananera
- La Suiza
- La Florida
- El Bosque
- Plan el Manzano

Este corregimiento es un paraíso turístico que conserva los componentes naturales y culturales que nos involucran en la vida rural, con sus respectivos productos y servicios. Sus dos principales bases turísticas son el recurso natural y el cultural:

El recurso natural está representado por las áreas protegidas y toda la extensión del río Otún. Cuenta con dos parques nacionales naturales, un santuario de flora y fauna, es la zona con mayor demanda para ecoturismo en todo el departamento, ya que el Nevado Santa Isabel, Laguna del Otún, páramos, termales, flora y fauna, ríos, cascadas, sistemas productivos, entre otros se han convertido en los principales atractivos naturales de la Cuenca media y alta del Río Otún.

El recurso cultural se construye a partir de las gentes y sus tradiciones, idiosincrasia, arquitectura, agricultura y los rasgos que caracterizan a las habitantes de estas tierras. El corregimiento de La Florida tiene una población de 3.891 habitantes, distribuidos en el 51.8 % de mujeres y el 48.2 % de hombres. En los últimos siete años ha incrementado la población en 238 habitantes más.⁴⁶

⁴⁶ ALCALDIA DE PEREIRA. Pereira rural y paisajística. Corregimiento De Arabia. 2009 [http://pereiraruralypaisajistica.blogspot.com.co/2009_11_01_archive.html]

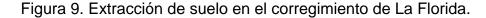
2. OBJETIVOS

Los siguientes son los objetivos planteados de la investigación.

2.1. OBJETIVO GENERAL

Determinar la dosificación óptima para la realización de bloques de tierra comprimida compuestos por suelos derivados de cenizas volcánicas, escombros de concreto y cemento, como alternativa de construcción sostenible de muros no estructurales.

2.2. OBJETIVOS ESPECÍFICOS


- Realizar la caracterización del suelo perteneciente al corregimiento de La Florida.
- Establecer la resistencia mecánica del suelo con diferentes dosificaciones de cemento.
- Establecer dosificaciones de los bloques de tierra comprimida y elaboración de éstos.
- Determinar la resistencia mecánica a compresión de los bloques de tierra comprimida.
- Elaborar muretes y determinar la resistencia mecánica de éstos.

3. METODOLOGÍA

A continuación, se presentan las fases que se seguirán para el desarrollo del proyecto, estas fases comprenden las actividades a desarrollar para el cumplimiento de los objetivos propuestos.

3.1 FASE 1: REALIZAR LA CARACTERIZACIÓN DEL SUELO

 Extracción de la muestra en el corregimiento de La Florida. Esta consistió de la recolección de suelo proveniente de una ladera la cual ya constaba con el retiro de su capa vegetal.

- Preparación de las muestras para los ensayos de laboratorio.
- Realización de los ensayos y labores de laboratorio tales como:

Tabla 3. Ensayos de laboratorio realizados.

ENSAYO	NORMA	NÚMERO DE ENSAYOS REALIZADOS
Contenido de Materia Orgánica	I.N.V. E – 121 – 13	1
Descripción e identificación de suelos (procedimiento visual y manual)	I.N.V. E – 102 – 07	1
Límite líquido	I.N.V. E – 125 – 07	3
Límite plástico e índice de plasticidad	I.N.V. E – 126 – 07	3
Gravedad específica del suelo	I.N.V. E – 128 – 07	3
Ensayo de cantidad de material fino que pasa el tamiz 200 en los agregados	I.N.V. E – 214 – 13	2
Próctor Modificado	I.N.V. E-142-07	1
Granulometría del escombro de concreto	I.N.V. E – 123 – 13	1
Gravedad específica del escombro de concreto	I.N.V. E – 223– 13	3
Contenido de Humedad	I.N.V. E – 122– 13	1
Granulometría Hidrómetro	I.N.V. E – 124– 07	1

• Análisis de resultados y caracterización del suelo.

3.2 FASE 2: ESTABLECER LA RESISTENCIA MECÁNICA DEL SUELO CON DIFERENTES DOSIFICACIONES DE CEMENTO

 Preparación de la muestra de suelo, realizando el retiro de materia orgánica presente en ella, el cual puede afectar en el ensayo. También se realiza un desmoronamiento del material para que este quede uniforme con la cantidad mínima de grumos para poder ser trabajado. Realización de las probetas de suelo-cemento de acuerdo a las dosificaciones establecidas para la investigación las cuales fueron de 3%, 4% y 5% este valor indicando el porcentaje de cemento a utilizar, junto con una proporción de agua correspondiente a la humedad óptima.3 por cada proporción.

Tabla 4. Ensayos de la realización de las probetas de suelo-cemento.

PORCENTAJE	NORMA UTILIZADA	NÚMERO DE PROBETAS
0%		3
3%	I.N.V. E – 808 – 07	3
4%		3
5%		3

Fuente: Los Autores

Figura 10. Realización de probetas de suelo-cemento.

Fuente: Los Autores.

• Ensayo de las probetas de suelo-cemento a la compresión no confinada.

Tabla 5. Ensayos a compresión realizados para las probetas de suelo-cemento.

PORCENTAJE	NORMA UTILIZADA	NÚMERO DE ENSAYOS REALIZADOS
0%		3
3%	I.N.V. E – 809 – 07	3
4%		3
5%		3

Figura 11. Ensayo a la compresión no confinada de las probetas de suelocemento.

Fuente: Los Autores.

 Determinación de la proporción adecuada de acuerdo a los resultados arrojados de las pruebas a compresión acerca de la resistencia de las probetas.

3.3 FASE 3: ESTABLECER DOSIFICACIONES DE LOS BLOQUES DE TIERRA COMPRIMIDA Y ELABORACIÓN DE ESTOS

- Preparación de la muestra de suelo, este proceso consistió en la eliminación de los grumos del material dejándolo lo más uniforme posible en cuanto a sus partículas, también realizando retiro de la materia orgánica presente en este.
- Preparación de los escombros. Estos fueron seleccionados por proporciones adecuadas a su tamaño divididas por el tamiz nro. 4.

Figura 12. Mezcla de suelo, cemento, escombro y agua

Realización de los bloques de tierra comprimida para las diferentes proporciones de escombro, utilizando la proporción de mejor resultado de cemento y el porcentaje de humedad óptima. Estos fueron elaborados en dos máquinas diferentes la Cinva Ram y una máquina para realizar adoquines y losetas.

Cuando se realizaron los bloques en la máquina para adoquines no se obtuvieron buenos resultados debido a la vibración que esta realiza que causa que haya segregación de los agregados y que las partículas finas vayan al fondo de la mezcla, creando una compactación no uniforme, con consistencia inestable y muchas fisuras en el bloque. Debido a esto solo se realizaron bloques en la CINVA RAM.

Figura 13. Máquina para realizar adoquines y losetas

 El proceso de compactación en la CINVA RAM es posterior a la mezcla del suelo, con el porcentaje ideal de cemento, los diferentes porcentajes de escombro y la cantidad ideal de agua para la compactación. Este consiste en ejercer fuerza sobre el molde del bloque por medio de un brazo de palanca.

Figura 14. Dimensiones BTC

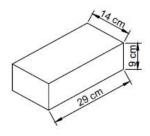


Figura 15. Realización de los BTC en la Cinva Ram.

Fuente: Los Autores

• Se realiza una revisión al bloque para garantizar una buena consistencia, ausencia de fisuras y el alto esperado.

Figura 16. BTC una vez realizada la compactación.

3.4 FASE 4: DETERMINAR LA RESISTENCIA MECÁNICA A LA COMPRESIÓN DE LOS BLOQUES DE TIERRA COMPRIMIDA

• Para determinar la resistencia a la compresión de los BTC, se optó por realizar las pruebas en un laboratorio certificado para tener mayor veracidad y confianza en los resultados, estos no se realizaron con el bloque completo sino con la mitad.

Tabla 6. Ensayos a compresión realizados para BTC.

PORCENTAJE	NORMA UTILIZADA	NÚMERO DE ENSAYOS REALIZADOS
0%		3
10%	NTC 5324	3
15%		3
20%		3

Fuente: Los Autores

 Una vez pasados los 28 días recomendados para el curado Se probaron los BTC a la compresión. Estos según la norma NTC 5324 la resistencia buscada en la elaboración de estos bloques debe ser igual o superior a 2 MPa refiriéndonos a una normativa aplicativa para bloques de suelo cemento para divisiones y muros no estructurales, teniendo en cuenta que no se tiene ningún tipo de perforaciones ni horizontal ni vertical tratándose de un bloque macizo.

SANCARIO.

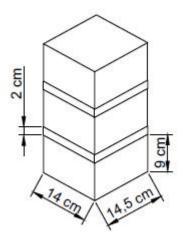
Figura 17. Curado de los bloques

Fuente: Los Autores.

 Evaluar el resultado de la mejor proporción de escombro en los BTC y compararlo con la normatividad vigente.

3.5 FASE 5: ELABORAR MURETES CON LAS DOSIFICACIONES Y DETERMINAR LA RESISTENCIA MECÁNICA DE ESTOS

 Se construyeron los muretes utilizando los BTC para cada uno de los porcentajes de escombro con un mortero de pega de 2 cm.


Tabla 7. Ensayos a compresión realizados para los muretes de BTC.

PORCENTAJE	NORMA UTILIZADA	NÚMERO DE ENSAYOS REALIZADOS
0%		1
10%	NTC 3495	1
15%		1
20%		1

Figura 18. Fraccionamiento de los bloques para la construcción de los muretes.

Figura 19. Dimensiones de los muretes.

- Probar a la compresión los muretes realizados de acuerdo a la norma NTC 3495 la cual establece un margen de exactitud de 1 decimal en cuanto a la toma de medida de resistencia pero no establece una resistencia mínima del murete debido a la variedad de materiales de posible uso en este ensayo por ende es muy difícil parametrizar todos estos.
- Evaluar el comportamiento de los muretes en comparación con su comportamiento como bloques individuales.

3.6 FASE 6: REALIZACIÓN TRABAJO ESCRITO

- Plasmar los resultados obtenidos a lo largo de la investigación en registro escrito.
- Analizar los resultados sacando las debidas conclusiones al respecto.

4. **RESULTADOS**

Los resultados de las diferentes fases experimentales son los siguientes.

4.1 CARACTERIZACIÓN DEL SUELO

La Tabla 8 muestra los resultados de los diferentes laboratorios de la fase de caracterización del suelo con la respectiva norma con la que fue realizado.

Tabla 8. Resultados de los ensayos de caracterización.

LABORATORIO	RESULTADO OBTENIDO
Descripción e identificación de	Suelo cohesivo de color café amarillento con
suelos (I.N.V. E – 102 – 07)	partículas finas y baja presencia de impurezas,
	olor inorgánico, material húmedo, consistencia
Operanida da Mataria Operánia	firme y estructura homogénea
Contenido de Materia Orgánica	1,96% de materia orgánica
(I.N.V. E – 121 – 13) (Véase Anexo 1)	
Límite líquido (I.N.V. E – 125 – 07)	56,39% de limite líquido
(Véase Anexo 2)	50,59 % de limite riquido
(Vodoc / Wiexe Z)	
Límite plástico e Índice de	37,05% de limite plástico y índice
plasticidad (I.N.V. E - 126 - 07)	
(Véase Anexo 2)	
Gravedad específica del suelo	2,55 de gravedad especifica
(I.N.V. E - 128) (Véase Anexo 3)	24 - 224 - 4
Ensayo de cantidad de material	61,52% de finos
fino que pasa el tamiz 200 en los	38,48% de arenas
agregados (I.N.V. E – 214 – 13) (Véase Anexo 4)	
Próctor Modificado (I.N.V. E-142-	50,5% de humedad óptima
07) (Véase Anexo 5)	50,5 % de flumedad optima
Granulometría de escombro de	Cu=8,63 (Coeficiente de uniformidad) y Cc=2,96
concreto (I.N.V. E – 123 – 13)	(Coeficiente de curvatura)
(Véase Anexo 6)	(00000000000000000000000000000000000000
Gravedad específica del escombro	Gs=2,7 (Retenido Tamiz #4)
de concreto. (I.N.V. E – 223– 13)	Gs=2,5 (Pasante Tamiz #4)
(Véase Anexo 7 y Anexo 8)	
Contenido de Humedad del	16% de humedad
suelo(I.N.V. E - 122- 13) (Véase	
Anexo 9)	
Granulometría Hidrómetro (I.N.V.	21% de arcillas
E – 124– 07) (Véase Anexo 10)	40,52% de limos

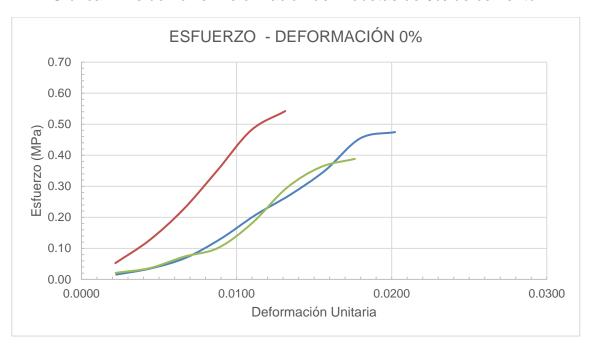
4.2 RESISTENCIA MECÁNICA DEL SUELO CON DIFERENTES DOSIFICACIONES DE CEMENTO

La tabla 9 muestra los diferentes resultados de las pruebas a la compresión no confinada para las probetas de suelo cemento para los diferentes porcentajes del aglutinante. Puede observarse que la proporción del 5% fue la de mejores resultados y que los datos presentan unas desviaciones estándar bajas. Véase Anexo 10 y Anexo 11.

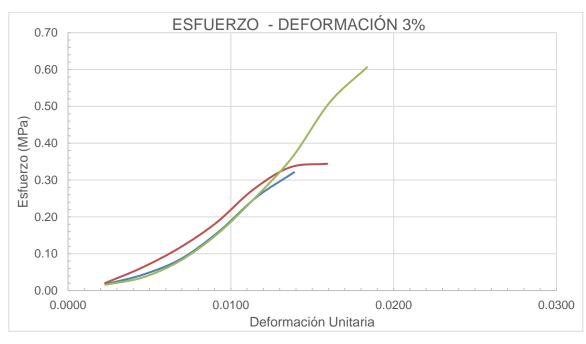
Tabla 9. Resultados de la resistencia a compresión de las probetas de suelo cemento para diferentes porcentajes de cemento.

PORCENTAJE DE CEMENTO	NÚMERO DE MUESTRA	RESISTENCIA A LA COMPRESIÓN (MPa)	DESVIACIÓN ESTÁNDAR
	1	0,47	
0%	2	0,54	0,075
0 70	3	0,39	
	Promedio	0,47	
	1	0,32	
3%	2	0,34	0,162
370	3	0,61	
	Promedio	0,42	
	1	0,37	
4%	2	0,57	0,104
4%	3	0,42	
	Promedio	0,45	
	1	0,65	
5%	2	0,48	0,098
570	3	0,48	
	Promedio	0,54	

Fuente: Los Autores

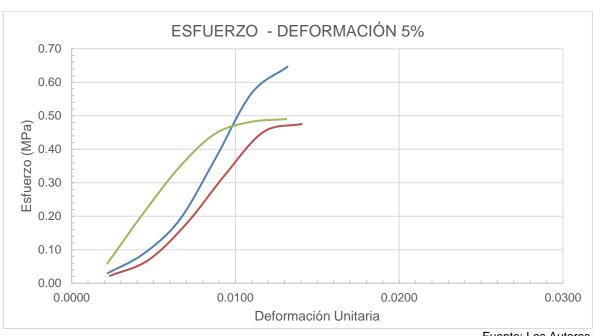

Con los valores de resistencia y densidad (Anexo 10) se realiza una gráfica que relaciona estas dos variables, que muestra la influencia que tiene la densidad en la resistencia de las probetas y el contenido de cemento.

7.00 6.50 **Resistencia a la compresion (kg/cm2)**00.05
00.07
00.08
00.09
00.09 0 **0**% **3**% **4**% **5**% 0 3.50 0 3.00 1.35 1.40 1.45 1.50 1.55 1.60 1.30 Densidad (g/cm3)


Gráfica 1. Densidad vs. Resistencia de los cilindros de suelo cemento.

Con los valores de Esfuerzo y deformación unitaria (Anexo 11) se realizan las siguientes gráficas, las cuales indican la relación entre estas dos variables y muestran el aumento en la deformación unitaria a medida que incrementa el esfuerzo para los diferentes porcentajes de cemento.

Gráfica 2. Esfuerzo vs. Deformación de Probetas de 0% de cemento.


Gráfica 3. Esfuerzo vs. Deformación de Probetas de 3% de cemento.

Gráfica 4. Esfuerzo vs. Deformación de Probetas de 4% de cemento.

Gráfica 5. Esfuerzo vs. Deformación de Probetas de 5% de cemento.

4.3 RESISTENCIA MECÁNICA A LA COMPRESIÓN DE LOS BLOQUES DE TIERRA COMPRIMIDA

Los resultados de la pruebas a la compresión de los BTC se encuentran en la Tabla 10, al analizar los resultados se ve que el porcentaje del 15% fue el de mayor resistencia, a pesar que este cuenta con una desviación estándar superior a las demás, se encuentran bajas en general.

Tabla 10. Resultados de la resistencia a compresión de los BTC para diferentes porcentajes de escombro.

PORCENTAJE DE ESCOMBRO	NÚMERO DE MUESTRA	CARGA DE ROTURA (KN)	RESISTENCIA A LA COMPRESIÓN (Mpa)	DESVIACIÓN ESTÁNDAR
	1	12,35	0,6	
0% (Véase	2	11,89	0,5	0,06
Anexo 13)	3	12,44	0,6	
	Proi	medio	0,6	
	1	12,72	0,6	
10% (Véase	2	15,36	0,7	0,10
Anexo 14)	3	17,38	0,8	
	Proi	medio	0,7	
	1	25,99	1,1	
15% (Véase	2	19,65	0,9	0,25
Anexo 15)	3	13,61	0,6	
	Proi	medio	0,9	
20% (Véase Anexo 16)	1	13,41	0,6	
	2	17,54	0,8	0,12
	3	12,3	0,6	
	Proi	medio	0,7	

4.4 RESISTENCIA MECÁNICA DE LOS MURETES REALIZADOS CON BTC

Los resultados compilados en la tabla 11 nos muestran las respectivas resistencias a la compresión de los muretes para cada uno de los porcentajes de escombro. Se logra analizar que el más resistente fue el perteneciente al 20% y el menor el del 15%.

Tabla 11.Resultados de la resistencia a compresión de los muretes de BTC para diferentes porcentajes de escombro.

PORCENTAJE DE ESCOMBRO	CARGA DE ROTURA (KN)	RESISTENCIA A LA COMPRESIÓN (Mpa)
0% (Véase Anexo 17)	7,9	0,4
10% (Véase Anexo 18)	8,49	0,4
15% (Véase Anexo 19)	7	0,3
20% (Véase Anexo 20)	10,38	0,5

5. ANÁLISIS DE RESULTADOS

Una vez se realizaron todos los ensayos de laboratorio se hizo un análisis detallado de acuerdo a los resultados obtenidos en cada una de las fases.

5.1 CARACTERIZACIÓN DEL SUELO

Con respecto a los resultados presentados en la tabla 12 se realiza un análisis que permita caracterizar el suelo y analizar las propiedades que este puede brindar a la calidad de los BTC como de los muretes.

Tabla 12. Análisis de resultados de los ensayos de caracterización

LABORATORIO	RESULTADO OBTENIDO
Descripción e identificación de suelos	Suelo cohesivo de color café
(I.N.V. E – 102 – 07)	amarillento con partículas finas y baja
	presencia de impurezas, olor
	inorgánico, material húmedo,
	consistencia firme y estructura
	homogénea
Contenido de Materia Orgánica (I.N.V. E – 121 – 13) (Véase Anexo 1)	1,96% de materia orgánica
Límite líquido (I.N.V. E – 125 – 07) (Véase	56,39% de limite líquido
Anexo 2)	30,3370 de infinte riquido
Alloxo Z)	
Límite plástico e Índice de plasticidad	37,05% de limite plástico y índice
(I.N.V. E - 126 - 07) (Véase Anexo 2)	
Gravedad específica del suelo (I.N.V. E -	Gs=2,55
128) (Véase Anexo 3)	
	61,52% de finos
Ensayo de cantidad de material fino que	38,48% de arenas
pasa el tamiz 200 en los agregados (I.N.V.	
E – 214 – 13) (Véase Anexo 4)	70 70()
Próctor Modificado (I.N.V. E-142-07)	50,5% de humedad óptima
(Véase Anexo 5)	C. C. C. C. C. Sicionto de uniformidad
	·
	,
	, , ,
, , ,	GS(IIII0)=2,5
	16%
	10 /0
	21% de arcillas
Granulometría de escombro de concreto (I.N.V. E – 123 – 13) (Véase Anexo 6) Gravedad específica del escombro de concreto. (I.N.V. E – 223– 13) (Véase Anexo 7 y Anexo 8) Contenido de Humedad del suelo(I.N.V. E – 122– 13) (Véase Anexo 9) Granulometría Hidrómetro (I.N.V. E –	Cu=8,63 (Coeficiente de uniformidad) y Cc=2,96 (Coeficiente de curvatura) Gs(grueso)=2,7 Gs(fino)=2,5 16% 21% de arcillas

Descripción e identificación de suelos (I.N.V. E – 102 – 07): El análisis realizado respecto a este laboratorio no es muy diferente al resultado ya que es un suelo cohesivo de color café amarillento con partículas finas y baja presencia de impurezas, olor inorgánico, material húmedo, consistencia firme y estructura homogénea.

Contenido de Materia Orgánica (I.N.V. E – 121 – 13): Un porcentaje de materia orgánica por debajo del 2% es una buena cantidad que no afectara las propiedades del mismo.

Límite líquido (I.N.V. E – 125 – 07) y Límite plástico e Índice de plasticidad (I.N.V. E – 126 – 07): Según la tabla de clasificación de suelos este es catalogado como un limo inorgánico.

Gravedad específica del suelo (I.N.V. E - 128): Según este valor el suelo estaría por debajo de la gravedad específica del suelo anteriormente clasificado por límites de Atterberg (Limo inorgánico) el cual tiene este valor entre 2,62 y 3,15, pero que debido a que es derivado de ceniza volcánica y estas tienen valores bajos (2,3-2,5) el valor es adecuado para este tipo de suelo.

Ensayo de cantidad de material fino que pasa el tamiz 200 en los agregados (I.N.V. E – 214 – 13): Con este resultado se puede analizar que el material con el que se va a realizar el BTC no es el ideal porque contiene poca cantidad de material fino, el cual le puede brindar gran resistencia a los bloques debido a su cohesión.

Próctor Modificado (I.N.V. E-142-07): El valor de humedad óptima se encuentra muy cerca del límite líquido; esto no es conveniente debido a que el suelo puede perder su maleabilidad muy fácilmente con un leve aumento de humedad.

Granulometría de escombro de concreto (I.N.V. E – 123 – 13): Este es un material bien gradado, al ser Cu>6 y 1<=Cc<=3.

Gravedad específica del escombro de concreto. (I.N.V. E – 223– 13): Estos valores se encuentran dentro de los estipulados para agregados gruesos y finos.

Contenido de Humedad del suelo (I.N.V. E – 122– 13): Se puede analizar que este material se encuentra relativamente seco debido a su poco contenido de humedad, cabe notar que este ensayo se realizó antes de la realización de los BTC y no al momento de extracción de la muestra.

Granulometría Hidrómetro (I.N.V. E – 124– 07): Se puede observar que la cantidad de limos son 1,92 veces la cantidad de arcillas.

5.2 RESISTENCIA MECÁNICA DEL SUELO CON DIFERENTES DOSIFICACIONES DE CEMENTO

Tabla 13. Análisis de resultados de la resistencia a compresión de las probetas de suelo cemento para diferentes porcentajes de cemento.

PORCENTAJE DE CEMENTO	RESULTADO OBTENIDO (PROMEDIO) (MPa)	DESVIACIÓN ESTÁNDAR
0%	0,47	0,075
3%	0,42	0,162
4%	0,45	0,104
5%	0,54	0,098

Fuente: Los Autores

Una vez obtenidos los resultados de las probetas de suelo cemento con los diferentes porcentajes del aglutinante se puede observar que la mayor resistencia fue la del 5% con una resistencia de 0,54 y la menor 3% con una resistencia de 0,42 aún por debajo del 0% con una resistencia de 0,47.

Comparando la gráfica 5 correspondiente al 5% de cemento con las gráficas 2, 3 y 4 correspondientes al 0%, 3% y 4% de cemento; se analiza que la probeta de suelo con adición del 5% de cemento es mucho más rígida que las otras probetas con distintas adiciones.

La desviación estándar de cada una de las dosificaciones (Tabla 13) muestra que los resultados arrojados en éstas no son confiables debido a que sus valores son muy representativos ya que estos se encuentran alrededor del 25% del valor de su respectivo promedio, principalmente las del 0% de cemento.

En la gráfica 1 se puede notar que la relación entre la resistencia y la densidad del suelo-cemento es importante pero no tan influyente debido a que a medida que aumenta el porcentaje de cemento se puede perder humedad debido a la alta absorción por parte del aglutinante y alejar esta variable de la humedad óptima lo que ocasiona una pérdida de resistencia. La densidad de las probetas se ve poco influenciada cuando hay cambios leves en la cantidad de cemento.

Analizando los resultados se llega a la decisión de escoger el porcentaje del 5% de cemento ya que fue el que obtuvo mayor resistencia y menor deformación unitaria.

5.3 RESISTENCIA MECÁNICA A LA COMPRESIÓN DE LOS BLOQUES DE TIERRA COMPRIMIDA

Con base en los datos presentados en la tabla 14 se realiza un análisis acerca de los resultados obtenidos en esta fase.

Tabla 14. Análisis de resultados de la resistencia a compresión de los BTC para diferentes porcentajes de escombro.

PORCENTAJE DE ESCOMBRO	RESISTENCIA A LA COMPRESIÓN (Mpa)	DESVIACIÓN ESTÁNDAR
0%	0,6	0,06
10%	0,7	0,1
15%	0,9	0,25
20%	0,7	0,12

Fuente: Los Autores

En los resultados obtenidos en las pruebas a compresión de los BTC (Tabla 10) se puede observar una resistencia mayor en porcentaje del 15% de escombro por encima de los demás. Mostrando tendencia de incremento hasta llegar al 15% y reducción al pasar de este al 20%. En comparación con la NTC 5324 los resultados son muy inferiores a los exigidos que son de mínimo 2 MPa.

La desviación estándar de cada uno de las proporciones de BTC (Tabla 14) muestra que los resultados arrojados en estas son confiables debido a sus valores no son muy representativos ya que estos se encuentran alrededor del 14% del valor de su respectivo promedio con excepción del resultado del 15% de escombro que tiene un valor del 25% respecto a su promedio.

Al comparar el resultado de mayor resistencia a compresión de los BTC individuales (0,9 MPa) con los resultados de investigaciones anteriores realizados en la Universidad libre (BTC con adición de cal y ladrillo) (0,3 MPa – 0,7 MPa – 0,4 MPa – 0,45 MPa – 0,3 MPa) se puede notar que el resultado de esta investigación es superior

Comparando los resultados de mayor resistencia a la compresión de esta investigación (0,9 MPa) con la investigación realizada por Vásquez et al, 2015 en la universidad de Cuenca – Ecuador (2,612 MPa) (BTC con cáscara de arroz) se observa una gran diferencia, siendo los resultados de la segunda investigación muy superiores, Algunos superándolos casi por el triple.

La resistencia a la compresión de los BTC de la investigación de Molina et al, de la Universidad Libre de (BTC con adición de cartón, arena y cal con resistencia a la compresión entre 4.41MPa y 9.59MPa), como se observa obtienen resultados superiores a 0,9 MPa obtenidos en esta investigación.

Los resultados de resistencia a la compresión de los BTC de esta investigación como se ha indicado fue de 0,9 MPa fue mayor a la resistencia obtenida por Arteaga et al, en la Universidad Pedagógica y Tecnológica de Colombia (BTC con adición de arena y cemento con una resistencia a la compresión de 0,25 MPa).

Realizando la comparación de los mejores resultados obtenidos en esta investigación (0,9 MPa) en resistencia a compresión con respecto a la realizada por Cabo en la Universidad Pública de Navarra (BTC con adición de cemento o cal fue de14,4 MPa), se logra observar que los resultados de esta investigación son inferiores.

Comparando los resultados de mayor resistencia a la compresión de esta investigación de 0.9 MPa con la investigación realizada por Botero et al, 2015 en la universidad EAFIT de Medellín quienes obtienen resistencias de 5,34 MPa, al usar una Mezcla de 25% tierra + 5% cemento + 70% Escombro, se observa una gran diferencia, siendo los resultados de la segunda investigación superiores, algunos valores superándolos más de 5 veces su resistencia.

5.4 RESISTENCIA MECÁNICA DE LOS MURETES REALIZADOS CON BTC

En la tabla 15 se presentan los resultados de las pruebas de compresión realizadas a muretes fabricados con BTC fabricados con suelo/cemento/escombro.

Tabla 15. Análisis de los resultados de la resistencia a compresión de los muretes de BTC para diferentes porcentajes de escombro.

PORCENTAJE DE ESCOMBRO	RESULTADO OBTENIDO
0%	0,4 MPa
10%	0,4 MPa

15%	0,3 MPa
20%	0,5 MPa

- En los resultados obtenidos en las pruebas a compresión de los muretes de BTC se puede observar una resistencia mayor en porcentaje del 20% de escombro con una resistencia de 0,5MPa y el más bajo es el del 15% con 0,3MPa.
- Al comparar los valores arrojados en las tablas 10 y 11 de los bloques individualmente con los de los bloques en murete se puede identificar una notable reducción en la resistencia desde el 33% para el valor del 0% de escombro hasta el 67% para el valor de 15% de escombro.
- La resistencia a la compresión de los muretes de la investigación de Molina et al de la Universidad Libre Seccional Pereira de Bloques de tierra comprimida con adición de cartón, arena y cal, arroja unos resultados muy superiores a los de esta investigación con un resultado de 1.35MPa que sería más del doble de la resistencia adquirida por el murete con mejor resistencia de este proyecto que fue de 0,5 MPa.
- Los resultados de resistencia a la compresión de los muretes de la investigación actual dan por debajo de los de la investigación realizada por Arteaga et al en la Universidad Pedagógica y Tecnológica de Colombia con BTC con adición de arena y cemento, la cual con 1,17 Mpa es más del doble de la resistencia de mejor resultado de esta investigación correspondiente a 0,5MPa.

6. CONCLUSIONES

La caracterización del suelo arrojó que éste es un suelo limo-arenoso inorgánico, suelo con baja cohesión y bajo contenido de arcilla, textura que no es favorable al momento de alcanzar resistencias a la compresión mayores a 2 MPa.

La dosificación con mejores resultados fue aquella con 80% de suelo derivado de cenizas volcánicas, 15% de residuo de concreto y 5% de cemento, siendo ésta combinación porcentual la que arrojó mejores resultados de investigaciones anteriores con adición de ladrillo en lugar de escombro de concreto y cal en lugar de cemento

Al ser éste un limo, este posee poca cohesión comparado con una arcilla, la cual es la utilizada para hacer ladrillos.

La dosificación de cemento que mejores resultados obtuvo, es igual al 5%, debido a que este le aportó más resistencia y rigidez al suelo.

Aunque la resistencia de los BTC no es mayor o igual a la mínima exigida por la norma, se puede evidenciar una muy amplia posibilidad de llegar al objetivo si se llevan a cabo diferentes procedimientos y adiciones extra.

La resistencia a la compresión de los BTC individuales en esta investigación siempre es superior a la resistencia a la compresión de los muretes, de lo cual se puede evidenciar algún tipo de error a la hora de realizar la pega de los bloques.

De los BTC con suelos derivado de cenizas volcánicas incluidos en los antecedentes, los de esta investigación fueron los que tuvieron mejor resultado, con excepción de aquellos que tienen adición de arena, cartón y cemento.

7. RECOMENDACIONES

Los muretes arrojaron resultados muy por debajo de los BTC, por lo tanto, se sugiere realizar otro procedimiento, otro tipo de muretes y otro material de pega diferente al mortero.

Para futuras investigaciones se sugiere aumentar la dosis de cemento pensando en la resistencia, pero también en la economía del BTC.

Se sugiere también dosificar más cantidad de escombros en un diámetro menor, viendo los buenos resultados de algunos antecedentes.

A la hora del secado de los BTC se sugiere mantener húmedos los bloques durante los primeros días para que así el cemento tenga su correspondiente curado.

Al observar las desviaciones estándar en general, se sugiere realizar más probetas tanto para la determinación del porcentaje óptimo de cemento como para la determinación de la mezcla óptima de BTC, para así obtener resultados más precisos.

Se sugiere utilizar los bloques enteros a la hora de la prueba y de la realización del murete, debido a que, al cortarlos a la mitad, se puede ver afectada su composición debido a que esta mezcla no es del todo homogénea.

8. BIBLIOGRAFÍA

ROMERO, Emilio. Residuos de construcción y demolición. Universidad de Huelva. 2007.

GONZALEZ, Andrés Mauricio. Técnica Constructiva con tierra compactada tecnología sostenible sin explorar. Universidad de la Salle. 2012

RHYNER, Kurt. Ideas sobre bloques prensados de tierra. En: Revista Ecosur. No. 40 (Ene.,2004).

VASQUEZ HERNANDEZ, Alejandro; BOTERO BOTERO, Luis Fernando; CARVAJAL ARANGO, David. Fabricación de bloques de tierra comprimida con adición de residuos de construcción y demolición como reemplazo del agregado pétreo convencional. Medellín, 2015. Trabajo de grado (Ingeniería Civil). Universidad EAFIT. Facultad De Ingeniería.

FRATELLI, María Graciela. Suelos, fundaciones y muros. Caracas: Libros Técnicos ASTROM, 1993.

GARCIA ROMERO, Emilia. Las Arcillas: Propiedades y usos (En Línea). http://www.uclm.es/users/higueras/yymm/Arcillas.htm. (Citado en 11 de Agosto de 2016).

LOPEZ VIEJO, Jorge Luis; LORENZANA FERNANDEZ, Marta. Construcción con Tierra. 2008.

PONS, Gabriel. La tierra como material de construcción. http://ieham.org/html/docs/La tierra como material de construcion.pdf. (Citado el 11 de Agosto de 2016).

GONZALEZ, Andrés. Cemento-Concreto espacio y materialidad. http://es.slideshare.net/archieg/concreto-8189329. (Citado el 11 de agosto de 2016).

INSTITUTO NACIONAL DE LA PROPIEDAD INDUSTRIAL ARGENTINA. Boletines Temáticos: Cenizas volcánicas. En Línea, 2008. < http://www.ibepi.org/wp-content/uploads/2014/12/Cenizas1.pdf>. (Citado el 11 de agosto de 2016).

CEMPRE. Reciclaje de Escombros. Uruguay. 2008.

PROGRAMA DE LAS NACIONES UNIDAS PARA EL DESARROLLO TECNOLOGIAS EN LA ERRADICACION DE LA POBREZA. Cinva — Ram Máquina Para Fabricar Bloques De Suelo — Cemento. Bogotá.

PROGRAMA DE LAS NACIONES UNIDAS PARA EL DESARROLLO TECNOLOGIAS EN LA ERRADICACION DE LA POBREZA. Cinva — Ram Máquina Para Fabricar Bloques De Suelo — Cemento. Bogotá.

CHOQUE, Godofredo Edgar; HUAMAN MEZA, Julio. Adobes comprimidos Suelo-Cemento, una alternativa ecológica. CONGRESO NACIONAL DE INGENIERÍA CIVIL: 2009: Lima.

EL TIEMPO. Soy Ecolombiano: Vivienda y Construcción sostenible. 8 Pag.

ARTEAGA MEDINA, Karen Tatiana; MEDINA, Oscar Humberto; GUTIERREZ JUNCO, Oscar Javier. Bloque de tierra comprimida como material constructivo. 2011. En: SEMINARIO IBEROAMERICANO DE ARQUITECTURA Y CONSTRUCCION CON TIERRA (15°: 2015: Ecuador).

ALCALDIA DE PEREIRA. Pereira rural y paisajística. Corregimiento De Arabia. 2009 [http://pereiraruralypaisajistica.blogspot.com.co/2009_11_01_archive.html].

AGÜERO, Johnny; CERÓN, Javier; GONZALEZ, Juan Carlos y MENDEZ, María Teresa. Análisis estructural de dos muros de adobe con diferente sistema de aparejo. Universidad Ricardo Palma, Perú. En: SEMINARIO IBEROAMERICANO DE ARQUITECTURA Y CONSTRUCCION CON TIERRA (15°: 2015: Ecuador).

POZZI-ESCOT, Denise. BERNUY, Katiusha.; TORRES, Henry. P; ACHING, Jorge. V. (2009). Sismo-resistencia de las construcciones en tierra del santuario arqueológico de Pachacamac.

AGUIRRE, Ramón; GUERRERO, Luis Fernando. Refuerzos y protecciones superficiales sostenibles para bóvedas de adobe recargado en México. Universidad Autónoma Metropolitana-Xochimilco. Mexico. En: SEMINARIO IBEROAMERICANO DE ARQUITECTURA Y CONSTRUCCION CON TIERRA (15°: 2015: Ecuador).

GARCIA, Adriana Beatriz; MAZZEO, Juan Pablo; MARTINEZ, Armenia. Metodología de control de calidad en producción de paneles con suelos estabilizados. Universidad Tecnológica Nacional de Buenos Aires. Argentina. En: SEMINARIO IBEROAMERICANO DE ARQUITECTURA Y CONSTRUCCION CON TIERRA (15°: 2015: Ecuador).

AGÜERO, Johnny; CERÓN, Javier; GONZALEZ, Juan Carlos y MENDEZ, María Teresa. Análisis estructural de dos muros de adobe con diferente sistema de

aparejo. Universidad Ricardo Palma, Perú. En: SEMINARIO IBEROAMERICANO DE ARQUITECTURA Y CONSTRUCCION CON TIERRA (15°: 2015: Ecuador).

VASQUEZ, Marcelo; GUZMÁN, Daniel Sebastián; IÑIGUEZ, Jorge Mateo. Comparación entre propiedades físicas y mecánicas de adobes tradicionales y BTC estabilizados químicamente. Universidad de Cuenca - Ecuador, 2015. En: SEMINARIO IBEROAMERICANO DE ARQUITECTURA Y CONSTRUCCION CON TIERRA (15°: 2015: Ecuador).

GARCIA, Adriana Beatriz; MAZZEO, Juan Pablo; MARTINEZ. Armenis G. Metodología de control de calidad en producción de paneles con suelos estabilizado. Universidad Tecnológica Nacional - Argentina, 2015. En: SEMINARIO IBEROAMERICANO DE ARQUITECTURA Y CONSTRUCCION CON TIERRA (15°: 2015: Ecuador).

VINASCO, Gloria Milena; ARENAS CASTAÑO, Mónica Andrea; LONDOÑO, Alejandro; PARRA, Oscar Andrés; VALLEJO, Lina Marcela. Bloques de tierra comprimida con suelos derivados de ceniza volcánica y materiales reciclables: una alternativa ecológica. Universidad Libre Seccional Pereira - Colombia, 2015. En: SEMINARIO IBEROAMERICANO DE ARQUITECTURA Y CONSTRUCCION CON TIERRA (15°: 2015: Ecuador).

SANCHEZ, Mirta A.; CASENAVE, Silva N.; FORNARI, Javier; KELLER, Susana; AMAYA, Federico; BELINDE, Lucia; BELTRAMO, Marilina. Técnicas adoptadas en la elaboración de hormigón para tener una matriz a base de tierra. Universidad Tecnológica Nacional - Argentina, 2015. En: SEMINARIO IBEROAMERICANO DE ARQUITECTURA Y CONSTRUCCION CON TIERRA (15°: 2015: Ecuador).

ARTEAGA MEDINA, Karen Tatiana; MEDINA, Oscar Humberto; GUTIERREZ JUNCO, Oscar Javier. Bloques de tierra comprimida como material constructivo. Universidad Pedagógica y Tecnológica de Colombia, 2011. En: SEMINARIO IBEROAMERICANO DE ARQUITECTURA Y CONSTRUCCION CON TIERRA (15°: 2015: Ecuador).

DAS, Braja M. Resistencia cortante del suelo. En: Fundamentos de ingeniería geotécnica. 1 ed. Sacramento: Bill Stenquist, Suzanne Jeans, 2001.

MOHR, O. ¿Qué circunstancias hacen que el límite elástico y la ruptura a un material?. Revista de la Asociación de Ingenieros Alemanes.1900.

COULOMB, C. A. "Ensayo sobre la aplicación de las normas de máximos y mínimos en algunos problemas de estática, en la arquitectura. Memorias de Matemáticas y Física. 1776.

INSTITUTO NACIONAL DE VIAS. Suelos: determinación de la resistencia al corte método de corte directo (cd) (consolidado drenado). I.N.V. E – 154 – 07. Bogotá: INVIAS, 2007.

DAS, Braja M. Propiedades geotécnicas del suelo y del suelo esforzado. En: Principios de ingeniería de cimentaciones. 4 ed. Sacramento: International Thomson Editores, 2001.

BEDOYA MONTOYA, Carlos Mauricio. Diversas expresiones de la construcción sostenible. <u>En</u>: Construcción sostenible. Cataluña: Universidad politécnica de Cataluña, 2011. p. 51-125.

BESTRATEN, S.; HORMÍAS, E. y ALTEMIR, A.. Construccion con tierra en el siglo XXI. Cataluña: Universidad Politécnica de Cataluña, 2010. p. 5-20.

TORRES, Rafael E.. Investigaciones de estructuras para viviendas de bajo costo y el rol del cismid. Perú: CISMID, 1990. p. 424-445.

LOBO MORALES, Diego Alejandro; LONDOÑO ZULUAGA, Emma; MARÍN GAVIRIA, Paula Yulieth; OSORIO CEBALLOS, Stefania; VALENCIA RESTREPO, Paola Melissa. Determinación de la resistencia a compresión de los bloques de tierra comprimida adicionada con un 17,5% de escombro de ladrillo y cal. Universidad Libre Seccional de Pereira. 2015.

VELÁSQUEZ ZULUAGA, Yigal; MARTÍNEZ, Elsy Rubiela; MARTÍNEZ PARRA, Julián Felipe; TAPASCO BENJUMEA, Edwin; VACA, Juan Esteban y LÓPEZ JARAMILLO, Cristian David. Determinación de la resistencia a compresión de los bloques de tierra comprimida adicionada con un 12,5% de escombro de ladrillo y cal. Universidad Libre Seccional de Pereira. 2015.

CARDONA RINCÓN, Alejandra; MENDOZA HERRERA, Andrés Felipe; GÓMEZ ECHEVERRY, Manuela; LOTERO VALENCIA, Mateo y DURAN SANTA, Daniela. Determinación de la resistencia a compresión de los bloques de tierra comprimida adicionada con un 17,5% de escombro de ladrillo y cal. Universidad Libre Seccional de Pereira. 2015.

AGUDELO MONTES, Lina Marcela; MEJÍA JIMÉNEZ, Jennifer; TORO, Andrés Felipe; OSORIO GONZÁLEZ, Brian; PUERTA RIVERA, Juan David y MOSQUERA, Jorge Andrés. Determinación de la resistencia a compresión de los bloques de tierra comprimida adicionada con un 12,5% de escombro de ladrillo y cal. Universidad Libre Seccional de Pereira. 2015.

CAICEDO, Aura Cristina; GOMEZ MORALES, Laura Francelly; LOAIZA LEAL, Laura; MURILLO SALAZAR, Lizeth; SALAZAR BEDOYA, Vanessa y YUSTI CANO, Daniela. Determinación de la resistencia a compresión de los bloques de tierra comprimida adicionada con un 12,5% de escombro de ladrillo y cal. Universidad Libre Seccional de Pereira. 2015.

ANEXOS

Anexo 1. Cuadro resumen ensayo de laboratorio de contenido de materia orgánica.

aSIDAN			CON	TENIDO ORGÁN	NICO EN SUELO	S MEDIANTE PÉ	RDIDA POR IGN	NICIÓN			
NE TE	NORMA					I.N.V. E – 121 – 1	13				
	ESPECIF	ICACIÓN	Deberá tomarse una mu	estra significat	iva, colocarla e	n un recipiente	y llevarla al ho	orno a 110°C, po	osteriormente se	coloca en un d	esecador
SCIENTIA LIBERTATIS		Camilo Escoba	r Galvis	374121002	Fecha	martes, 15 de l	Marzo de 2016		Trabajo No.		
Course	Nombres	Juan Sebastia	n Leon Gomez	374121050					Ensayo No.		:
OTOM BIT		Vanessa Salaz	ar Bedoya	341211055							
Localización			Vereda la Floresta - Sector la	Florida	Coordenadas		N 04°4	5′21,7"	E 75°36	5′35,3"	
Perforación y/o Excavación N	lo.		1		Muestra No.		1	Altura		1743 г	msnm
Descripción de la Muestra			Derivados de Cenizas Volcani	cas	Color	Amarillo Oscur	0	Profundidad		En un costado	de la ladera
Elementos utilizados para Ex	traccion		Pala, Palín, Asadón, Costales					Humedad		hum	neda
			* Recipiente		* Desecador						
Equipo utilizado	para el ensayo):	* Horno		* Balanza de 2	grados de preci	isión				
Peso del crista	al o plato de eva	aporación + sue	elo seco al horno antes de igni	ción (gr)	173.6	g					
Peso del crisol	l o plato de eva	poración y del	suelo seco después de ignició	n (gr)	172.9	g		% Materia Org	ganica	1,96%	
			aproximación a 0.01 g		138.82	g				•	1
	-		·		ı	-	I				

Anexo 2. Cuadro resumen ensayo de laboratorio de límite líquido y límite plástico del suelo.

RSIDAD		D	ETERMINACION	DEL LIMITE LIQ	UIDO DE SUELO				DICE DE PLAST	ICIDAD DE SUELO	os	
WE	NORMA					I.N.V. E – 12	25 – 13 y I.N.V.	E-126-13				
	ESPECIF	ICACIÓN	Para limite lic				•	•	•	para en dos para diametro y no te	• .	sta que se unan
SCIENTLA LIBERTATIS		Camilo Escoba	r Galvis	amous parte	374121002		martes, 15 de I		angun siiiin uc	Trabajo No.	ingan nouras	
FONSTA	Nombres	Juan Sebastian			374121050			10.00 00 2020		Ensayo No.		
COTOWBIA		Vanessa Salaza			341211055	l						
Localización			· · · · · · · · · · · · · · · · · · ·	esta - Sector la F		Coordenadas		N 04°4	5´21,7"	E 75°3	6′35,3"	
Perforación y/o Excavación No	0.		1			Muestra No.		1	Altura		1743	3 msnm
Descripción de la Muestra			Derivados de (Cenizas Volcanio	as	Color	Amarillo Oscur	0	Profundidad		En un costado	de la ladera
Elementos utilizados para Extr	raccion		Pala, Palín, Asa	dón, Costales					Humedad		hu	meda
Facility of the sale			* Recipiente		•	* Copa de casag	grande	•	* Espatula		•	
Equipo utilizado) para el ensayo):	* Horno			* Balanza de 2 g	grados de preci	sión				
	LIMITE LIQUID	0	Prueba 1	Prueba 2	Prueba 3		60)				
	Nro. de Golpes	5	29	22	18							
	Recip. No.		1	. 3	2		9					
	Peso Recip. + S	S.H.(g)	60,7	55,2	55,2		56 Hnmedad					1
	Peso Recip. + S	S.S. (g)	52,59	50,49	49,59		¥ 54			Grafica		
	Peso Recipient	te (g)	37,7	42,2	39,9		<u>a</u> % 52			Humedad vs Nro. De Gol		
	Peso Agua (g)		8,11	4,71	5,61		50			Nio. De doi	JC3	
	Peso Suelo Seo	co (g)	14,89	8,29	9,69		30	10	100			
	% de Humedad	t	54,47	56,82	57,89			Nro. De (
	Limite Liquido		56,39						-0.pcs			
			,								I	
·			54,54			-						
	LIMITE PLASTIC		Prueba 1	Prueba 2	Prueba 3							
	Recip. No.	0	Prueba 1	. 2	3							
	Recip. No. Peso Recip. + S	CO S.H. (g)	Prueba 1 1 44,89	2 47,21	3 42,92				ITES DE ATTERI	1]	
	Recip. No. Peso Recip. + S Peso Recip. + S	6.H. (g) 6.S. (g)	Prueba 1 1 44,89 42,34	2 47,21 45,91	3 42,92 41,51			LIMITE LIQUIDO		56,39		
	Recip. No. Peso Recip. + S Peso Recip. + S Peso Recipient	6.H. (g) 6.S. (g)	Prueba 1 1 44,89 42,34 39,9	2 47,21 45,91 42,2	3 42,92 41,51 37,9			LIMITE LIQUIDO LIMITE PLASTICO		56,39 37,05		
	Recip. No. Peso Recip. + S Peso Recipient Peso Agua (g)	6.H. (g) 6.S. (g) te (g)	Prueba 1 1 44,89 42,34 39,9 2,55	2 47,21 45,91 42,2 1,3	3 42,92 41,51 37,9 1,41			LIMITE LIQUIDO		56,39		
	Recip. No. Peso Recip. + S Peso Recip. + S Peso Recipient Peso Agua (g) Peso Suelo Sec	6.H. (g) 6.S. (g) te (g)	Prueba 1 1 44,89 42,34 39,9 2,55 2,44	2 47,21 45,91 42,2 1,3 3,71	3 42,92 41,51 37,9 1,41 3,61			LIMITE LIQUIDO LIMITE PLASTICO		56,39 37,05		
	Recip. No. Peso Recip. + S Peso Recipient Peso Agua (g)	6.H. (g) 6.S. (g) te (g)	Prueba 1 1 44,89 42,34 39,9 2,55	2 47,21 45,91 42,2 1,3 3,71 35,04	3 42,92 41,51 37,9 1,41 3,61			LIMITE LIQUIDO LIMITE PLASTICO		56,39 37,05		

Anexo 3. Cuadro resumen ensayo de laboratorio de gravedad específica del suelo.

OSIDAA			INVIAS DETERMIN	IACIÓN DE LA G	RAVEDAD ESP	ECÍFICA DE LOS	SUELOS Y DEL	LLENANTE MIN	Ieral		
ALE THE	NORMA					I.N.V. E – 128– 1	13				
	ESPECIF	ICACIÓN	Se debe tener muy en	cuenta la tem	peratura del ag	ua durante la re	ealizacion del e	ensayo, y la co	rrecta utilizacion	de la bomba de	vacios
SCIENTIA LIBERTATIS		Camilo Escoba	r Galvis	374121002	Fecha	martes, 15 de l	Marzo de 2016		Trabajo No.		1
Constitution	Nombres	Juan Sebastiar	n Leon Gomez	374121050					Ensayo No.		3
ON BILL		Vanessa Salaz	ar Bedoya	341211055							
Localización			Vereda la Floresta - Sector la	Florida	Coordenadas		N 04°4	5′21,7"	E 75°36	5′35,3"	
Perforación y/o Excavación N	lo.		1		Muestra No.		1	Altura		1743	msnm
Descripción de la Muestra			Derivados de Cenizas Volcani	cas	Color	Amarillo Oscu	ro	Profundidad		En un costado	de la ladera
Elementos utilizados para Ext	traccion		Pala, Palín, Asadón, Costales					Humedad		hun	neda
			* Pcnometro		* Tara			* Bomba de v	racío		
Equipo utilizado	para el ensay	o:	* Embudo		* Balanza de 2	grados de prec	isión	* Varilla mez	cladora		
			* Termometro		* Horno						
Masa de los só	lidos secos al h	norno			28,64	g					_
Masa del picnó	ómetro, el agua	y los sólidos d	e suelo a la temperatura de er	nsayo	361,8	g		Gravedad Esp	pecifica	2,55	
Masa del picno	ometro y del ag	gua a la temper	atura del ensayo		344,38	g					-
Temperatura d	le ensayo				27	°C					
							•				

Anexo 4. Cuadro resumen ensayo de laboratorio de cantidad de material fino que pasa el tamiz 200 en los agregados.

ALL DE		•	CANTIL	DAD DE MATERI	AL FINO QUE P	ASA EL TAMIZ 2	00 EN LOS AGRE	GADOS			
ERSIDAD	NORMA					I.N.V. E – 214 – 1	.3				
RE	ESPECIF	ICACIÓN	Se coloca a secar la muestra el	n un horno a 11	•	e intreducen en articulas de aren		-	a hasta el tope _l	oara despues sac	cudirlo y pesar
FONS (MEETING)		Camilo Escoba	r Galvis	374121002	Fecha	martes, 15 de I	Marzo de 2016		Trabajo No.		1
Coronal	Nombres	Juan Sebastiar	Leon Gomez	374121050					Ensayo No.		4
COMPANIA DE LA COMPANIA DEL COMPANIA DE LA COMPANIA DEL COMPANIA DE LA COMPANIA DEL COMPANIA DEL COMPANIA DE LA COMPANIA DEL COMPANIA DEL COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COM		Vanessa Salaza	ar Bedoya	341211055							
Localización			Vereda la Floresta - Sector la F	lorida	Coordenadas		N 04°4	5′21,7"	E 75°3	6′35,3"	
Perforación y/o Excavación No).		1		Muestra No.		1	Altura		1743 r	nsnm
Descripción de la Muestra			Derivados de Cenizas Volcanic	as	Color	Amarillo Oscur	0	Profundidad		En un costado d	le la ladera
Elementos utilizados para Extr	accion		Pala, Palín, Asadón, Costales					Humedad		hum	eda
Fauring utilizado			* Recipiente		* Tamiz 200						
Equipo utilizado	para ei ensayo):	* Horno		* Balanza de 2	grados de preci	sión				
_											
masa original de la muestra se	са			259,9 gr		M/Toro (a)	W inicial (g)	W seco + tara	W soco (a)	0/ Aronas	0/ Finas
masa de la muestra seca, desp	ués de lavada		_	100 gr		W Tara (g)	vv iniciai (g)	(g)	W seco (g)	% Arenas	% Finos
Porcentaje del material fino qu	ue pasa el tami:	z de 75 μm (No.	200) por lavado	61,52%		38	353	259,9	221,9	38,48%	61,52%
					•						

Anexo 5. Cuadro resumen ensayo de laboratorio de próctor modificado.

				MÉTODO DE F	NSAYO RFI ACIO	ONES DE HUME	ΤΟΔΟ – ΜΔSΔ Ι	ΙΝΙΤΔΡΙΔ SFCΔ	EN LOS SUFLOS	(ΕΝSΔΥΟ ΜΟ	DIFICADO DE CO	 ΜΡΔCΤΔCΙÓΝ)		
ANTERS I	AD	NORMA		WILLIODO DE L	NOATO RELACIO	SIVES DE MOIVIE	יאכאווו מאט.		E-142-07	(LINSATO INIO	DII ICADO DE CO	WII ACIACION		
		ESPECIF	ICACIÓN	El méto	do utilizado es	el Método A –	Un molde de d	liámetro 101.6 r	nm (4"): materi	al de un suelo	que pasa el tam	iz de 4.75 mm (No.4) (Seccion	es 3 y 4)
SCIENTIA	BESTATIS		Camilo Escoba	r Galvis		374121002	Fecha	martes, 15 de	Marzo de 2016		Trabajo No.		1	
PO	NS CONTRACTOR	Nombres	Juan Sebastia	n Leon Gomez		374121050					Ensayo No.		5	
COTO.	WEIR		Vanessa Salaz	ar Bedoya		341211055								
Localización				Vereda la Flore	esta - Sector la	Florida	Coordenadas		N 04°45	5′21,7"	E 75°36	5′35,3"		
Perforación y/o	o Excavación N	0.		1			Muestra No.		1		Altura		1743 ı	msnm
Descripción de	la Muestra			Derivados de C	Cenizas Volcani	cas	Color	Amarillo Oscu	ro		Profundidad		En un costado	de la ladera
Elementos utili	izados para Ext	raccion		Pala, Palín, Asa	•						Humedad		Muy h	umeda
				* Molde de 10	1,6mm de diám	ietro	* Regla y/o m	etro		* Horno	de Secado			
E	quipo utilizado	para el ensayo	o:		peración Mecá		* Tamiz No. 4							
					y 2 grados de			as misceláneas						
			Peso Molde	Peso Suelo				DE HUMEDA	D		DENSIDAD	DENSIDAD	DENSIDAD	DENSIDAD
VOLUMEN	Muestra	Peso Molde		Humedo	Peso Tara	Peso	Peso	Peso Seco	Peso Seco		SUELO yh	SUELO yd	SUELO yh	SUELO yd
DEL MOLDE		(gr)	Humedo (gr)	(gr)	(gr)	Humedo +	Humedo	+ Tara (gr)	(gr)	W %	(gr/cm3)	(gr/cm3)	(Kg/m3)	(Kg/m3)
ALTURA	1	3360,0	4522,000	1162.0	0.000	Tara (gr) 0,0	(gr) 0,000	0,0	0.000	0%	1,231	1,231	1231,29477	1231,29477
11.64	2	3360.0	4838.000	1478.0	59.800	173.8	114.010	145.0	85.220	33.78%	1,566	1,171	1566,13913	1170,655
DIÁMETRO	3	3360.0	4843,000	1483.0	68.070	156.1	87,990	133.7	65,580	34,17%	1,571	1,171	1571,4373	1171,21102
10,16	4	3360.0	4975,000	1615.0	62,460	135.6	73,130	113.5	51,060	43,22%	1,711	1,195	1711,30899	1194,85078
RADIO	5	3360,0	4823,000	1463,0	62,410	144,6	82,150	114,6	52,150	57,53%	1,550	0,984	1550,24462	984,117551
5,08	6	3360,0	3360,000	0,0	46,380	170,3	123,900	120,4	73,990	67,46%	0,000	0,000	0	0
ÁREA														
81,08					HUMEDA	D ÓPTIMA	DENS	IDAD SECA M	IÁXIMA	DENSIDA	D HUMEDA			
VOLUMEN					51	L%		1195 Kg/m3		1711	Kg/m3			
943,72									•			-		

Anexo 6. Cuadro resumen ensayo de laboratorio de granulometría del suelo.

MERSIDAD		NORMA				AITALISIS GIV		DE SUELOS POR .N.V. E – 123 – 13						
	1		ICACIÓN				-	a utilizar deben :		A O 60	140 200			
SCIEN	y	LJI LCII	Camilo Escobar	Galuic		374121002		martes, 15 de M			, 140, 200	Trabajo N	lo.	
FONS		Nombres	Juan Sebastian			374121002	reciia	martes, Due M	aizo de zoi			Ensayo No		
COLOMBIA		Nombres	Vanessa Salaza			341211055						Elisayo ivo	U	
ocalización					re Sede Belmo		Coordenadas		NΩ	4°48 ′2	68"	F	75°45′35,81	
erforación y/o Excavac	rión No			1	ne sede benno		Muestra No.			1 Al			75 15 05,03	1245 msnm
escripción de la Muest		<u>. </u>		Escombro de c	ncreto		Color	Gris		_	ofundidad	 		12 13 111.3111
ementos utilizados pa		accion		Maseta	JICIC CO		COIOI	GIIS			ımedad	·		Seco
<u> </u>				* Recipiente			* Copa de casa	grande			spatula			
Equipo ut	tilizado	para el ensayo):	* Horno			•	grados de precisi	ón		Spatara			
								P F						
ABERT		PESO TAMIZ	PESO TAM	IZ + SUELO	PESO	% RETENIDO	%RETENIDO	%PASA			CU	RVA GRAN	NULOMET	RICA
DEL TAN	/IIZ EN	ENL «			RETENIDO EN	I % RETEINIDO								
MN	И	EN g	RETENIC	DO EN g	g	7011211100	ACUMULADO	ACUMULADO	80					
MN	И 9,5	609,61		DO EN g 1053,76	g		ACUMULADO 30,63		80 70					
MN					g			69,37						
MN	9,5	609,61		1053,76	g 444, 15	30,63 39,83	30,63	69,37 29,54	70					
MIN	9,5 4,75	609,61 681,17		1053,76 1258,69	g 444,15 577,52	30,63 39,83	30,63 70,46	69,37 29,54 15,59	70 60					
MIN	9,5 4,75 2	609,61 681,17 564,6		1053,76 1258,69 766,9	g 444,15 577,52 202,3	30,63 39,83 13,95 6,06	30,63 70,46 84,41	69,37 29,54 15,59 9,53	70 60 50					
MIN	9,5 4,75 2 0,85	609,61 681,17 564,6 521,48		1053,76 1258,69 766,9 609,31	g 444,15 577,52 202,3 87,83	30,63 39,83 13,95 6,06	30,63 70,46 84,41 90,47	69,37 29,54 15,59 9,53 5,93	70 60 50 40					
MIN	9,5 4,75 2 0,85 0,43	609,61 681,17 564,6 521,48 509,66		1053,76 1258,69 766,9 609,31 561,78	g 444,15 577,52 202,3 87,83 52,12	30,63 39,83 13,95 6,06 3,6	30,63 70,46 84,41 90,47 94,07	69,37 29,54 15,59 9,53 5,93 3,77	70 \ 60 = 50 = 40 = 20 = 20 = 20					
MIN	9,5 4,75 2 0,85 0,43 0,18	609,61 681,17 564,6 521,48 509,66 509,46		1053,76 1258,69 766,9 609,31 561,78 510,77	g 444,15 577,52 202,3 87,83 52,12 31,31	30,63 39,83 13,95 6,06 3,6	30,63 70,46 84,41 90,47 94,07	69,37 29,54 15,59 9,53 5,93 3,77 1,42	70 60 50 40 30 50 10 50 50 50 50 50 5					
FONDO	9,5 4,75 2 0,85 0,43 0,18 0,15	609,61 681,17 564,6 521,48 509,66 509,46 493,79		1053,76 1258,69 766,9 609,31 561,78 510,77 527,91	g 444,15 577,52 202,3 87,83 52,12 31,31 34,12 18,51	30,63 39,83 13,95 6,06 3,16 2,35	30,63 70,46 84,41 90,47 94,07 96,23 98,58	69,37 29,54 15,59 9,53 5,93 3,77 1,42	70 \ 60 = 50 = 40 = 20 = 20 = 20			1	0,1	0,0
	9,5 4,75 2 0,85 0,43 0,18 0,15	609,61 681,17 564,6 521,48 509,66 509,46 493,79 297,41		1053,76 1258,69 766,9 609,31 561,78 510,77 527,91 315,92	g 444,15 577,52 202,3 87,83 52,12 31,31 34,12 18,51	30,63 39,83 13,95 6,06 3,16 2,35	30,63 70,46 84,41 90,47 94,07 96,23 98,58 99,86	69,37 29,54 15,59 9,53 5,93 3,77 1,42	70 \\ 60 - \\ 50 - \\ 40 - \\ 30 - \\ 10 - \\ 0			1	0,1	0,0:

Anexo 7. Cuadro resumen ensayo de laboratorio de gravedad específica del escombro de concreto (Fino).

ERSIDAD				INVIAS O	RAVEDAD ESPE	ECÍFICA Y ABSO	ORCIÓN DE AGR	EGADOS GRUES	SOS (FINO)			
The state of the s	NORMA						I.N.V. E – 223–	13				
	ESPECIF	ICACIÓN	Se deb	e tener muy er	n cuenta la tem	peratura del a	gua durante la r	ealizacion del e	nsayo, y la co	orrecta utilizacion	de la bomba d	e vacios
SCIENTIA LIBERTATIS		Camilo Escoba	r Galvis		374121002	Fecha	martes, 15 de	Marzo de 2016		Trabajo No.		
COLUM	Nombres	Juan Sebastiar	Leon Gomez		374121050					Ensayo No.		
Nombres Juan Sebastian Leon Gomez Vanessa Salazar Bedoya Juan Sebastian Leon Gomez Juan Sebastian Leon Gomez Vanessa Salazar Bedoya Juan Sebastian Leon Gomez Vanessa Salazar Bedoya Juan Sebastian Leon Gomez Vanessa Salazar Bedoya N 04°48′22,68" E 75°45′35,81" Altura 1245 msr Coripción de la Muestra Escombro de concreto Color Gris Profundidad Frofundidad Seco * Picnometro * Tara * Bomba de vacío * Balanza de 2 grados de precisión * Varilla mezcladora												
ocalización			Universidad Li	bre Sede Belm	onte	Coordenadas		N 04°48	3′22,68"	E 75°45	35,81"	
Perforación y/o Excavación	No.		1			Muestra No.		1	Altura		1245	msnm
Descripción de la Muestra			Escombro de c	oncreto		Color	Gris		Profundidad			
Elementos utilizados para E	xtraccion		Maseta						Humedad		S	есо
			* Picnometro			* Tara			* Bomba de	vacío		
Equipo utilizad	do para el ensay	o:	* Embudo			* Balanza de :	2 grados de prec	cisión	* Varilla me	zcladora		
			* Termometro			* Horno						
Masa de los s	sólidos secos al h	norno				28,9	7 g					
Masa del pici	nómetro, el agua	y los sólidos d	e suelo a la ten	nperatura de e	nsayo	367,4	5 g		Gravedad Es	pecifica	2,50	
Masa del pici	nometro y del ag	gua a la tempera	atura del ensay	0		350,0	3 g					_
T	de ensayo					2.	7 °C					

Anexo 8. Cuadro resumen ensayo de laboratorio de gravedad específica del escombro de concreto (Grueso).

aSIDAD				INVIAS GR	AVEDAD ESPEC	ÍFICA Y ABSOR	CIÓN DE AGREC	GADOS GRUESO	S (GRUESO)			
All III	NORMA						I.N.V. E – 223– :	13				
	ESPECIF	ICACIÓN	Se deb	e tener muy er	cuenta la tem	peratura del ag	ua durante la r	ealizacion del e	nsayo, y la co	rrecta utilizacion (de la bomba d	e vacios
SCIENTIA CONS LIBERTATIS		Camilo Escoba	r Galvis		374121002	Fecha	martes, 15 de	Marzo de 2016		Trabajo No.		
COLUMN	Nombres	Juan Sebastian	Leon Gomez		374121050					Ensayo No.		
OMBIL		Vanessa Salaza	ar Bedoya		341211055							
Localización			Universidad Li	bre Sede Belm	onte	Coordenadas		N 04°48	3′22,68"	E 75°45′	35,81"	
Perforación y/o Excavación N	lo.		1			Muestra No.		1	Altura		1245	msnm
Descripción de la Muestra			Escombro de c	oncreto		Color	Gris		Profundidad			
Elementos utilizados para Ext	traccion		Maseta						Humedad		Se	есо
			* Pcnometro			* Tara			* Bomba de v	acío		
Equipo utilizado	para el ensayo):	* Embudo			* Balanza de 2	grados de prec	cisión	* Varilla mezo	cladora		
			* Termometro			* Horno						
Masa al aire de	e la muestra se	ca al horno				159	g					_
Masa del picno	ometro aforado	lleno de agua				330,4	g		Gravedad Esp	ecifica	2,71	
Masa del picno	ometro aforado	con la muestra	y lleno de agu	a		150	g					_
Masa de la mu	estra saturada	y superficialme	nte seca			421,7	°C					
<u> </u>								•				

Anexo 9. Cuadro resumen ensayo de laboratorio de contenido de humedad del suelo.

TERSIDAD		DET	ERMINACIÓN EN LABORATORI	O DEL CONTEN	IIDO DE AGUA (HUMEDAD) DE	L SUELO, ROCA	Y MEZCLAS DI	E SUELO -AGREGA	ADO	
NI TO BE	NORMA					I.N.V. E – 122– 1	.3				
	ESPECIF	ICACIÓN	Se debe pesar	el material hui	medo, despues	de ponerlo en	el horno durar	nte 24 horas se	pesa de nuevo e	l material seco	
SCIENTIA LIBERTATIS		Camilo Escoba	r Galvis	374121002	Fecha	martes, 15 de l	Marzo de 2016		Trabajo No.		1
Colombia	Nombres	Juan Sebastiar	n Leon Gomez	374121050					Ensayo No.		9
OTOMBIL		Vanessa Salaza	ar Bedoya	341211055							
Localización			Vereda la Floresta - Sector la	Florida	Coordenadas		N 04°4	5′21,7"	E 75°36	5′35,3"	
Perforación y/o Excavación N	lo.		1		Muestra No.		1	Altura		1743	msnm
Descripción de la Muestra			Derivados de Cenizas Volcani	cas	Color	Amarillo Oscur	0	Profundidad		En un costado	de la ladera
Elementos utilizados para Ex	traccion		Pala, Palín, Asadón, Costales					Humedad		hum	neda
Fauring utilizada			* Horno		* Recipientes						
Equipo utilizado	o para ei ensay	J:	* Balanza								
Peso de la tara	a + Suelo Hume	do			47,67	g					
Peso de la tara	a + Suelo Seco				45,8	g		Contenido de	Humedad	16,12%	
Peso de la tara	3		_		34,2	g					•

Anexo 10. Cuadro de resultados resistencia a la compresión no confinada y densidades de probetas de suelocemento.

PRO	DBETA	PESO (g)	ALTURA (mm)	VOLUMEN (cm3)	ESBELTEZ	DENSIDAD (g/cm3)	RESISTENCIA (kg/cm2)	RESISTENCIA (MPa)
		318,7	113,56	222,98	2,27	1,43		
	1	318,6	112,74	221,36	2,25	1,44	4,84	0,47
		318,7	112,91	221,70	2,26	1,44	4,04	0,47
	PROMEDIO	318,67	113,07	222,01	2,26	1,44		
		322,1	115,88	227,53	2,32	1,42		
00/	2	322,1	116,17	228,10	2,32	1,41	5,53	0,54
0%		322,1	115,99	227,75	2,32	1,41	3,35	0,34
	PROMEDIO	322,10	116,01	227,79	2,32	1,41		
		323	115,35	226,49	2,31	1,43		
	3	322,9	115,18	226,16	2,30	1,43	2.00	0.20
		323,1	115,25	226,29	2,31	1,43	3,96	0,39
	PROMEDIO	323,00	115,26	226,31	2,31	1,43		
PRO	MEDIO	321,26	114,78	225,37	2,30	1,43	4,77	0,47
		329,4	109,76	215,51	2,20	1,53		
	1	329,4	109,82	215,63	2,20	1,53	2.27	0.22
		329,5	109,67	215,34	2,19	1,53	3,27	0,32
	PROMEDIO	329,43	109,75	215,49	2,20	1,53		
3%		327,1	111,7	219,32	2,23	1,49		
	2	327	111,67	219,26	2,23	1,49	2.54	0.24
		327,1	111,68	219,28	2,23	1,49	3,51	0,34
	PROMEDIO	327,07	111,68	219,29	2,23	1,49		
	3	333,7	110,64	217,24	2,21	1,54	6,18	0,61

		333,6	110,65	217,26	2,21	1,54		
		333,8	110,71	217,38	2,21	1,54		
	PROMEDIO	333,70	110,67	217,29	2,21	1,54		
PRO	MEDIO	330,07	110,70	217,36	2,21	1,52	4,32	0,42
		347,1	112,93	221,74	2,26	1,57		
	1	347	112,78	221,44	2,26	1,57	3,78	0,37
		347,1	112,78	221,44	2,26	1,57	3,78	0,37
	PROMEDIO	347,07	112,83	221,54	2,26	1,57		
		331,8	116,16	228,08	2,32	1,45		
10/	2	331,9	116,78	229,30	2,34	1,45	5,77	0,57
4%		332	116,55	228,85	2,33	1,45	3,77	0,37
	PROMEDIO	331,90	116,50	228,74	2,33	1,45		
		335,4	116,11	227,98	2,32	1,47		
	3	335,3	115,85	227,47	2,32	1,47	4,27	0,42
		335,4	115,85	227,47	2,32	1,47	4,27	0,42
	PROMEDIO	335,37	115,94	227,64	2,32	1,47		
PRO	MEDIO	338,11	115,09	225,97	2,30	1,50	4,61	0,45
		321,7	115,5	226,78	2,31	1,42		
	1	321,8	115,7	227,18	2,31	1,42	6,59	0,65
		321,8	115,77	227,31	2,32	1,42	0,59	0,03
	PROMEDIO	321,77	115,66	227,09	2,31	1,42		
5%		306,2	107,79	211,65	2,16	1,45		
	2	306,1	108,9	213,83	2,18	1,43	4,85	0,48
		306,3	108,9	213,83	2,18	1,43	4,03	0,40
	PROMEDIO	306,20	108,53	213,10	2,17	1,44		
	3	330,5	115,46	226,71	2,31	1,46	4,91	0,48

	330,5	115,45	226,69	2,31	1,46		
	330,6	115,42	226,63	2,31	1,46		
PROMEDIO	330,53	115,44	226,67	2,31	1,46		
PROMEDIO	319,50	113,21	222,29	2,26	1,44	5,45	0,53

Anexo 11. Cuadro de resultados resistencia a la compresión no confinada y deformaciones de probetas de suelocemento.

PROBETA	Ą	TIEMPO (seg)	DEFORMACIÓN (")	DEFORMACIÓN (cm)	DEFORMACIÓN UNIT	FUERZA (kg)	RESISTENCIA (kg/cm2)	RESISTENCIA (MPa)
		5,53	10	0,0254	0,0022	3,11	0,16	0,02
		13,22	20	0,0508	0,0045	7,14	0,36	0,04
		19,67	30	0,0762	0,0067	14,01	0,71	0,07
		26,96	40	0,1016	0,0090	26,24	1,34	0,13
	1	34,15	50	0,127	0,0112	41,62	2,12	0,21
		40,48	60	0,1524	0,0135	54,71	2,79	0,27
		46,94	70	0,1778	0,0157	70,36	3,58	0,35
Ω 0/		53,44	80	0,2032	0,0180	90,94	4,63	0,45
0%		60,19	90	0,2286	0,0202	95	4,84	0,47
		9,57	10	0,0254	0,0022	10,53	0,54	0,05
		14	20	0,0508	0,0044	25,25	1,29	0,13
	2	19,05	30	0,0762	0,0066	45,13	2,30	0,23
	_	24,03	40	0,1016	0,0088	70,24	3,58	0,35
		29,06	50	0,127	0,0109	96,24	4,90	0,48
		36,01	60	0,1524	0,0131	108,53	5,53	0,54
	2	3,75	10	0,0254	0,0022	4,23	0,22	0,02

		8,18	20	0,0508	0,0044	7,28	0,37	0,04
		13,18	30	0,0762	0,0066	14,65	0,75	0,07
		19,1	40	0,1016	0,0088	20,32	1,03	0,10
		23,36	50	0,127	0,0110	36,43	1,86	0,18
		30,96	60	0,1524	0,0132	58,93	3,00	0,29
		39,32	70	0,1778	0,0154	72,45	3,69	0,36
		48,9	80	0,2032	0,0176	77,73	3,96	0,39
		5,14	10	0,0254	0,0023	3,46	0,18	0,02
		9,68	20	0,0508	0,0046	8,72	0,44	0,04
	1	16,25	30	0,0762	0,0069	17,24	0,88	0,09
	I	21,88	40	0,1016	0,0093	32,02	1,63	0,16
		26,08	50	0,127	0,0116	50,71	2,58	0,25
		34,09	60	0,1524	0,0139	64,24	3,27	0,32
		7,65	10	0,0254	0,0023	4,07	0,21	0,02
		15,42	20	0,0508	0,0045	12,49	0,64	0,06
		23,49	30	0,0762	0,0068	23,09	1,18	0,12
00/	2	30,32	40	0,1016	0,0091	36,77	1,87	0,18
3%		37,68	50	0,127	0,0114	54,83	2,79	0,27
0 / 0		45,46	60	0,1524	0,0136	66,97	3,41	0,33
		53,61	70	0,1778	0,0159	68,89	3,51	0,34
		6,79	10	0,0254	0,0023	3,13	0,16	0,02
		15,92	20	0,0508	0,0046	7,14	0,36	0,04
		23,61	30	0,0762	0,0069	16,16	0,82	0,08
	3	30,81	40	0,1016	0,0092	30,79	1,57	0,15
	3	38,92	50	0,127	0,0115	50,3	2,56	0,25
		45,68	60	0,1524	0,0138	72,38	3,69	0,36
		53,36	70	0,1778	0,0161	102,15	5,20	0,51
		61,19	80	0,2032	0,0184	121,29	6,18	0,61

		4,01	10	0,0254	0,0023	7,56	0,39	0,04
		9,56	20	0,0508	0,0045	15,54	0,79	0,08
	1	16,72	30	0,0762	0,0068	40,76	2,08	0,20
	ı	22,88	40	0,1016	0,0090	59,43	3,03	0,30
		29,6	50	0,127	0,0113	71,04	3,62	0,35
		33,08	60	0,1524	0,0135	74,18	3,78	0,37
		9,06	10	0,0254	0,0022	26,47	1,35	0,13
		15,34	20	0,0508	0,0044	58,04	2,96	0,29
40/	2	20,9	30	0,0762	0,0065	84,73	4,32	0,42
4%		26,66	40	0,1016	0,0087	108,96	5,55	0,54
70		33,29	50	0,127	0,0109	113,3	5,77	0,57
		6,08	10	0,0254	0,0022	3,57	0,18	0,02
		13	20	0,0508	0,0044	12,07	0,61	0,06
		22,29	30	0,0762	0,0066	20,09	1,02	0,10
	3	31,96	40	0,1016	0,0088	31,56	1,61	0,16
	3	41,68	50	0,127	0,0110	44,46	2,26	0,22
		51,37	60	0,1524	0,0131	61,78	3,15	0,31
		58,89	70	0,1778	0,0153	72,14	3,67	0,36
		68,01	80	0,2032	0,0175	83,93	4,27	0,42
		6,18	10	0,0254	0,0022	5,95	0,30	0,03
		13,27	20	0,0508	0,0044	17,62	0,90	0,09
	1	19,93	30	0,0762	0,0066	37,85	1,93	0,19
		26,56	40	0,1016	0,0088	74,62	3,80	0,37
5%		33,73	50	0,127	0,0110	113,46	5,78	0,57
3 / 3		41,61	60	0,1524	0,0132	129,39	6,59	0,65
		5,61	10	0,0254	0,0023	4,4	0,22	0,02
	2	11,82	20	0,0508	0,0047	13,8	0,70	0,07
		17,71	30	0,0762	0,0070	35,7	1,82	0,18

	25,18	40	0,1016	0,0094	64,72	3,30	0,32
	33,69	50	0,127	0,0117	90,34	4,60	0,45
	41,01	60	0,1524	0,0140	95,17	4,85	0,48
		10	0,0254	0,0022	11,8	0,60	0,06
		20	0,0508	0,0044	41,62	2,12	0,21
2		30	0,0762	0,0065	68,94	3,51	0,34
3		40	0,1016	0,0087	89,11	4,54	0,45
		50	0,127	0,0109	96,33	4,91	0,48
		60	0,1524	0,0131	99,45	5,06	0,49

Anexo 12. Cuadro resumen de la dosificación para elaborar los BTC.

RSIDAD	Nombres	CION DE DIC SU	LLO DERIVADO	DE CENIZAS V	OLCANICAS, ES	CONIDRO DE CO	DINCRETO T CEIV	ILIVIU				
	ESPECIF			l suelo debe e					terial suelto pai		sea homoge	enea
FONS COURT					374121002 374121050		lunes, 20 de J	unio de 2016	-	Trabajo No.		_
COLOMBIA	Nombres									Ensayo No.		
ć.,		Vanessa Salaz			341211055	C		N O48	45′21,7"	F 7F02) ('AF AII	
ón on y/o Excavación	N-		Vereda la Flore	esta - Sector Ia	Florida	Coordenadas			45 21, /" 2 Altura	E /5-3	36′35,3"	743 msnr
	No.		Danis and a star of a st		1	Muestra No. Color	Amarillo Oscu		Profundidad		En un costa	
n de la Muestra	utus sais u					Color	Amarillo Osci	Iro T	Humedad			humeda
s utilizados para E	ktraccion			adon, Costales		* CINVA RAM			Humedad			numeda
Carrian retilian						* Palustre						
Equipo utilizad	io para ei erisay	υ.		grados do pro	cición	* Herramienta	r mircolánosc					
			- Balaliza de 2	grados de pred	LISIOII	nerrainienta	is illisceraneas					
DENSIDAD	E LOS MATERIAL	EC A LICADCE		DEN	SIDAD	1	DIF	MENSIONES DE	I PTC	VOL	UMEN	
SUFLO	E LOS IVIATERIAL	LS A USARSE					a) cm		0 cm3	-
	75mm DETENIE	10					b		5 cm	430	U CITIS	
					0.		h) cm	1		
CEMENTO	ASANTE DE TAN	/IIZ 4,7 JIIIIII						11	J CIII	4		
CLIVILIVIO				3,2	gi/Gii3							
					TRATAMIEN	TO BASE (0%)						
	MATERIAL		PORCENT	VOL		PE	so	No. BTC	PESC	TOTAL POR MA	TERIAL	
ESCOMBRO (GRUESO					gr	NO. BIC			0 gr	
							gr				0 gr	
SUELO	- CONTENE	1.110				7267,5			3	21802,		
CEMENTO						720			3	216		
							L PESO DEL MA	TERIAL		23962,	_	
						PESO	POR UNIDAD	DE BTC		7987,		
								-			- 0	
					TRATAMIE	NTO 1 (10%)						
	MATERIAL		PORCENT.	VOL	UMEN	PE	SO	No. BTC	PESO	TOTAL POR MA	TERIAL	
ESCOMBRO (GRUESO						No. BTC		TOTAL POR MA		
	CONCRETO		5%	225	cm3	PE 607,5	gr				5 gr	
	CONCRETO		5% 5%	225 225	cm3 cm3	PE	gr gr		3	1822,	5 gr 5 gr	
ESCOMBRO (CONCRETO		5% 5% 85%	225 225 3825	cm3 cm3 cm3	PE 607,5 562,5	gr gr gr		3	1822, 1687,	5 gr 5 gr 5 gr	
ESCOMBRO (SUELO	CONCRETO		5% 5% 85%	225 225 3825	cm3 cm3 cm3	PE 607,5 562,5 6502,5 720	gr gr gr		3	1822,: 1687,: 19507,:	5 gr 5 gr 5 gr 0 gr	
ESCOMBRO (SUELO	CONCRETO		5% 5% 85%	225 225 3825	cm3 cm3 cm3	PE 607,5 562,5 6502,5 720 TOTA	gr gr gr gr	TERIAL	3	1822,! 1687,! 19507,! 216	5 gr 5 gr 5 gr 0 gr 5 gr	
ESCOMBRO (SUELO	CONCRETO		5% 5% 85%	225 225 3825	cm3 cm3 cm3	PE 607,5 562,5 6502,5 720 TOTA	gr gr gr gr L PESO DEL MA	TERIAL	3	1822, 1687, 19507, 216 25177,	5 gr 5 gr 5 gr 0 gr 5 gr	
ESCOMBRO (SUELO	CONCRETO		5% 5% 85%	225 225 3825	6 cm3 6 cm3 6 cm3 6 cm3	PE 607,5 562,5 6502,5 720 TOTA	gr gr gr gr L PESO DEL MA	TERIAL	3	1822, 1687, 19507, 216 25177,	5 gr 5 gr 5 gr 0 gr 5 gr	
ESCOMBRO (SUELO	CONCRETO		5% 5% 85%	225 225 3825 225	6 cm3 6 cm3 6 cm3 6 cm3	PE 607,5 562,5 6502,5 720 TOTA PESO	gr gr gr gr L PESO DEL MA	TERIAL	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1822, 1687, 19507, 2166 25177, 8392,	5 gr 5 gr 5 gr 0 gr 5 gr 5 gr	
ESCOMBRO (SUELO CEMENTO	CONCRETO CONCRETO MATERIAL CONCRETO	FINO	5% 5% 85% 5% 5% PORCENT. 7,5%	225 225 3825 225 VOLI	c cm3 c cm3 c cm3 c cm3 c cm3 TRATAMIE UMEN c cm3	PE 607,5 562,5 6502,5 720 TOTA PESO	gr gr gr gr L PESO DEL MA POR UNIDAD	TERIAL DE BTC	PESC	1822, 1687, 19507, 216 25177, 8392,	5 gr 5 gr 5 gr 0 gr 5 gr 5 gr	
ESCOMBRO (SUELO CEMENTO	CONCRETO CONCRETO MATERIAL CONCRETO	FINO	5% 5% 85% 5% PORCENT.	225 225 3825 225 VOLI	cm3 cm3 cm3 cm3 cm3	PE 607,5 562,5 6502,5 720 TOTA PESO NTO 2 (15%)	gr gr gr gr L PESO DEL MAP POR UNIDAD	TERIAL DE BTC	PESO	1822, 1687, 19507, 2166 25177, 8392,	5 gr 5 gr 5 gr 0 gr 5 gr 5 gr	
ESCOMBRO (SUELO CEMENTO ESCOMBRO (SUELO SUELO	CONCRETO CONCRETO MATERIAL CONCRETO	FINO	5% 5% 85% 5% 5% PORCENT. 7,5% 7,5%	225 225 3825 225 VOL 337,5 3600	TRATAMIE UMEN 5 cm3 5 cm3 5 cm3 5 cm3 5 cm3 0 cm3	PE 607,5 562,5 6502,5 720 TOTA PESO NTO 2 (15%) PE 911,25	gr gr gr gr L PESO DEL MAP POR UNIDAD	TERIAL DE BTC No. BTC	PESO	1822, 1687, 19507, 216 25177, 8392,	5 gr 5 gr 5 gr 0 gr 5 gr 5 gr 5 gr	
ESCOMBRO (CONCRETO CONCRETO MATERIAL CONCRETO	FINO	5% 5% 85% 5% PORCENT. 7,5% 7,5%	225 225 3825 225 VOL 337,5 3600	6 cm3 6 cm3 6 cm3 7 cm3 7 cm3 7 cm3 6 cm3 6 cm3	PE 607,5 562,5 562,5 6502,5 720 TOTA PESO PE 911,25 843,75 6120 720 720	gr gr gr gr L PESO DEL MA POR UNIDAD	No. BTC	PESC 3 3 3 3 3 3	1822, 1687, 19507, 216 25177, 8392, 7 TOTAL POR MAP 2733,7: 2531,2	5 gr 5 gr 5 gr 0 gr 5 gr 5 gr 5 gr ************************************	
ESCOMBRO (SUELO CEMENTO ESCOMBRO (SUELO SUELO	CONCRETO CONCRETO MATERIAL CONCRETO	FINO	5% 5% 85% 5% 5% PORCENT. 7,5% 7,5%	225 225 3825 225 VOL 337,5 3600	TRATAMIE UMEN 5 cm3 5 cm3 5 cm3 5 cm3 5 cm3 0 cm3	PE 607,5 562,5 562,5 720 TOTA PESO NTO 2 (15%) PE 911,25 843,75 6120 720 TOTA	gr gr gr L PESO DEL MAP POR UNIDAD	No. BTC	PESC 3 3 3 3 3 3	1822, 1687, 19507, 2166 25177, 8392, 7 TOTAL POR MA 2733,7; 2531,2;	5 gr 5 gr 5 gr 0 gr 5 gr 5 gr 5 gr MTERIAL 5 gr 5 gr 0 gr	
ESCOMBRO (SUELO CEMENTO ESCOMBRO (SUELO SUELO	CONCRETO CONCRETO MATERIAL CONCRETO	FINO	5% 5% 85% 5% 5% PORCENT. 7,5% 7,5%	225 225 3825 225 VOL 337,5 3600	TRATAMIE UMEN 5 cm3 5 cm3 5 cm3 5 cm3 5 cm3 0 cm3	PE 607,5 562,5 562,5 720 TOTA PESO NTO 2 (15%) PE 911,25 843,75 6120 720 TOTA	gr gr gr gr L PESO DEL MA POR UNIDAD	No. BTC	PESC 3 3 3 3 3 3	1822, 1687, 19507, 2166 25177, 8392, 7 TOTAL POR MA 2733,7: 2531,2: 1836 216	5 gr 5 gr 5 gr 0 gr 5 gr 5 gr 5 gr MTERIAL 5 gr 5 gr 0 gr 0 gr	
ESCOMBRO (SUELO CEMENTO ESCOMBRO (SUELO SUELO	CONCRETO CONCRETO MATERIAL CONCRETO	FINO	5% 5% 85% 5% 5% PORCENT. 7,5% 7,5%	225 225 3825 225 VOL 337,5 3600	TRATAMIE UMEN cm3 cm3 cm3 cm3 cm3 cm3 cm3 cm	PE 607,5 562,5 562,5 720 TOTA PESO NTO 2 (15%) PE 911,25 843,75 6120 TOTA PESO	gr gr gr L PESO DEL MAP POR UNIDAD	No. BTC	PESC 3 3 3 3 3 3	1822, 1687, 19507, 216 25177, 8392, 7 TOTAL POR MA 2733,7: 2531,2: 1836 216 2578	5 gr 5 gr 5 gr 0 gr 5 gr 5 gr 5 gr MTERIAL 5 gr 5 gr 0 gr 0 gr	
ESCOMBRO (SUELO CEMENTO ESCOMBRO (SUELO SUELO	CONCRETO CONCRETO MATERIAL CONCRETO	FINO	5% 5% 85% 5% 5% PORCENT. 7,5% 7,5%	225 225 3825 225 VOL 337,5 3600	TRATAMIE UMEN cm3 cm3 cm3 cm3 cm3 cm3 cm3 cm	PE 607,5 562,5 562,5 720 TOTA PESO NTO 2 (15%) PE 911,25 843,75 6120 720 TOTA	gr gr gr L PESO DEL MAP POR UNIDAD	No. BTC	PESC 3 3 3 3 3 3	1822, 1687, 19507, 216 25177, 8392, 7 TOTAL POR MA 2733,7: 2531,2: 1836 216 2578	5 gr 5 gr 5 gr 0 gr 5 gr 5 gr 5 gr MTERIAL 5 gr 5 gr 0 gr 0 gr	
ESCOMBRO (SUELO CEMENTO ESCOMBRO (ESCOMBRO (SUELO CEMENTO	MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL	GRUESO FINO	5% 5% 85% 5% 7,5% 7,5% 80% 5%	225 225 3822 225 225 225 225 337,5 3600 225	TRATAMIE UMEN 1 cm3 1 cm3 TRATAMIE TRATAMIE TRATAMIE TRATAMIE TRATAMIE	PE 607,5 650,5 650,5 650,5 650,5 650,5 650,5 6502,5 720 TOTA PESO NTO 2 (15%) PE 911,25 6120 720 720 TOTA PESO NTO 3 (20%) PE	gr g	No. BTC	PESO 3 3 3 3 3 3 3 3 3	1822, 1687, 19507, 216 25177, 8392, 7 TOTAL POR MA 2733,7 2531,2 1836 216 2578 859	5 gr 5 gr 5 gr 0 gr 5 gr 5 gr 5 gr 5 gr 0 gr 5 gr 5 gr 5 gr 0 gr 0 gr	
ESCOMBRO (SUELO CEMENTO ESCOMBRO (SUELO CEMENTO	MATERIAL CONCRETO MATERIAL CONCRETO MATERIAL CONCRETO CONCRETO	GRUESO GRUESO GRUESO	5% 5% 85% 5% 5% 7,5% 7,5% 80% 5%	225 225 225 225 225 225 225 225 225 225	TRATAMIE UMEN TRATAMIE UMEN C m3	PE 607,5/6 607	gr g	No. BTC No. BTC No. BTC	PESC 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4	1822, 1887, 1950, 216 25177, 8392, D TOTAL POR MA 2733,7: 2531,2: 1836 216 2578: 859.	5 gr 5 gr 0 gr 5 gr 0 gr 5 gr 5 gr 5 gr 5 gr 0 gr 0 gr 0 gr 5 gr 5 gr	
ESCOMBRO (SUELO CEMENTO ESCOMBRO (ESCOMBRO (SUELO CEMENTO ESCOMBRO (ESC	MATERIAL CONCRETO MATERIAL CONCRETO MATERIAL CONCRETO CONCRETO	GRUESO FINO	5% 5% 85% 5% 5% PORCENT. 7,5% 7,5% 5%	225 225 225 225 225 225 225 225 337,5 337,5 3600 225 25 450	TRATAMIE TRATAMIE TRATAMIE TRATAMIE TRATAMIE TRATAMIE TRATAMIE TRATAMIE TRATAMIE O Cm3 O Cm3 O Cm3	PE 607,51	gr gr gr gr er L PESO DEL MAP POR UNIDAD	NO. BTC NO. BTC NO. BTC	PESC 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4	1822, 1687, 19507, 216 25177, 8392, 0 TOTAL POR MA 2733,7: 2531,2: 1836 216 2578: 859 0 TOTAL POR MA 364: 364: 337	5 gr 5 gr 5 gr 0 gr 5 gr 5 gr 5 gr 5 gr 0 gr 0 gr 5 gr 5 gr 5 gr 5 gr 5 gr 5 gr 5 gr 5	
ESCOMBRO (SUELO CEMENTO ESCOMBRO (SUELO CEMENTO ESCOMBRO (SUELO CEMENTO ESCOMBRO (SUELO CESCOMBRO (SUELO SUELO SUELO SUELO SUELO SUELO SUELO SUELO SUELO	MATERIAL CONCRETO MATERIAL CONCRETO MATERIAL CONCRETO CONCRETO	GRUESO GRUESO GRUESO	5% 5% 85% 5% 5% PORCENT. 7,5% 7,5% 80% 5%	225 225 3829 225 225 225 225 337,5 3600 229 VOLI 450 450	TRATAMIE UMEN G cm3 G cm3	PE 607,5/6 607	gr gr gr gr er L PESO DEL MAP POR UNIDAD	No. BTC No. BTC No. BTC	PESCO 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1822, 1887, 1950, 216 25177, 8392, D TOTAL POR MA 2733,7: 2531,2: 1836 216 2578: 859.	5 gr 5 gr 5 gr 0 gr 5 gr 5 gr 5 gr 5 gr 0 gr 0 gr 5 gr 5 gr 5 gr 5 gr 5 gr 5 gr 5 gr 5	
ESCOMBRO (SUELO CEMENTO ESCOMBRO (ESCOMBRO (SUELO CEMENTO ESCOMBRO (ESC	MATERIAL CONCRETO MATERIAL CONCRETO MATERIAL CONCRETO CONCRETO	GRUESO GRUESO GRUESO	5% 5% 85% 5% 5% PORCENT. 7,5% 7,5% 5%	225 225 3829 225 225 225 225 337,5 3600 229 VOLI 450 450	TRATAMIE TRATAMIE TRATAMIE TRATAMIE TRATAMIE TRATAMIE TRATAMIE TRATAMIE TRATAMIE O Cm3 O Cm3 O Cm3	PE 607,51	gr g	No. BTC No. BTC No. BTC	PESCO 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1822, 1687, 19507, 216 25177, 8392, 0 TOTAL POR MA 2733,7: 2531,2: 1836 216 2578: 859 0 TOTAL POR MA 364: 364: 337	5 gr 5 gr 5 gr 5 gr 7 gr 7 gr 8 gr 7 gr 7 gr 8 gr 7 gr 8	
ESCOMBRO (SUELO CEMENTO ESCOMBRO (SUELO CEMENTO ESCOMBRO (SUELO CEMENTO ESCOMBRO (SUELO CESCOMBRO (SUELO SUELO SUELO SUELO SUELO SUELO SUELO SUELO SUELO	MATERIAL CONCRETO MATERIAL CONCRETO MATERIAL CONCRETO CONCRETO	GRUESO GRUESO GRUESO	5% 5% 85% 5% 5% PORCENT. 7,5% 7,5% 80% 5%	225 225 3829 225 225 225 225 337,5 3600 229 VOLI 450 450	TRATAMIE UMEN G cm3 G cm3	PE 607,5/6 6502,5 6502,5 720 720 701A PESO NTO 2 (15%) PE 911,25 6120 720 720 TOTA PESO NTO 3 (20%) PE 1215 1125 1125 720 720 720 720 720 720 720 720 720 720	gr g	No. BTC No. BTC No. BTC	PESCO 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1822, 1687, 19507, 216 25177, 8392, 7 TOTAL POR MA 2733,7: 2531,2: 1836 2166 2578: 859 7 TOTAL POR MA 364 337;	5 gr 5 gr 5 gr 0 gr 5 gr 5 gr 5 gr 5 gr 5 gr 5 gr 5 gr 5	

Anexo 13. Resultados de prueba a compresión de BTC con 0% de escombro.

LABORATORIO DE MATERIALES Y CONCRETO

MÉTODOS PARA MUESTREO Y ENSAYOS DE UNIDADES DE MAMPOSTERÍA Y OTROS PRODUCTOS DE ARCILLA

CÓDIGO: LB-FT-12 VERSIÓN: 03 PÁGINA 1 DE 1

RESISTENCIA A LA COMPRESIÓN N.T.C. 4017

PROYECTO: CONTROL DE CALIDAD BLOQUES

LB-016-475

FECHA DE ENSAYO: 29 DE NOVIEMBRE DEL 2016

FUENTE MATERIAL: SUELO / CEMENTO Y ESCOMBRO DE CONCRETO AL 0%

CLIENTE: UNIVERSIDAD LIBRE

REVISÓ: ÁDGM

GEOTECNIA NGENIERIA

ESPÉCIMEN	DIMENSION	ES EXTERIORES	[an]	ESPESORE	S (cm)	TIPO DE BLOQUE		ÁREA [cm²]		CARGA DE ROTURA	RESISTENCIA [Mpa]
No.	LARGO	ANCHO	ALTO	ESPESOR PARED	ESPESOR TABIQUE		CELDA	BRUTA	NETA	[KN]	[Mpe]
1	15.0	14.5	8.4	NA	NA .	BLOQUE PRUEBA	0.0	217.5	217.5	12.35	0.6
2	15.2	15.1	8.1	NA	NA	BLOQUE PRUEBA	0.0	229.5	229.5	11.89	0.5
3	14.9	14.7	8.2	NA NA	NA .	BLOQUE PRUEBA	0.0	219.0	219.0	12.44	0.6
DROMEDIO	[Man 2]										
PROMEDIO OBSERVACIÓ	12 cm 10									<u> </u>	3

Fuente: Geotecnia Ingeniería S.A.S.

Anexo 14. Resultados de prueba a compresión de BTC con 10% de escombro.

LABORATORIO DE MATERIALES Y CONCRETO

LB-016-475

MÉTODOS PARA MUESTREO Y ENSAYOS DE UNIDADES DE MAMPOSTERÍA Y OTROS PRODUCTOS DE ARCILLA

RESISTENCIA A LA COMPRESIÓN

N.T.C. 4017

PROYECTO: CONTROL DE CALIDAD BLOQUES

FECHA DE ENSAYO: 29 DE NOVIEMBRE DEL 2016

FUENTE MATERIAL: SUELO / CEMENTO Y ESCOMBRO DE CONCRETO AL 10%

CLIENTE: UNIVERSIDAD LIBRE

REVISÓ: ÁDGM

GEOTECNIA ...

ESPÉCIMEN No.	DIMENSION	ES EXTERIORES	[cm]	ESPESORE	(cm)	TIPO DE BLOQUE		ÁREA [cm²]		CARGA DE ROTURA	RESISTENCIA [Mpa]
	LARGO	ANCHO	ALTO	ESPESOR PARED	ESPESOR TABIQUE	80398803801510369	CELDA	BRUTA	NETA	[KN]	[mpe]
4	15.1	15.2	8.2	NA .	NA	BLOQUE PRUEBA	0.0	229.5	229.5	12.72	0.6
5	15.1	14.9	8.2	NA .	NA	BLOQUE PRUEBA	0.0	225.0	225.0	15.36	0.7
6	15.0	14.5	8.2	NA .	NA	BLOQUE PRUEBA	0.0	217.5	217.5	17.38	0.8
			- 9								
	£	:	3	3 2		3		2 9		i c	ž.
PROMEDIO	[Mpa]	8	· ·			3 (3)		3	(88	X.
BSERVACIÓ	in:										

Fuente: Geotecnia Ingeniería S.A.S.

CÓDIGO: LB-FT-12 VERSIÓN: 03 PÁGINA 1 DE 1

Anexo 15. Resultados de prueba a compresión de BTC con 15% de escombro.

LABORATORIO DE MATERIALES Y CONCRETO

MÉTODOS PARA MUESTREO Y ENSAYOS DE UNIDADES DE MAMPOSTERÍA Y OTROS PRODUCTOS DE ARCILLA RESISTENCIA A LA COMPRESIÓN

CÓDIGO: LB-FT-12 VERSIÓN: 03 PÁGINA 1 DE 1

N.T.C. 4017

PROYECTO: CONTROL DE CALIDAD BLOQUES

LB-016-475

29 DE NOVIEMBRE DEL 2016 FECHA DE ENSAYO:

FUENTE MATERIAL: SUELO / CEMENTO Y ESCOMBRO DE CONCRETO AL 15%

UNIVERSIDAD LIBRE CLIENTE:

REVISÓ: ÁDGM

GEOTECNIA NGENIERIA

ESPÉCIMEN No.	DIMENSION	ES EXTERIORES	[cm]	ESPESORE	'S (cm)	TIPO DE BLOQUE		ÁREA [cm²]		CARGA DE ROTURA	RESISTENCIA [Mpa]
No.	LARGO	ANCHO	ALTO	ESPESOR PARED	ESPESOR TABIQUE		CELDA	BRUTA	META	(KN)	[Mpa]
7	15.1	15.0	8.1	NA .	NA	BLOQUE PRUEBA	0.0	226.5	226.5	25.99	1.1
8	15.0	14.8	8.1	NA	NA	BLOQUE PRUEBA	0.0	222.0	222.0	19.65	0.9
9	15.1	14.9	8.1	NA .	NA	BLOQUE PRUEBA	0.0	225.0	225.0	13.61	0.6
								<i>y</i> 3			. g
	3							12 27		ş I	10
PROMEDIO	(Maa)	k 25		9 .		0		(c)			
BSERVACIÓ	E in in in										

Fuente: Geotecnia Ingeniería S.A.S.

LB-016-475

Anexo 16. Resultados de prueba a compresión de BTC con 20% de escombro.

LABORATORIO DE MATERIALES Y CONCRETO

MÉTODOS PARA MUESTREO Y ENSAYOS DE UNIDADES DE MAMPOSTERÍA Y OTROS PRODUCTOS DE ARCILLA RESISTENCIA A LA COMPRESIÓN CÓDIGO: LB-FT-12 VERSIÓN: 03 PÁGINA 1 DE 1

N.T.C. 4017

PROYECTO: CONTROL DE CALIDAD BLOQUES

FECHA DE ENSAYO: 29 DE NOVIEMBRE DEL 2016

SUELO / CEMENTO Y ESCOMBRO DE CONCRETO AL 20%

€ NOVIEMBRE DEL 2016

CLIENTE: UNIVERSIDAD LIBRE

REVISÓ: ÁDGM

GEOTECNIA NGENIERIA

FUENTE MATERIAL:

ESPÉCIMEN	DIMENSION	ES EXTERIORES	[cm]	ESPESORE	5 (cm)	TIPO DE BLOQUE		ÁREA [cm²]		CARGA DE ROTURA	RESISTENCIA [Mpa]
No.	LARGO	ANCHO	ALTO	ESPESOR PARED	ESPESOR TABIQUE	1 1	CELDA	BRUTA	NETA	[KN]	[Mpa]
10	15.0	14.6	8.1	NA .	NA	BLOQUE PRUEBA	0.0	219.0	219.0	13.41	0.6
11	14.9	14.9	8.2	NA .	NA.	BLOQUE PRUEBA	0.0	222.0	222.0	17.54	0.8
12	15.1	14.7	8.1	NA .	NA	BLOQUE PRUEBA	0.0	222.0	222.0	12.30	0.6
											F-5-
	8					9		8			2
PROMEDIO											3-
SERVACIÓ											

Fuente: Geotecnia Ingeniería S.A.S.

Anexo 17. Resultados de prueba a compresión de los muretes de BTC con 0% de escombro.

LABORATORIO DE MATERIALES Y CONCRETO MÉTODOS PARA MUESTREO Y ENSAYOS DE UNIDADES DE MAMPOSTERÍA Y OTROS PRODUCTOS DE ARCILLA RESISTENCIA A LA COMPRESIÓN N.T.C. 4017 PROYECTO: CONTROL DE CALIDAD MURETES FECHA DE ENSAYO: 30 DE NOVIEMBRE DEL 2016

FUENTE MATERIAL: SUELO / CEMENTO Y ESCOMBRO DE CONCRETO AL 0%

CLIENTE: UNIVERSIDAD LIBRE

REVISÓ: ÁDGM

ESPÉCIMEN No.	DIMENSION	ES EXTERIORES	[cm]	[cm] ESPESORES (cm)		TIPO DE BLOQUE		ÁREA [cm²]	CARGA DE ROTURA	RESISTENCIA [Mpa]	
370.	LARGO	ANCHO	ALTO	ESPESOR PARED	ESPESOR TABIQUE	2	CELDA	BRUTA	NETA	[KN]	fubet
1	14.7	14.9	27.8	NA.	NA	MURETES PRUEBA	0.0	219.0	219.0	7.90	0.4
	20	S: 3			0			25	1		2
		p = 8		2 2		18 1		92 ·	0	:	
								*	,		
									le:		
	2.				A			(a)	ei		22
PROMEDIO	[Mpa]										

Fuente: Geotecnia Ingeniería S.A.S.

CÓDIGO: LB-FT-12 VERSIÓN: 03 PÁGINA 1 DE 1

Anexo 18. Resultados de prueba a compresión de los muretes de BTC con 10% de escombro.

GEOTECNIA INGENIERIA

LABORATORIO DE MATERIALES Y CONCRETO

LB-016-475

MÉTODOS PARA MUESTREO Y ENSAYOS DE UNIDADES DE MAMPOSTERÍA Y OTROS PRODUCTOS DE ARCILLA

RESISTENCIA A LA COMPRESIÓN N.T.C. 4017

PROYECTO: CONTROL DE CALIDAD MURETES

FECHA DE ENSAYO: 30 DE NOVIEMBRE DEL 2016

FUENTE MATERIAL: SUELO / CEMENTO Y ESCOMBRO DE CONCRETO AL 10%

CLIENTE: UNIVERSIDAD LIBRE

REVISÓ: ÁDGM

ESPÉCEMEN No.	DIMENSION	ES EXTERIORES	[cm]	ESPESORES (cm)		TEPO DE BLOQUE		ÁREA [cm²]		CARGA DE ROTURA	RESISTENCIA [Mpa]
mo.	LARGO	ANCHO	ALTO	ESPESOR PARED	ESPESOR TABIQUE		CELDA	BRUTA	NETA	[KM]	(Apr)
2	14.5	14.9	27.3	NA.	NA.	MURETES PRUEBA	0.0	216.1	216.1	8.49	0.4
		8 8						8	ē:		
								S			
	4							K2		. 6	4.
				2				21 3			88
PROMEDIO	[Mpa]							•	•		

Fuente: Geotecnia Ingeniería S.A.S.

CÓDIGO: LB-FT-12 VERSIÓN: 03

PÁGINA 1 DE 1

Anexo 19. Resultados de prueba a compresión de los muretes de BTC con 15% de escombro.

GEOTECNIA INGENIERIA

LABORATORIO DE MATERIALES Y CONCRETO

MÉTODOS PARA MUESTREO Y ENSAYOS DE UNIDADES DE MAMPOSTERÍA Y OTROS PRODUCTOS DE ARCILLA

RESISTENCIA A LA COMPRESIÓN

N.T.C. 4017

PROYECTO: CONTROL DE CALIDAD MURETES

LB-016-475

FECHA DE ENSAYO: FUENTE MATERIAL:

SUELO / CEMENTO Y ESCOMBRO DE CONCRETO AL 15%

30 DE NOVIEMBRE DEL 2016

CLIENTE: UNIVERSIDAD LIBRE

REVISÓ: ÁDGM

ESPÉCIMEN	DIMENSION	ES EXTERIORES	[cm] ESPESORES (cm)		TIPO DE BLOQUE		ÁREA [cm²]		CARGA DE ROTURA	RESISTENCIA [Mpa]	
No.	LARGO	ANCHO	ALTO	ESPESOR PARED	ESPESOR TABIQUE		CELDA	BRUTA	NETA	[KN]	[Mpa]
3	15.0	15.1	27.7	NA	NA	MURETES PRUEBA	0.0	226.5	226.5	7.00	0.3
		X 38		0.			C.		£1	X 4	
									6		
PROMEDIO	(Mpa)						*			-	

Fuente: Geotecnia Ingeniería S.A.S.

CÓDIGO: LB-FT-12 VERSIÓN: 03 PÁGINA 1 DE 1

Anexo 20. Resultados de prueba a compresión de los muretes de BTC con 20% de escombro.

GEOTEC	NIA ENIERÍA	MÉTODOS P	PARA MUES		S DE UNIDA	DE MATERIALES ADES DE MAMPOS NCIA A LA COMPR N.T.C. 4017	TERÍA Y OTF		OS DE ARCILLA	VERS	GO: LB-FT-12 ION: 03 NA 1 DE 1
PROYECTO: FECHA DE E FUENTE MAT CLIENTE: REVISÓ:	ENSAYO:	CONTROL DE CO 30 DE NOVIEMI SUBLO / CEMEN UNIVERSIDAD (ÁDGM	BRE DEL 2016 VITO Y ESCOM		AL 20%			LB-016-475			
ESPÉCIMEN No.	DIMENSIO	NES EXTERIORES	[am]	ESPESORE	ES (cm)	TIPO DE BLOQUE		ÁREA [cm²]		CARGA DE ROTURA	RESISTENCIA [Mpa]
No.	LARGO	ANCHO	ALTO	ESPESOR PARED	ESPESOR TABIQUE		CELDA	BRUTA	META	[KN]	[Mbs]
4	14.7	14.9	27.2	NA	NA	MURETES PRUEBA	0.0	219.0	219.0	10.38	0.5
8				ė-			0			· · · · ·	
(6)										7	
										·	
PROMEDIO	[Mpa]	<u>.</u>									
OBSERVACIÓ	N: Espesor p	ega parte superior 1	.27 cm, espes	or pega parte inferior (0.71 cm. Murete	sin sostenimiento de p	ega entre bloque	del medio y bioque	superior.	6 30	9

Fuente: Geotecnia Ingeniería S.A.S.

Anexo 21. Tabla de clasificación de suelos.

DIVIS	SION PRINC	IPAL	SIMBOLO DEL GRUPO	NOMBRES TIPICOS	CRITERIO DE CLASIFICACION
	acción o en	AS IAS	GW	Gravas bien gradadas y mezclas de arena y grava con pocos finos o sin finos	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
SUELOS DE GRANOS GRUESOS 50% o más es retenido en el tamiz No. 200	GRAVAS 2% o más de la fracción grussa es retenido en el tamiz No. 4	GRAVAS	GP	Gravas y mezclas de gravas y arenas mai gradadas con pocos finos o sin finos	Si los criterios para GW no se cumplen
S GRUE et tamis	GR % o må ruesa e	GRAVAS CON FINOS	GM	Gravas timosas, mezclas de grava - arena y limo	Limites de Atterberg localizados bajo la linea "A" o indice de plasticidad inferior a 4. Limites de Atterberg localizados bajo la linea "A" o indice de plasticidad inferior a 4. Limites de Atterberg sobre la linea "A" clasificar utilizando simbolos doble de indice de plasticidad superior a 7.
RANO do en	50% Pru	CONF	GC	Gravas arcillosas, merclas de grava - arena y arcilla	B 문 문 문 Limites de Atterberg sobre la linea "A" clasificar utilizando símbolos doble
SUELOS DE GRANOS GRUESOS más es retenido en el tamiz No.	la fracción el temiz 4		sw	Arenas y arenas gravosas bien gradadas con pocos finos o sin finos	= 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0
SUEL mass	de la por et	ARENAS	SP	Arenas y arenas gravosas mal gradadas con pocos finos o sin	LA & Q W = 1 Si no se sumpleo los suterios para SW
50%	ARENAS Mas del 50% de la gruesa pasa por el ARENAS CON FINOS LIM	SM	finos Arenas limosas, mezclas de árena limo	Limites de Atterberg localizados bajo la linea "A" o Indice de plasticidad inferior a 4. CANCAL Limites de Atterberg sobre la linea "A" Limites de Atterberg localizados bejo la linea "A" o Indice de plasticidad inferior a 4. CANCAL Limites de Atterberg sobre la linea "A" Limites de Atterberg sobre la linea "A" Simbolos dobles.	
		sc	Arenas arcillosas, mezclas de arena y arcilla	se debe clasificar utilizando Se de de clasificar utilizando Simbolos dobles. e indice de plasticidad superior a 7.	
	AS.		ML	Limos inorgânicos, arenas muy finas, polvo de roca, arenas finas limosas o arcillosas	60 GRAFICO DE PLASTICIDAD
SUELOS DE GRANOS FINOS 50% o más pasa por el tamiz No. 200	LIMOS Y ARCILLAS Limite liquido de	50% o inferior	CL	Arcillas inorgânicas de plastici- dad beja a media, arcillas gravo- sas, arcillas arenosas, arcillas li- mosas, suelos sin mucha arcilla	
GRANG	2,		OL	Limos orgánicos y arcillas limo- sas orgánicas de baja plasticidad	30 Ecuación de la linea A. IP = 0.73 ILL 201
SUELOS DE GRANOS FINOS o o más pasa por el tamiz No.	CILLAS	% %	мн	Limos inorgánicos, arenas finas o limos micáceos o de diatorneas limos elésticos	20 (C) (SP) (SP)
50%	UMOS Y ARCILLAS Limite liquido	perior	СН	Arcillas inorgánicas de alta plas- ticidad, arcillas grasas	(9) (9)
	5	ផ	ОН	Arcillas orgânicas de plasticidad alta o media	0 10 20 30 46 50 60 70 80 90 100 Limite liquido
2253555	os altament nicos	te	PT	Turba, estiércol y otros suelos altamente orgánicos	Para la identificación visual y manual, véase ASTM norma D 2488

Fuente: ASTM