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Abstract 

Remote Laser Welding (RLW) combines the positive 

features of tactile laser welding with additional benefits 

such as increased processing speed, reduced operational 

cost and service as well as higher process flexibility. A 

leading challenge preventing the full uptake of RLW 

technology in industry is the lack of efficient Closed 

Loop In-Process (CLIP) monitoring and weld quality 

control solutions. This underpins the need to fuse 

multiple sensor technologies, data analytics along with 

predictive engineering simulations. Although the 

development and integration of a variety of sensors, 

covering the radiation spectrum from ultra-violet to far-

infrared, the flawless deployment of CLIP solutions is 

still challenged by the need for: signal de-noising in case 

of process instability; real-time data analytics; adaptive 

control engineering architecture to cope with process 

variations induced by manufacturing tolerances. 

This paper focuses on the aspect of the Weld Penetration 

Depth Control (WPDC) using Optical Coherence 

Tomography (OCT) as necessary step to enable 

adaptive penetration depth control during RLW of 

aluminium components in fillet lap joint configuration 

in consideration of part-to-part gap variation. The 

approach is decoupling the welding process parameters 

in two sub-sets: (1) in-plane control of the heat input on 

the upper part to facilitate the droplet formation; (2) out-

of-plane heat management to achieve the desired level 

of penetration control in keyhole mode. The paper 

presents the results of the keyhole mapping with 

variable part-to-part gap, that provide the insights for 

future research to enable the fully automatic closed-loop 

weld penetration depth control. Current limitations and 

next phases of research and development are 

highlighted based on the experimental study. 

Keywords: Remote Laser Welding, Aluminium Alloy, 

Fillet Lap Joint, Optical Coherence Tomography, Gap 
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Introduction 

Remote Laser Welding (RLW) applications of 

aluminium components in automotive industry is 

monotonically increasing, driven by the continuous 

effort for light-weight body construction and the recent 

market push for battery electric vehicles with un-

precedent need for aluminium structures which are key 

elements for battery tab assembly, electrical drive 

components, structural battery casing/frames and 

underbody [1]. 

Compared to steel or ferrous-based alloys, welding of 

aluminium structures poses key challenges due to the 

low viscosity of the molten liquid which leads to 

reduced process window and higher probability of weld 

defects because of fast collapse of the keyhole [2]. In 

recent years, most of the research effort has been 

devoted to develop effective solutions to improve the 

keyhole stability and maximise the weldability of 

aluminium alloys. This has been possible with the 

introduction of laser beam oscillation and power 

modulation techniques. Recently, Müller et al. [3] and 

Franciosa et al. [4] described how laser beam oscillation 

can be used to enable part-to-part gap bridging in fillet 

lap joints. The latter study highlighted the benefits of 

switching from overlap seam welding to fillet lap 

welding with a weight saving up to 4.5 kg per car, and 

capability for adaptive in-process gap bridging. Optimal 

process window selection and robust process 

parameters through necessary steps are not sufficient 

enough to guarantee defect-free welds in presence of 

process variability and manufacturing tolerances. 

Closed Loop In-Process (CLIP) monitoring and quality 

control strategy is therefore envisaged to guarantee the 

fulfilment of the multiple requirements, such as 

mechanical, thermal and electrical as dictated for 

example by new emerging battery assembly systems 

[5]. 



 

Figure 1 OCT signal interpretation: (a) longitudinal cross-section of weld; 

(b) raw (black cross) and processed (blue dot) OCT signal; (c) reflection modes and interpretations.

Among all, weld penetration depth plays a key role to 

deliver weld quality, as discussed in [6, 7, 8]. For 

example, in case of battery case welding, the welding 

process needs to be controlled to provide required weld 

characteristics without penetrating the battery case [9]; 

whereas lack of penetration in battery tab causes 

insufficient contact area, which leads to voltage drop 

and consequent malfunction of the whole battery pack. 

To keep weld penetration depth within the required 

limits, an in-process Weld Penetration Depth Control 

(WPDC) system needs to be integrated within the CLIP 

quality control module. 

To date, only a limited number of WPDC methods have 

been developed. Most of those methods are based on 

indirect signals and data, such as process emissions, 

gathered with photodiode-based monitoring systems. 

The generated emissions are converted into electrical 

signals by photodiodes along with an optical filters. Key 

features, such as plasma temperature, reflected laser 

intensity, and plasma intensity, are predefined for a 

good quality weld and associated to a reference signal 

and predictive models are build using multi-variate 

statistics [10]. Though those approaches are the state-

of-art today for correlation and trend analysis they 

suffer the possibility to be extended outside of the 

training dataset. This translates to the fact that any 

process change or process variability, such as part-to-

part gap or seam misalignments, cannot be handled. 

In-process quality control formed the central focus of a 

study by You et al. [11] in which authors used five types 

of sensors for laser welding process monitoring and X-

ray imaging was used for keyhole depth monitoring. 

Bautze et al. [7] compared multiple approaches of laser 

welding monitoring and control, and concluded that due 

to intense process emissions and extreme temperature 

gradients, as well as highly unstable process states in 

case of laser welding of aluminium, the only monitoring 

technique that can provide direct and in-process 

measurement of the keyhole depth is Optical Coherence 

Tomography (OCT). 

With OCT light reflections are measured by the 

Michelson interferometer, using the low coherence 

properties of a broadband laser source. The key 

principle is the comparison between the travel lengths 

of the reflections of the measurement laser beam 

directed towards the keyhole bottom with that of a 

reference laser beam inside the interferometer. Any 

change in the keyhole wall or depth will generate 

interference fringes which are translated, using fast 

Fourier transform (FFT) filters, into distance 

measurement [12]. Figure 1 shows a typical OCT signal 

obtained with a power ramp of the process beam, in 

overlap seam welding. When the OCT measurement 

beam is correctly aligned towards the keyhole bottom, 

the OCT technology is capable of providing fast and 

accurate direct measurement of the keyhole depth. 

Assuming that the molten layer just underneath the 

keyhole bottom is neglectable, this approach results in a 

promising solution for WPDC. OCT technology has 

been successfully used for continuous monitoring of 

weld penetration depth in a number of applications, 

primarily with stationary process beam and overlap 

seam welding. Few studies have examined the 



opportunity of utilizing OCT for WPDC with 

application to aluminium alloys. According to Bautze et 

al. [7] laser welding of aluminium alloys requires ad-

hoc data analytics approaches as the keyhole oscillates 

at high frequency (typically between 1 to 5 kHz), which 

induces noise into the OCT signal. Comparing OCT 

signals during laser welding of mild steel and 

aluminium alloy, the authors noticed that in case of 

aluminium the signal has a wider variance and proposed 

that signal’s variance can be used to determine the 

process window. Comparing OCT sensor signal with X-

ray, Fetzer et al. [13] used 80th percentile filter with a 

1.0 ms symmetrically placed window as it resulted in a 

minimal deviation between the depth measured with 

both methods. Kogel-Hollacher et al. [14] used two 

measurement beams (“TwinTec” module): one towards 

the keyhole and the second focused on the base material 

surface to get the precise weld penetration depth value 

as a result of subtraction of these two signals. In later 

research Kogel-Hollacher et al. [15] applied low-pass 

filter to compensate high frequency keyhole oscillations 

in welding of aluminium. Experimental results by Dorsh 

et al. [8, 16] show that the OCT measurement beam, 

targeting the bottom of the keyhole, has to be properly 

aligned with respect to the keyhole shape and such 

alignment is not universal and has to be adjusted for 

every specific welding task. After comparing signals 

from copper and aluminium alloys, Schmoeller et al. 

[17] suggested that differences in statistical parameters 

of OCT signals are caused by material-dependent 

geometry of the keyhole, as aluminium has a tendency 

to form a conical geometry of the keyhole, while copper 

alloys show a bottle-shaped geometry and this causes 

different reflection patterns. This conclusion renews the 

interest in keyhole shapes research and classification 

models developed in [18, 19] as well as analytical 

approach suggested in [20, 21]. 

This paper contributes to develop the necessary step to 

enable WPDC during RLW process of aluminium 

components with fillet lap joint configuration and in 

consideration of part-to-part gap bridging control. The 

paper is underpinned by the key observation that the 

weld penetration control is intrinsically coupled to the 

gap bridging. This problem is tackled by decoupling the 

welding process parameters in two sub-sets: in-plane 

control of the heat input on the upper part to facilitate 

the droplet formation, and therefore reach gap bridging; 

out-of-plane heat management to achieve the desired 

level of penetration control in keyhole mode. The results 

of the keyhole mapping with variable part-to-part gap 

conditions are presented in the form of a set of 

“mapping charts” which help to select the optimal 

alignment of the OCT measurement beam. The 

fundamental steps to compute the mapping charts are 

discussed and illustrated throughout the paper. 

Materials and methods 

Experimental configuration 

The material used in the welding experiments with a 

CW multi-mode diode laser (LDF 6000-6 LaserLine 

GmbH, Germany) was SSR 5182 Aluminium (4.3% 

Mg) in single fillet lap joint configuration. The laser 

beam was delivered through an optical fiber of 150 m 

diameter and coupled with the WeldMaster 

Scan&Track remote welding head (YW52 Precitec 

GmbH, Germany) and the In-process Depth Meter 

(IDM, Precitec GmbH, Germany) sensor. 

List of equipment and parameters are shown in Table 1. 

All experiments were performed without shielding gas 

and without filler wire. Samples were wiped with 

acetone before welding to remove surface 

contaminations. The IDM sensor was installed just 

below the motorised collimator of the welding head. 

This allows to defocus the process laser beam 

independently of the OCT sensor. However, the 

measurement beam of the IDM was deflected and 

focused using the same motorised mirror and focusing 

unit of the main process beam. 

Table 1 Specification of experimental setup. 

Characteristics Value 

Welding laser: LDF 6000-6, LaserLine GmbH 

Operation mode CW 

Nominal output power (kW) 6 

Emission wavelength (nm) 1080 

Beam parameter product (mm ∙ mrad) 6 

Process fibre core diameter (μm) 150 

Welding optics: YW52 WeldMaster, Precitec GmbH 

Collimating length (mm) 150 

Focusing length (mm) 300 

Focal spot diameter (mm) 0.3 

Sensor: IDM, Precitec GmbH 

Sampling rate (kHz) 70 

Emission wavelength (nm) 1550 

Sensor beam maximum power (mW) 10 

Sensor beam intensity (%) 30 

Spot diameter (mm) 0.05 

Max measurement range (mm) 10 

Overview of proposed approach 

The proposed CLIP approach is shown in Figure 2 and 

is discussed as follows: (1) part-to-part gap bridging 

(QL[1]) with adaptive selection and adjustment of 

welding process parameters, via beam oscillation and 

power modulation. Details about QL[1] are described in 

[4]; (2) weld penetration depth monitoring and control 

using OCT technology (QL[2]). 



 
Figure 2 Closed-Loop quality control system for RLW 

process for gap bridging and weld penetration control. 

QL[1] and QL[2] are mutually coupled. For example, 

the weld may exhibit poor bonding (i.e., no gap 

bridging) as illustrated in Figure 3 (a), and yet a 

satisfactory weld penetration is achieved; 

controversially, poor penetration can be reached though 

very sound bonding condition is achieved as in Figure 3 

(b). 

 
Figure 3 Coupling effect between QL[1] and QL[2]. 

(a) poor bonding and good penetration; 

(b) good bonding and poor penetration. 

 
Figure 4 Definition of key welding process parameters 

Image adapted from [4]. 

Previous work [4] has shown that the weld parameters 

are as follows (see Figure 4): (1) laser power, PL, which 

is modulated transversally to the welding direction; PL 

is modulated on three points: PL,1 to PL,3, which 

correspond to the laser power on the upper part, 

reference point, and lower part, respectively; 

(2) oscillation amplitude, Ay, of the oscillation pattern 

with frequency f; (3) lateral offset, Oy – it is measured 

from the reference point, and defines the position in the 

y direction of the laser beam when Ay is zero; (4) focal 

point position offset, Az - distance along the beam axis 

between the focal point and the intersection of laser 

beam with the part being welded. 

In order to make the control architecture manageable 

and more intuitive, we have decoupled the welding 

process parameters in two sub-sets as follows: 

(1) Parameters related to QL[1]: gap bridging is driven 

by the heat input generated in-plane. Key parameters 

are: Ay , Oy, Az, PL,1 and PL,2 

(2) Parameters related to QL[2]: PL,2 and PL,3 to control 

weld root and penetration depth. 

This leaves only one single parameter, PL,2, which is 

shared between QL[1] and QL[2]. 

QL[1]-related parameters are adaptively changed on the 

fly during welding using the linear control model stated 

in Equation (1), where g is the part-to-part gap measured 

using the seam tracking device; whereas the constants 

AAy, BAy, AOy, BOy, AAz, BAz and Ap are computed using 

the approach proposed in [4]. 
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Figure 5 Conceptual representation of the alignment of 

the OCT measurement beam for fillet lap joint. 

The paper aims at developing the keyhole mapping with 

variable part-to-part gap conditions in order to 

understand how the keyhole shape behaves in case of 

changes to process parameters, induced by variation of 
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part-to-part gap, as per Equation (1). The mapping is 

obtained by linking the relative position of the OCT 

measurement beam, defined by Δx and Δy, as illustrated 

in Figure 5, to the OCT signal. When Δx and Δy are zero 

the OCT measurement beam is perfectly aligned with 

the process beam. The relative positions were controlled 

by manually adjusting the beam deflection on the IDM 

collimator. 

Keyhole mapping 

The logical flowchart to compute the keyhole mapping 

is illustrated in Figure 6. The methodology comprises of 

three key steps and is iterated for each gap condition, 

from zero to the maximum bridgeable gap, gmax. We 

assume that gmax is 50% of the thickness of the upper 

material, as experimentally proved in [22] and then 

mathematically validated in [4]. 

STEP[1]: for the given gap condition (g), welding 

process parameters are computed in QL[1], as defined 

by Equation (1). The relative positions of the OCT 

measurement beam, Δx and Δy, are sampled within the 

minimum and maximum technology limits of the OCT 

collimator. We have assumed that those limits are 

capped by the focal spot diameter of the process beam. 

Resolution of data points around the bottom of the 

keyhole was increased. 

 
Figure 6 Proposed methodology for the computation of 

the keyhole mapping for variable part-to-part gaps. 

STEP[2]: once OCT data, DOCT, are collected for given 

gap and position of the OCT measurement beam, key 

signal features are extracted (see Figure 7). The 

approach uses a moving window which scans the whole 

signal and computes the following features: 

(1) Inter-quartile range, PW,Q3 - PW,Q1, corresponding to 

75% (PW,Q3) and 25% (PW,Q1) percentiles, 

respectively, of the probability density function. The 

inter-quartile range is used as a measure of the signal 

spread. For instance, when the OCT measurement 

beam hits the un-molten surface, or the molten pool 

evolving in conduction mode, we expect low spread 

of the signal. Once the keyhole mode is established 

the spread tends to raise because of the multi-

reflection within the keyhole. The variation in 

spread is therefore used to detect the start/end of the 

keyhole mode. We have not used a synchronised 

trigger with the power laser signal, because that 

would not allow to detect the exact transition to 

keyhole mode. 

(2) Weld penetration depth, PW,Q. Previous research has 

shown that 80% percentile results in the minimal 

deviation between PW,Q and the actual penetration 

depth, PW,C, measured by cross-sections analysis. 

This result has been also confirmed for the current 

setup used in this paper. In order to compare PW,Q to 

the cross-section data, it has been subtracted with the 

value of the reference material surface. 

(3) Normalised modality index, PW,M. It is a normalised 

index in the range [0, 1] which describes the shape 

of the density function distribution. The shape of the 

density function is a key feature which gives insights 

about dynamics and shape of the keyhole. For 

instance, when the OCT measurement beam is 

positioned close to the keyhole bottom we expect a 

single-modal distribution, eventually skewed 

(Figure 8 (a)). If the OCT measurement beam is 

shifted toward the side of the keyhole and closer to 

the unmolten surface of the material (Figure 8 (b)), 

the distribution becomes bi-modal because of the 

reflections directly from the material surface. The 

same OCT’s beam position could also capture 

fluctuations in the keyhole opening with eventually 

multiple humps on the wall of the keyhole; this leads 

to a multi-modal distribution (Figure 8 (c)). 

The modality index (PW,M) is computed using the 

Hartigans’ Dip test, which measures the probability 

of observing a single-modal distribution. Therefore, 

the higher PW,M the higher the probability of 

obtaining single-modal distribution. 

(4) Normalised weld penetration depth accuracy, PW,ε. 

The accuracy of the measurement takes into account 

the combined effect of the process dynamics, which 

impacts the shape of the keyhole, and the sensor 

accuracy. PW,ε is a normalised index in the range  

[0, 1] and is computed by comparing the distribution 

of weld penetration depth, PW,Q, against the actual 

distribution of weld depths measured with 



metallographic analysis, PW,C. The distribution of 

PW,Q is obtained by scanning the OCT data stream 

with a pre-defined set of moving windows. We have 

implemented the non-parametric Mann-Whitney 

test which determines whether PW,Q and PW,C are 

samples from the same distribution with equal 

medians. Therefore, higher values of PW,ε 

corresponds to higher level of weld penetration 

depth accuracy. 

STEP[3]: the last step of the proposed methodology 

entails the approximations of the sampled signal 

features with a smooth analytical model. This is 

formulated as in Equation (2), where 
( )

,

g

W QR , 
( )

,

g

W MR  and 

( )

,

g

WR   are the approximation models that define the 

mapping charts for a specified gap (g). 
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Approximation models have been computed using the 

local regression weighted smoothing approach, with 

first order polynomial kernel. The optimal positions of 

the OCT measurement beam, ΔxPO and ΔyPO, are then 

evaluated by computing the maximum 
( )

,

g

WR  . 

Results and key findings 

Process parameters 

Process parameters are listed in Table 2. The incidence 

angle of the process beam was constant and equal to 10. 

Welding speed (Sx) and oscillation frequency (f) were 

set to 6 m/min and 150 Hz, respectively. The thickness 

of the test materials was 1.5 mm and 2.2 mm for the 

upper and lower part, respectively. The flange overlap 

(Fo) was 5mm.  

Three levels of part-to-part gaps were analysed: 

0.10.1mm; 0.350.1mm; 0.60.1mm. Part-to-part gap 

was set by calibrated shim packs (Meusburger Georg 

GmbH, Germany). Δx and Δy were sampled in the range 

[-0.18, 0.08] mm and [-0.11, 0.05] mm, respectively. 

OCT data streams were collected and exported from the 

IDM Explorer Software© and then processed in 

Matlab© to extract the signal features and compute the 

mapping charts. The moving scanning window was set 

with a width of 1 ms. 

 

Figure 7 (a) Example of OCT data stream; (b) density 

function of the data points belonging to the moving 

scanning window shown in (a). 

 
Figure 8 Interpretation of normalised modality index. 
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Table 2 Adopted process parameters for part-to-part 

gap bridging control. 

Parameter Value Unit 

AAy 0.75 -- 

BAy 1.50 mm 

AOy 1.50 -- 

BOy 0.10 mm 

AAz -4.10 -- 

BAz 2.00 mm 

Ap,1 1.10 kW/mm 

Ap,2 0.61 kW/mm 
( 0)

,1

gap

LP 
 5.20 kW 

( 0)

,2

gap

LP 
 5.80 kW 

PL,3 2.30 kW 

 
Key findings 

Figure 9 and Figure 10 show the calculated mapping 

charts for the three selected part-to-part gap values. 

Results show that the keyhole gets deeper as the gap 

increases (see Figure 9 (a) and Figure 10 (b)). For 

instance the observed average weld penetration depth 

for g = 0.1  0.1mm is about 2.3 mm; whereas it 

becomes about 3.0 mm for g = 0.6  0.1 mm. This is 

explained by the fact that the gap bridging architecture 

defocuses the process beam inside the material surface 

to achieve stable droplet generation and bonding 

condition. The optimal positions of the OCT 

measurement beam are summarised in Table 3 and 

plotted in Figure 9 (c). Previous studies have concluded 

the OCT measurement beam needs to be re-adjusted in 

case of changes to process parameters. Our results show 

that when the OCT technology is used to measure weld 

penetration depth with integrated gap bridging control 

and adaptive changes of process parameters, we can use 

the same position (i.e., ΔxPO  = 0 mm and ΔyPO  = -0.03 

mm) of the OCT measurement beam for gaps up to 0.4 

mm. Only for larger gaps (> 0.5 mm) the optimal 

position of the OCT measurement beam drift towards 

the traversal y-axis. 

Table 3 Optimal positions of the OCT measurement 

beam for different part-to-part gap values. 

Part-to-part 

gap (mm) 
ΔxPO (mm) ΔyPO (mm) 

0.100.1 0.0 -0.03 

0.350.1 0.0 -0.03 

0.600.1 0.0 -0.05 

 

The shift in the optimal position of the OCT 

measurement beam is also supported by the fact that the 

shape of the keyhole tends to become narrower and 

slightly twisted when moving from g = 0.1  0.1 mm to 

g = 0.6  0.1 mm. This conclusion is clearly visible in 

the normalised modality index in Figure 9 (b) and 

Figure 10 (c) which show how the distribution of the 

OCT data changes towards a bi-modal distribution in 

correspondence of the optimal position of the OCT 

measurement beam, for g =0.6  0.1 mm. The physical 

interpretation of the bi-modal distribution could be 

imputed to the appearance of a pronounced tail in the 

welded area, as illustrated in the metallographic cross-

section in Figure 10 (a). The tail could be the result of 

the adaptive changes of the process parameters to react 

against the variation in gap. 

Conclusions 

This paper has contributed to develop the necessary step 

to enable closed-loop weld penetration depth control 

using OCT for RLW of aluminium components in fillet 

lap joint configuration and in consideration of part-to-

part gap bridging control. 

Though OCT has been widely deployment to a number 

of applications, the mechanisms that underpin OCT and 

RLW with beam oscillation and laser power modulation 

with the purpose of controlling part-to-part gap are not 

fully understood. The paper has been based on the 

assumption that dynamic changes to process 

parameters, as happening during gap bridging control, 

lead to re-adjustments of the OCT measurement beam 

because of variations to the keyhole shape. 

The paper has developed a novel approach to 

systematically map the relative position of the OCT 

measurement beam for different values of part-to-part 

gap. OCT data has been parametrised with key features, 

which describe the shape and the depth of the keyhole. 

Results have shown that, among all, the normalised 

modality index is the key parameter which must be 

monitored and controlled to detect and diagnose failures 

in weld penetration depth monitoring. Furthermore, 

statistical evidences have helped to conclude that robust 

control of weld penetration depth in filled weld 

configuration is viable for part-to-part gaps below 0.4 

mm. Any bigger gap would need the implementation of 

an adaptive control architecture, with dynamic changes 

of the position of the OCT measurement beam. 

Future work will focus on the developed of the closed-

loop system to control the weld penetration depth. 

  



 

 
Figure 9 Mapping charts for different part-to-part gap values. (a) Weld penetration depth; (b) normalised modality 

index; (c) normalised weld penetration depth accuracy. 

 
Figure 10 (a) Representative cross-section; (b) 3D view of the keyhole shape; (c) density function of OCT data 
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Nomenclature 

AAy, AAz, 

AOy, Ap Experimentally computed welding 

constants for gap-bridging BAy, BAz, 

BOy, 

Ay Laser beam oscillation amplitude, mm 

Az Focal point position offset, mm 

DOCT Distance measured by OCT, mm 

g, gmax Part-to-part gap, mm 

Oy Laser beam lateral offset, mm 

PL,i Laser power in point i, kW 

PW,C Measured WPD at cross-section, mm 

PW,M Normalized modality index, [0, 1] 

PW,Q Measured WPD by OCT, mm 

PW,ε Normalized WPD accuracy, [0, 1] 
( )

,

g

W MR  

( )

,

g

W QR  

( )

,

g

WR   

Approximation models for mapping for 

specified gap 

Δx, 

Δy 
Relative position of the OCT beam, mm 

ΔxPO, 

ΔyPO 
Optimal position of the OCT beam, mm 
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