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Abstract

In air traffic management, a fundamental decision with large cost implications is the
planning of future capacity provision. Here, capacity refers to the available man-hours of
air traffic controllers to monitor traffic. Airspace can be partitioned in various ways into
a collection of sectors, and each sector has a fixed maximum number of flights that may
enter within a given time period. Each sector also requires a fixed number of man-hours
to be operated; we refer to them as sector-hours.

Capacity planning usually takes place a long time ahead of the day of operation to
ensure that sufficiently many air traffic controllers are available to manage the flow of
aircrafts. However, at the time of planning there is considerable uncertainty regarding the
number and spatio-temporal distribution of non-scheduled flights and capacity provision;
the former mainly due to business aviation, the latter usually stemming from the impact
of weather, military use of airspaces etc. Once the capacity decision has been made (in
terms of committing to a budget of sector-hours per airspace to represent long-term staff
scheduling), on the day of operation we can influence traffic by enforcing re-routing and
tactical delays. Furthermore, we can modify which sectors to open at what time (the
so-called sector opening scheme) subject to the fixed capacity budgets in each airspace.
The fundamental trade off is between reducing the capacity provision cost at the expense
of potentially increasing displacement cost arising from re-routing or delays.

To tackle this, we propose a scalable decomposition approach that exploits the struc-
ture of the problem and can take traffic and capacity provision uncertainty into account
by working with a large number of traffic scenarios. We propose several decision policies
based on the resulting pool of solutions and test them numerically using real-world data.
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1 Introduction

Air navigation service providers (ANSPs) are among the key stakeholders in providing safe
and efficient air traffic operations. In Europe, there are 40 agencies providing air naviga-
tion services to flights operated by airspace users within the boundaries of their respective
(national) airspace. To a certain extent, the air navigation service provision is coordinated
on a network level by the Network Manager (European Commission 2019). The European
en-route airspace is further fragmented into about 70 Area Control Centres (ACC), which are
operational units of ANSPs. Airspace of an ACC is divided into sectors, where each sector
represents a volume of airspace managed by one or more air traffic controllers (ATCOs). In
total, the European airspace is divided into several hundred so-called ’elementary’ sectors,
which can be assembled into larger units called ‘collapsed’ sectors. Any specific combination
of elementary and/or collapsed sectors which covers the entire volume of airspace for an ACC
is called sector configuration (Baumgartner 2007).

ATCOs working in a single sector can safely provide ATC services to a limited number of
aircraft in a given period of time, and this number represents the sector capacity (Baumgartner
2007). Usually, sector capacity is defined either as a maximum number of aircraft that can
enter a sector within a period (so-called ‘entry counts’) or as a maximum number of aircraft
that can be present in a sector within a period (‘occupancy counts’). Based on anticipated
traffic in their airspace during a day of operations, ANSPs plan how many ATCOs need to be
on their positions to safely manage flights, that is, how many sectors should be opened during
the course of day. As a rule of thumb, the more sectors are open, for a longer period, the more
capacity an ACC can provide (Eurocontrol 2018b). One measure of how much aggregated
capacity an ACC has provided during the day is the number of sector-hours, i.e. how long
sectors were open/active during the day.

Inadequate staffing (i.e. capacity planning decisions) may have significant cost implica-
tions. Providing insufficient capacity in certain airspace parts at certain times results in
delays being imposed on airspace users and/or re-routing from preferred routes. The costs of
en-route imposed delays in the European system were estimated to exceed EUR 900 million
in 2017, with more than EUR 550 million associated with lack of air traffic control capacity
and staffing (Eurocontrol 2018b). Re-routings likewise are undesirable since they result in
additional fuel burn and other operating costs for airspace users, as well as in increased CO2

emissions (Eurocontrol 2018b).
On the other hand, an overprovision of capacity also comes at a cost imposed on airspace

users, owing to cost-recovery elements built into the European route charging scheme. User
charges thus reflect the costs of capacity provision, which in Europe amounted to more than
EUR 8 billion in 2016 (Eurocontrol 2018b), averaging about EUR 520 per flight-hour con-
trolled. Navigation charges (en-route plus terminal) constitute on average about 4.2% of
total costs of legacy carriers (IATA 2015), but this percentage can be as high as 12% for some
low-fare carriers (Ryanair 2018).

Capacity planning for a day of operations starts months in advance (Tobaruela et al.
2013). One of the major challenges in this planning process is that there are several sources
of uncertainty that often are only revealed shortly prior to or even on the day of operation.
Tobaruela et al. (2013) state that these include uncertainty related to the overall number of
flights and their spatio-temporal distribution, the impact of adverse weather conditions or the
unavailability of airspace due to military use restrictions (among others). They also stress that
they are difficult to incorporate when planning capacity months in advance. Furthermore,
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the exact number of non-scheduled flights as well as where and when they fly is often only
revealed on the day of departure or shortly before that. Therefore, it is important to account
for the uncertainty stemming from both demand and supply in capacity planning.

The aim of our work is to provide a methodology for planning capacity provision in the
presence of uncertain non-scheduled flights and uncertain capacity provision. We assume
that capacity budgets (in terms of sector-hours) for each airspace must be acquired before
the uncertainty regarding non-scheduled flights and capacity provision is revealed. Once the
latter information is available, we can only resort to demand management measures, namely
re-routing or delaying flights, and to re-arranging the sector opening scheme within the given
capacity budgets of each airspace, to ensure that all sectors operate within their capacity
limits.

This is fairly close to practice in that the full information on non-scheduled flights only
becomes available on the day of operation, and the number of available air traffic controllers
(and thus the capacity budgets) is essentially fixed at this point. In practice, ATCO rosters
are determined several weeks or even months ahead (strategic level) of a day of operations.
This leaves no room to call in additional ATCOs at a short notice due to constraints related
to ATCO working hours (Conniss et al. 2014). ANSPs send planned sector-opening schemes
to the NM at pre-tactical level, i.e. seven days in advance (NM 2019). In our paper, we
determine capacity budgets (i.e., in terms of sector hours) by explicitly deciding on sector-
opening schemes under several traffic and capacity scenarios. Therefore, the capacity budget
has underlying information such as ‘averaged sector-opening scheme’, ‘maximum number of
sectors open’ and so on, facilitating roster planning for ACCs.

Note also that ATCOs are usually only licenced to provide ATC services in groups of
sectors called ‘sector families’ (Tobaruela 2015). This effectively impacts on the capacity
provision, limiting the number of possible sector configurations at any given period and the
flexibility of changing from one to another. Modelling this requires to constrain the problem by
specifying which ATCOs can control which sectors, hence increasing the problem’s complexity
(Conniss et al. 2014). Furthermore, a more generic ATCO training (‘validation’) is being
tested in some ACCs and advocated as a way forward for European ANS provision. For
instance, the Single European Sky ATM Research (SESAR) project ‘Any Controller, Any
Airspace’ (PJ.10-06) aims to reduce the cost of ATC service through more flexible rostering
and increase the resilience of the service against local disruptions (SJU 2019a,b). Therefore,
in our paper we implicitly assume fairly flexible ATCO rostering.

Our main contribution is to provide an efficient solution approach to this Air Traffic Flow
and Capacity Management (ATFCM) problem, which we model as a somewhat stylized two-
stage newsvendor problem with the added difficulty of a cost function that is hard to evaluate.
We propose various policies on making capacity decisions in stage 1 that attempt to anticipate
the uncertain materializations of non-scheduled traffic and capacity shortfalls in stage 2. The
policies are based on solving a version of the problem that assumes full information on all
flights and capacity shortfalls, is deterministic and known in stage 1; this version of the
problem is then solved for many random scenarios using a scalable decomposition approach
that separates decisions on re-routing and delay from decisions on airspace configurations.
A particular advantage of this approach is that we can apply it to any distribution assumed
to underpin the materialization of non-scheduled flights; in fact, even to distribution-free
approaches, as long as we can somehow obtain a set of traffic scenarios. We demonstrate the
effectiveness of this approach on small synthetic test data as well as on a larger study based
on real flight data with over 1,000 flights.
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The paper is organized as follows: we review related literature in §2 and state the problem
in §3. We discuss the solution approach in §4. The approach is tested numerically in §5. We
draw conclusions in §6.

2 Literature Review

One of the primary research areas in airspace capacity (planning) research is determining
sector capacity based on ATCO’s workload, as this is a highly relevant practical issue (Ma-
jumdar et al. 2005). Sector capacity (or ATCOs’ workload) is a critical decision involved in the
airspace capacity planning process and has a large impact on demand management measures
(delays, re-routings, cruise speed control, etc) implemented when traffic exceeds capacity. As
a consequence, mathematical methods are often introduced to support this decision.

For instance, Sherali, Staats, and Trani (2003) define a mixed-integer programming model
to decide on flights’ trajectories from a set of alternatives, subject to air traffic control work-
load, flight safety and airline equity constraints. The framework includes a probabilistic
trajectory conflict analysis, the development of air traffic control workload metrics and the
consideration of equity among airline carriers in absorbing costs related to demand manage-
ment measures. In a following paper, Sherali, Staats, and Trani (2006) investigate how their
model can be used in both tactical and strategic phases. Regarding strategic applications,
the authors propose air-traffic control policy evaluations (e.g., revising aircraft separation
standards or analyzing the free-flight paradigm where aircraft are permitted to take wind-
optimized routes), fixed alternative or dynamic airspace re-sectorization strategies and the
construction of a priori plans to respond to various disruption scenarios, among others.

Another well-researched aspect of airspace capacity provision is dynamic airspace man-
agement (sectorization), i.e. frequently changing sector boundaries or re-organizing airways to
adapt to traffic flows and optimize a criterion function; see Tien and Hoffman (2009), Flener
and Pearson (2013), Venugopalan et al. (2018). However, various limitations to dynamic (sec-
tor) management exist as highlighted by Delgado, Cook, and Cristóbal (2015); for instance,
the fact that ATCOs should have a two hours’ break per shift. Some ANSPs implement a
strategic planning process approach with progressive refinement as more information becomes
available, as opposed to a conservative (rigid) staff planning as described by Tobaruela et al.
(2013).

Strategic capacity planning on a network level in the European context has not received
much attention in the literature, in particular on the cost-efficiency thereof. Tobaruela et al.
(2013) investigate how dynamic sector-opening times and a layered planning process can
improve the center’s cost-efficiency. While the results indicate that the dynamic sector opening
improves the ability of matching demand with the available resources, the authors do not
account for traffic variability in their research. In a similar research problem, Josefsson
et al. (2017) account for a portion of non-scheduled flights in planning which airports will be
controlled from remote positions.

In contrast to previous research efforts, we propose strategic capacity planning at the
network level. The aim is to make capacity ordering decisions, while minimizing the cost of
capacity provision and cost of delaying and re-routing flights. Our approach is similar to the
current practice (Eurocontrol 2013), with two fundamental differences:

• capacity decisions are made by a central planner for all ANSPs in a fully coordinated
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manner, taking into account the network as a whole (as opposed to the limited coordi-
nation in the current system), and

• the central planner anticipates the impact of re-routing and tactical delay decisions as
a demand management measure at the time of making capacity decisions, rather than
using re-routing merely to alleviate delays on the day of operations.

Our work is also related to papers dealing with the problem of assigning delays and of
re-routing flights under capacity constraints of airports and/or sectors. Tošic et al. (1995)
propose a linear model to minimize delay costs while deciding the assignments of both ground
holds and routes. The same problem is tackled by Bertsimas and Patterson (1998). They
also focus on the complexity of the same problem and provide practical extensions by con-
sidering dependence between arrival and departure capacities, hub and spoke systems, banks
of flights and rerouting. Lulli and Odoni (2007) apply the problem to the European airspace,
considering issues such as efficiency and equity. Corolli, Castelli, and Lulli (2010) introduce
to the problem the concept of time windows. They propose a two stage model which firstly
identifies the set of optimal (i.e., minimum cost) windows’ sizes and subsequently selects
the optimal solution which grants the largest degree of flexibility to service providers and
airports. Castelli, Pesenti, and Ranieri (2011) study the single constrained en-route sector
problem incorporating the possibility for an airline to pay to reduce delays or obtain delay
compensation. Lau et al. (2015) introduce a column generation based algorithm to tackle
ATFCM slot allocation in a large-scale network. In our work, we also incorporate decisions
on assigning delay and re-routing, as well as decisions on the sector opening scheme. However,
we consider this in the context of strategic capacity decisions, rather than making tactical
demand management decisions. Note that we primarily focus on en-route airspace and do
not include airports due to complexity of the problem considered.

The topic of our paper is also related more generally to the literature on two-stage robust
and stochastic optimization; we refer to the literature review of Gabrel, Murat, and Thiele
(2014) that puts these concepts in relation to one another.

3 Problem Statement

We consider a central network manager with the mandate to make capacity and demand man-
agement (namely re-routing and delaying) decisions across various airspaces. The problem is
posed as a somewhat stylized process over two stages: In the first stage, the network manager
needs to plan how many sector-hours will be required for each airspace for a specific day in the
future (in practice, this corresponds to the strategic planning phase). While we have infor-
mation on all scheduled flights, non-scheduled flights are unknown at this point. We further
assume uncertainty in the capacity supply which may materialize in the form of reductions of
the nominal structural capacities of the airspaces. In the second stage, uncertainty regarding
non-scheduled flights and capacity is revealed (this corresponds to the day of operation). In
the light of this information, the network manager needs to decide on re-routing or delaying
flights, and on the sector opening scheme subject to the fixed capacity budget available to
accommodate all flights. The objective is to minimize the sum of capacity provision cost and
expected displacement cost stemming from demand management measures; note that both
re-routing and delay incurs displacement costs. Structurally, the problem is related to the
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well-known newsvendor problem (see Qin et al. (2011)). In the following, we offer a rigorous
definition of this problem.

Consider multiple airspaces a ∈ A, each with a finite number of possible sector config-
urations c ∈ Ca. For a given configuration c, we have a set of sectors p ∈ P c that form
the elements of the configuration. Each of these sectors p is either an elementary sector or
consists of multiple elementary sectors merged together (referred to as a collapsed sector).
Each sector p has a fixed nominal capacity of Kp flights that may enter that sector within
a given time period u ∈ U . The time periods in U span the day of operation on a uniform
grid with spacing chosen such that it is possible to change the configuration of an airspace
from one time period to the next (say, 1 hour). This is motivated by current practice where
a required capacity profile for the following summer season is defined on an hourly basis and
ACCs may even change sector configurations more frequently than that (Eurocontrol 2018a).
Opening configuration c in airspace a for one time period requires h̄ac sector-hours.

In practice, there is supply-side uncertainty due to factors such as weather conditions,
military activity, strikes of air traffic controllers etc. that affect capacity provision. We
assume that we do not know the true distribution that governs the materialization of supply-
side uncertainty; however, we do have a uniform distribution over a finite collection K of
capacity disruption scenarios K ∈ K where some sectors are operating at a fraction of their
nominal capacities. We assume that this distribution can be used to approximate the true
(unknown) distribution of capacity disruption scenarios. We only observe in period 2 which
capacity scenario K we are facing.

Furthermore, there is also demand-side uncertainty over the number and details of non-
scheduled flights in period 1 that only gets resolved in period 2. Similarly to modeling
the capacity disruption scenarios, we assume that we do not know the true distribution
that governs the materialization of non-scheduled flights but that we do have a uniform
distribution over a finite collection of flight scenarios which we assume to approximate the
true distribution. Both collections are known in period 1; for instance, this could be defined
as the collection of historic operating capacities and non-scheduled flights. We augment the
collection of non-scheduled flights scenarios F by adding a fixed and known set of scheduled
flights to every scenario of non-scheduled flights; the resulting collection of flight scenarios is
denoted by F . In other words, every element F ∈ F is a set of flights, and the elements only
differ by the non-scheduled flights; the scheduled flights are the same in each of them. Note
that traffic scenario F relates only to the number of flights, their origins and destinations,
planned departure time, and a set of trajectory options Rf for every flight f that represent
different demand management measures of re-routing or delaying flight f , including the option
for the shortest route without delay. The traffic scenario does not determine the trajectories.

Both sources of uncertainty are paired to form scenarios S = (FS ,KS). Scenarios are
collected in set S. In the following, we write the expectation over scenarios S in the under-
standing that uncertainty only pertains to non-scheduled flights and capacity scenarios. For
a given flight f , route r ∈ Rf , time period u ∈ U and a sector p, we define bfrpu ∈ {0, 1} to
be equal to 1 if route r uses sector p at time u, and otherwise 0. Each of these route options
r ∈ Rf comes with an associated displacement cost dfr that reflects the additional fuel cost
and delay costs incurred relative to the shortest distance at no delay (dfr for the latter is set
to zero). As such, we incorporate not only cost to the air navigation service provider, but
also costs to airspace users. The aim is to reduce overall costs.

We face a trade-off between achieving cost savings by decreasing capacity provision cost in
stage 1, and increasing costs by potentially increased need for demand management measures

6



depending on the realization of non-scheduled flights. In stage 1, we need to decide on
how much capacity budget h = (ha)a∈A in terms of sector-hours to acquire for the different
airspaces (at unit cost γa for each airspace a). In stage 2, we then decide on the sector opening
scheme by setting zacu = 1 if airspace a gets configuration c at time u, and 0 otherwise. This
sector opening scheme is subject to the fixed capacity budget h. Furthermore, we decide
on demand management measures in stage 2: yfr = 1 represents assigning flight f to route
r ∈ Rf , and 0 otherwise. We summarize the notation in Table 1.

The optimization problem that we tackle can be written as the minimization of expected
displacement cost and capacity cost over all possible scenarios S by deciding on the capacity
budget h:

min
h≥0

ES [G(S|h)] + γTh, (1)

where G(S|h) represents the minimum displacement cost to accommodate flight scenario
FS under capacity budgets h, given capacities KS . The superscript T denotes the transpose
of a vector. To ensure feasibility of G(S|h), we add a dummy configuration c0 that requires
no capacity (h̄ac0 = 0 for all a), is used by a dummy route r0 ∈ Rf for all flights f ∈ F , and its
single sector p ∈ P c0 has capacity κp = |F | regardless of the capacity scenario materialization.
Using this dummy route incurs a high penalty cost which can be interpreted as the cost of
displacing a flight beyond the planning horizon. With this construct, the displacement cost
function G(S|h) for a given flight scenario FS and a given capacity scenario KS , is defined
by a deterministic integer program:

G(S|h) = min
y,z

∑
f∈FS

∑
r∈Rf

dfryfr

s.t.
∑
f∈FS

∑
r∈Rf

bfrpuyfrzacu ≤ κSp ∀ a ∈ A, c ∈ Ca, p ∈ P c u ∈ U (2)

∑
u∈U

∑
c∈Ca

h̄aczacu ≤ ha ∀ a ∈ A (3)∑
r∈Rf

yfr = 1 ∀f ∈ FS (4)

∑
c∈Ca

zacu = 1 ∀a ∈ A, u ∈ U (5)

zacu ∈ {0, 1} ∀a ∈ A, c ∈ Ca, u ∈ U (6)

yfr ∈ {0, 1} ∀f ∈ FS , r ∈ Rf . (7)

The objective of G(S|h) is to minimize displacement and penalty costs, subject to (2): used
capacity in a given sector and time period being less than maximum capacity; (3): total
capacity usage to not exceed the capacity budget h; (4): every flight being assigned to exactly
one trajectory; (5): every airspace a having exactly one configuration at every time u; and
binary constraints (6–7). Note that constraint (2) is non-linear; a standard linearization of
this constraint requires to introduce a new set of binary variables nfracu replacing the products
yfrzacu, together with a new set of constraints to enforce equivalence. This approach provides
a tight relaxation but is not scalable for this problem. As an example, a medium-sized network
with 10 airspaces, 10 configurations, 100 flights with 10 routes, studied over 2 time periods,
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Table 1: Overview of notation.
Sets:
F Flight scenario including both scheduled and non-scheduled flights
F Finite collection of flight scenarios F
K Capacity scenario (meaning some sector capacities may be reduced)
K Finite collection of capacity scenarios K
S Scenario defining traffic FS and capacity KS scenarios defined by pair (FS ,KS), with FS ∈ F and KS ∈ K
S Finite collection of uncertain scenarios S
Rf Finite set of re-routing and delay options available to flight f
U Set of time periods covering the day of operation
A Set of airspaces
Ca Set of configurations for airspace a
P c Partition of sectors corresponding to a configuration c

Indices:
f Flights
u Time index
r Route option, fixed in both spatial and temporal terms
a Airspace
c Airspace’s configuration
p Airspace sector

Parameters:
γ = (γa)a∈A Unit cost of one sector hour for airspace a
κSp Maximum capacity of airspace sector p under scenario KS

h = (ha)a∈A Budgets of available sector-hours for all airspaces a ∈ A
h̄ac Number of sector-hours consumed by airspace a working in configuration c per unit of time
dfr Displacement cost of route r for flight f
bfrpu ∈ {0, 1} Indicates whether route r uses sector p at time u

Variables:
zacu ∈ {0, 1} Indicates whether configuration c is open in airspace a in time period u
yfr ∈ {0, 1} Indicates whether flight f is assigned to route r
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requires 200,000 additional variables and 600,000 additional constraints. Consequently, in
order to solve G(S|h) directly (for small instances), we replace constraints (2) with:∑

f∈FS

∑
r∈Rf

bfrpuyfr ≤ κSp zacu + |FS |
∑
c′ 6=c

zac′u ∀a ∈ A, c ∈ Ca, p ∈ P c, u ∈ U. (8)

Constraints (8) have a loose linear programming relaxation but, at least for small instances,
they allow solving ofG(S|h) with commercial solvers like CPLEX as discussed in the numerical
results section. We represent G(S|h) with the non-linear constraints (2) because we use them
in our proposed decomposition approach.

In summary, (1) is a type of newsvendor problem that is difficult to solve even for
moderately-sized instances due to the challenges in evaluating the expectation. We do not
have a closed-form expression of the distribution that underpins the realizations of non-
scheduled flights, and we need to solve a large binary program for every such realization to
evaluate the costs in stage 2. We discuss our solution approach in the following section.

4 Approximation of the Stochastic Problem

The difficulty in solving this problem rests within the evaluation of the expectation in the
problem (1). We can approximate the expectation by sampling a large number of scenarios
S. This requires us to solve G(S|h) for a large number of scenarios, which is challenging
given the complexity of G(S|h). The function G(S|h) is not generally convex in h due to
the integer variables (see Geoffrion (1974)); dropping the integer restrictions results in this
function becoming convex in h, but our computational experiments showed that the quality
of the resulting solutions is very bad and thus we do not consider this approach further.

Our approach of tackling the stochastic problem (1) assumes perfect foresight, i.e. we
assume to have full knowledge of both scheduled and non-scheduled traffic F and capacity
scenarios K at the time of deciding on the budget h. In that case, we can decide on required
capacity and demand actions simultaneously. Given a scenario S, the corresponding problem
can be formulated as follows:

G(S) = min
y,z

∑
a∈A

γa
∑
c∈Ca

∑
u∈U

h̄aczacu +
∑
f∈FS

∑
r∈Rf

dfryfr (9)

s.t.
∑
f∈FS

∑
r∈Rf

bfrpuyfrzacu ≤ κSp zacu ∀ a ∈ A, c ∈ Ca, p ∈ P c u ∈ U (10)

∑
r∈Rf

yfr = 1 ∀f ∈ FS

∑
c∈Ca

zacu = 1 ∀a ∈ A, u ∈ U

zacu ∈ {0, 1} ∀a ∈ A, c ∈ Ca, u ∈ U
yfr ∈ {0, 1} ∀f ∈ FS , r ∈ Rf

Note that a solution to G(S) gives the capacity budgets as ha :=
∑

c∈Ca

∑
u∈U h̄aczacu. If we

can solve G(S) for many flight scenarios, then we can use the resulting sample distribution
of capacity budgets to derive decision policies.
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To that end, consider the structure of G(S): the decisions y and z are only linked by
the capacity constraints (10). We propose to decompose the problem into a master and a
sub-problem according to variables y and z by assuming that we have a linear function Q̃(y)
that reflects (approximately) the minimal capacity cost under fixed traffic assignment y. We
formulate the master problem as a linear program:

(Master) min
y

∑
f∈FS

∑
r∈Rf

dfryfr + Q̃(y)

s.t.
∑
r∈Rf

yfr = 1 ∀ f ∈ FS (11)

yfr ∈ [0, 1] ∀ f ∈ FS , r ∈ Rf .

The sub-problem minimizes capacity provision cost for a given flight assignment. To en-
sure the existence of a feasible solution given traffic assignment y, we introduce new pa-
rameters kacu that represent the capacity shortage in terms of the number of flights that
exceed sector capacity limits in airspace a, configuration c and time period u. We define
kacu :=

∑
p∈P c(

∑
f∈FS

∑
r∈Rf

bfrpuyfr − κSp )+, where x+ := max{x, 0}. A large penalty cost
of M is associated with these parameters to indicate violation of the capacity constraints to
the master problem. The sub-problem can be written as the following linear program:

(Sub) Q(y) = min
z

∑
a∈A

γa
∑
u∈U

∑
c∈Ca

(h̄ac +Mkacu)zacu

s.t.
∑
c∈Ca

zacu = 1 ∀a ∈ A, u ∈ U

zacu ∈ [0, 1] ∀a ∈ A, c ∈ Ca, u ∈ U.

Both master and sub-problem have a very attractive feature:

Proposition 1. The optimal solution of the linear program (Master) and (Sub), respec-
tively, is integer. The optimal solution of (Sub) is given by setting zac∗u = 1 for c∗ =
arg minc∈Ca [γa(h̄ac +Mkacu)], and zacu = 0 otherwise, for all a ∈ A and u ∈ U .

Proof. Proof: Note that the constraint matrices of (Master) and (Sub) are both 0-1 matrices
with the consecutive ones property, i.e. the columns can be permuted in a way such that the
1s in every row appear consecutively. It follows that the matrices are totally unimodular, and
consequently the optimal solutions to the linear programs (Master) and (Sub) are integer.
The optimal solution of (Sub) follows from inspection of the problem.

We still need a suitable linear function to approximate the capacity cost Q(y). Moreover,
we would like to estimate a function that approximates Q(y) but does not directly depend
on y in as far as we aim to use the same estimator for different traffic scenarios (including
different number of flights). This would allow us to evaluate a large number of flight scenarios
without having to re-estimate the cost function for each scenario.

To that end, we propose a group of so-called basis functions to construct an approximation
of Q(y). The basis functions are intended to avoid the explicit dependency on the set of flights
in the considered traffic scenario by capturing some basic problem features. Let φacpu denote
a basis function that reflects the traffic flow in the partition p of configuration c in airspace
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a at time period u. We can transform the traffic assignment y into the basis function φacpu
as follows:

φacpu(y) =
∑
f∈FS

∑
r∈Rf

bfrpuyfr, ∀ a ∈ A, c ∈ Ca, p ∈ P c, u ∈ U. (12)

The idea is to approximate the cost function Q(y) with a function Q̃(φ) that establishes a
direct relationship between traffic flows φ in specific partitions per unit of time and resulting
capacity cost. With this, we do not have to specify individual flights; instead, only the
aggregated traffic counts in space and time are of interest, which allows us to use the same
function Q̃(φ) for different traffic samples. We define Q̃(φ) as a linear function with unknown
coefficients β that need to be estimated:

Q̃(φ, β) = β0 +
∑
a,c,p,u

βacpuφacpu.

With this function, we can exploit the problem structure of (Master) to explicitly state its
solution:

Remark 1. The optimal solution of (Master) is given by setting yfr∗ = 1 for r∗ = arg minr∈Rf
[dfr+∑

a,c,p,u βacpubfrpu], and yfr = 0 otherwise, for all flights f ∈ FS.

Next, we discuss how to obtain the coefficients β. The optimal vector β is the one that
minimizes the expected squares of deviations from the optimal capacity cost Q(y∗S), where
the expectation is taken over the distribution of scenarios S, and y∗S is the optimal flight
assignment under flight scenario FS ∈ S:

min
β

1

2
ES
[
Q̃(φ(y∗S), β)−Q(y∗S)

]2
. (13)

Since we do not have the optimal assignments y∗S yet, we propose an iterative approach:
starting with an initial guess βk (with iteration counter k = 0), we solve the (Master) problem
for all samples S ∈ S using βk. This produces a collection of flight-to-route assignment vectors
yk,S . Next, we solve |S| (Sub) problems, one for each solution yk,S . This gives us a collection
of cost/traffic flow pairs (Q(yk,S), φ(yk,S)). These can be used to update βk with a stochastic
gradient step on objective (13) with stepsize α, which are fed into the (Master) problem
again, etc. The procedure terminates when β converges or a maximum number of iterations
has been reached. We provide the details in Algorithm 1.

As an output of Algorithm 1, we obtain sector configurations zS for all scenarios S. For
each scenario S, we can define the capacity budget for airspace a as hSa :=

∑
u∈U

∑
c∈Ca h̄acz

S
acu.

This resulting sample distribution of vectors h over S is used in §5.1 to define decision policies
on how to choose the capacity budgets.

5 Numerical Experiments

We apply our proposed methodology to real-world data to get a sense of the speed with which
we can reach decisions, and of their quality. The latter is measured in terms of costs incurred
as well as in terms of allowing feasible assignments given the capacity budget. In this section,
we first define several decision policies in §5.1, describe the simulation study and underpinning
a synthetic data set as well as a real world one in §5.2, and report our results in §5.3.

11



Algorithm 1 Perfect foresight approach to approximately solve G(S) for S ∈ S
Initialize β0 = ~0, iteration counter k = 0, given traffic and capacity samples S ∈ S.
while do
yk,S ← solution of (Master) using βk for all S ∈ S
(Q(yk,S), φ(yk,S), zk,S)← solution of (Sub) using yk,S for all S ∈ S
βk+1
0 ← βk0 − α

∑
S∈S

(
Q̃(φ(yk,S), βk)−Q(yk,S)

)
/|S|

βk+1
acpu ← βkacpu − α

∑
S∈S

(
Q̃(φ(yk,S), βk)−Q(yk,S)

)
φk,Sacpu/|S|, for all a, c, p, u

break if ||βk+1 − βk|| < 0.01, or k exceeds maximum iteration limit
k ← k + 1

end while
return collection of solutions (yk,S , zk,S) for all S

5.1 Decision Policies

The ultimate objective of this work is to derive capacity ordering decisions h∗ = (h∗a)a∈A for
the newsvendor problem (1). The foresight approach outlined in Algorithm 1 will produce a
set of solutions hS for different scenarios S. However, we still require a consensus function
that maps from this collection of solutions to a single one to be used. We refer to such a
consensus function as a policy and test the following ones:

• FE : In the full enumeration policy, the newsvendor problem is solved by computing all
the possible combinations of capacity orderings across airspaces. For each combination,
the expectation of costs is computed. The capacity ordering decision correspond to the
vector h∗ yielding the smallest expected cost. This policy can be used as a benchmark
but only for very small problems where full enumeration is computationally feasible.

• AV : In the averaging policy, the capacity decision is obtained by defining h∗a :=
∑

S∈S
hSa
|S|

for all a ∈ A, where hS is the perfect foresight solution for scenario S with step-size
α = 10−9 (small due to scaling issues).

• ε = x%: In the risk-based policy, the capacity decision is obtained by setting h∗ such
that the sample probability of encountering a flight scenario in which we had better
planned for more capacity in at least one airspace is less than a given ε, i.e. Prob(h ⊀
h∗) < ε, where the sample probability distribution of h has been computed by the
perfect foresight approach over scenarios S ∈ S with step-size α = 10−9 (small due
to scaling issues). The ε policy is tested with ε ∈ {0.01, 0.05, 0.10, 0.20}. Setting ε to
large values such as 0.10 or 0.20 reflects an increasing willingness to accept the risk
of making capacity decisions which could work poorly under a significant number of
traffic scenarios. On the other extreme, setting ε to smaller values such as 0.01 or 0.05
represents less risk and thus is more appropriate for risk-averse decision makers.

• SA: In the sampling policy, the capacity decision is obtained by sampling a h∗ uniformly
from the sample distribution of h. The distribution is computed by the perfect foresight
approach over scenarios S ∈ S with step-size α = 10−9 (small due to scaling issues).
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5.2 Simulation Study

In order to numerically evaluate the performance of each decision policy, we conduct sim-
ulation studies of the two-stage planning problem (1). In each simulation run, we start in
stage 1 with obtaining the capacity budget h using a given decision policy based on a sample
of scenarios S ⊆ S ′ where S ′ is a finite set of scenarios consisting of all scenarios that one can
encounter in stage 2. We model the true distribution of scenarios as being uniform over the
finite set S ′. Each scenario S ∈ S ′ consists of a traffic and a capacity scenario from sets F ′
and K′. Each flight scenario in F ′ is constructed by adding a number of non-scheduled flights
sampled from historic data to the same fixed set of scheduled flights. The capacity scenario
K′ is built by sampling airspace capacities from a given distribution.

We keep S fixed across all simulations and all policies, i.e. the decision policies are all
based on the same collection of scenarios. To model the effect of imperfect forecasts, we
consider instances where the expectation is formed over a proper subset S  S ′, i.e. we do
not anticipate all scenarios that may happen. To reflect the impact of an increasingly poor
forecast, we can increase the cardinality of S ′ relative to that of S. To contrast this with
having full knowledge in stage 1 about the true distribution of traffic scenarios that we may
face, we also look at instances where S = S ′. We emphasize that the number of flights initially
stays the same (so we assume that we know in stage 1 how many non-scheduled flights will
appear in stage 2), but we do not know when and where they appear; we also experiment
with the impact of increasing the number of sampled non-scheduled flights. We consider the
cases of S = S ′0, and S  S ′1, where S0 features 100 scenarios and S ′0 and S ′1 are two different
collections of ground truth scenarios. The first is the same as S, and S ′1 has additional 300
scenarios. Similarly, sets F ′1 and K′1 used to build S ′1 have additional 300 traffic and capacity
scenarios.

Given the decision h from stage 1, we assess in stage 2 the optimal displacement cost
G(Ŝ, |h). To do so, we use CPLEX to solve the binary program G(Ŝ|h) with capacity con-
straints (2) replaced with (8). As a result, we obtain the total cost incurred, whether G(Ŝ|h)
was feasible, and if not, how many flights violated capacity constraints at any period of time.
This cost evaluation in every simulation is fairly time-consuming, which limits the volume
of flights that we can investigate in a simulation. We run the simulation for 600 times to
measure the average performance in terms of displacement costs, capacity costs and flights
exceeding capacity constraints.

A small artificial network and a real-life case study are used for the computational analysis.
The small network consists of four airspaces (T, U, R and S) with two elementary sectors
each and a fifth airspace (Q) with three elementary sectors (Figure 1). A time horizon of two
hours is considered with a total of 120 scheduled flights. A pool of 80 non-scheduled flights is
built to generate the traffic scenarios. Flights are scheduled to fly across one of the 8 origin-
destination pairs denoted by the arrows. Each flight has a preferred route using the central
airspace Q and several more expensive routes avoiding Q or assigning delay up to 30 minutes.
As for the capacity uncertainty, we assume each airspace to have the same distribution as
the MUAC ANSP described in the appendix (see EDYYBUTA, Table 9). More details about
this network can be found in (Starita et al. 2017).

A second larger case study is built using real data. The capacity and demand data are
obtained via Eurocontrol Demand Data Repository (DDR2) service using the Eurocontrol
Network Strategic Tool (NEST). The selected region includes a large part of en-route airspace
in Central and Western Europe, including 8 ANSPs and 15 ACCs/sector groups as depicted
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Figure 1: Small artificial network.

in Figure 2. The figure shows a snapshop of scheduled traffic at a particular point in time
and illustrates the presence of different traffic densities. The Maastricht Upper Area Control
Centre (MUAC) is divided into three sector groups: Deco, Hannover and Brussels, each with
its own sectorization and sector configurations. Based on historical usage of configurations
in 2016, for each ACC or sector group, we select configurations with different numbers of
sectors which were most frequently used: in total, we have 173 different configurations for the
15 ACCs/sector groups shown in Table 7 in the appendix. The overview of elementary and
collapsed sectors used in the simulation is likewise in the appendix, namely Table 8.

Delay and re-routing costs are obtained by drawing on Cook and Tanner (2015) and Eu-
rocontrol (2018d). Delay costs are calculated per aircraft type and per duration of delay
(non-linear with time). To explain why we use averaged estimated cost of demand manage-
ment (DM) measures per aircraft type instead of real (estimated) cost for each flight, it is
necessary to recall the timeline in capacity and demand management decision-making. Capac-
ity decisions are made weeks and months in advance, where a number of determinants for DM
cost calculations (e.g. number of transfer passengers and their connection times) are not know
with certainty even to the airlines. One would have to rely on available historical (empirical)
distribution for load-factors, number of transfer passengers and a number of connections lost
due to different levels of primary delays on a flight basis to calculate passenger-related costs
only. The problem is that this data is not available and is considered sensitive business infor-
mation. Note that the report Cook and Tanner (2015)—that we use as a basis to calculate
DM costs—already includes some historical/empirical findings to estimate passenger-related
delay costs. Consequently, airlines are the only stakeholders with full information to estimate
(their) real cost of delay per flight for a given day of operations. However, using airlines’ in-
formation for individual flights’ cost of delay may lead to ‘gaming the system’ and raise equity
questions: without additional rules and a fair mechanism, airlines might declare higher-than-
real costs for delaying/re-routing their flights, since the NM aims to minimize total cost of
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Figure 2: Snapshot of scheduled flights and airspaces considered in the simulation at a fixed
point in time.

capacity and demand management actions. This would add another layer of complexity to
the model and draw attention from the main focus of the study.

Re-routing costs include fuel costs, crew costs, passenger soft and passenger hard costs, as
well as maintenance costs. Cost parameters for ANS provision are derived in the following way:
based on information provided in the ATM Cost-Effectiveness Report 2017, we calculated
average ATCO costs per sector-hour in 2015 for the different ANSPs (and in one case for
an ACC). In the model, we treat those costs as variable costs. Although ATCO costs might
be considered fixed costs in the short term, reducing the daily number of ATCO hours will
reduce the total number of ATCOs needed for ANS provision, consequently reducing staff
costs.

We use flight data of 9th September 2016, which was the busiest day in 2016 in the
European airspace. We select flights based on their last filed flight plans which cross the
selected airspace between 10 and 11 AM. In total, we have 910 scheduled flights that are
considered fixed in our network in all scenarios. To create non-scheduled flights, we select
those out of all historical non-scheduled flights on that day that cross the selected airspace
at any time (1,569 in total). Since we test the model for 10-11 AM period, we change their
airspace entry times from the original flight plan to a time uniformly sampled over the selected
period. Each traffic scenario is created by uniformly sampling a subset of 160 from this set of
1,569 flights and adding them to the set of scheduled flights. We create 100 traffic scenarios,
stored in F , in this manner. Flights can be either delayed or re-routed (only one demand
management measure per flight) to improve total cost-efficiency subject to hard capacity
budget constraints. Delay options are discrete and the same for each flight, namely 5, 15, 30
or 45 minutes. Each flight has a number of alternative spatial routes as well, all generated
using the NEST tool. Overall, the problem is modeled over a two-hours time horizon to
account for flights being delayed beyond 11:00 AM.
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In practice, capacities planned at strategic level are often not provided on the day of oper-
ations due to many reasons: adverse weather conditions, military activity, lower staffing levels
than planned, etc. Some of these reasons exhibit some regularities and could be anticipated
well in advance (e.g. existing staffing issues in Karlsruhe airspace, see Eurocontrol (2018c)),
while some other, like weather, are not easy to predict (especially the impact on capacity). In
this paper, we do not differentiate between different sources of capacity provision uncertainty,
but rather focus on the outcome such events might have in each ACC. We partially rely on
historical ATFCM regulation data to come up with a uniform probability distribution over
sectors that a random sector in an ACC will have capacity reduction by 10%, 30%, or 50%
or will be closed for flights entirely (zero-rate entry count). We provide the probability dis-
tribution in the appendix (Table 9). Capacity scenarios are built by sampling from the given
distribution while enforcing that only up to one elementary sector per scenario (and all the
collapsed sectors including it) can provide less than nominal capacity. This assumption is to
avoid building overly pessimistic scenarios with several uncorrelated capacity reductions.

We chose this data to test our approach since the selected airspace covers a large part of
the so-called ‘core area’ (e.g. MUAC and DFS) of the European airspace, as well as a part of
airspace which is not as congested (Hungaro Control). To ensure reproducibility of our work
and to allow others to conduct benchmark studies against our approach, all data and open
source code underpinning the numerical results reported in the paper will be published in the
public domain.

5.3 Results and Discussion

The simulation study provides us with some insight on how the policies are working. Al-
gorithms are implemented using C++ and Visual Studio IDE. Libraries provided by the
commercial solver CPLEX are used to solve the optimization models. Tests are run on a
Windows 8 PC, with 8GB of RAM and AMD Ryzen 7-1700 processor.

Tables 2 and 3 report the average performance of the policies in the two case studies
obtained by simulation and under the accurate forecast assumption (i.e., S ′0 = S). Table
4 shows results on the real network under the imperfect forecast assumption, i.e. the flight
materializations and capacity scenarios are drawn from a wider set of traffic and capacity
scenarios containing 300 scenarios in addition to those in S (hence S ′1 ! S). The average
share of flights that cannot be assigned to any non-dummy route is also shown, providing
insights on infeasibility of a given policy. Results for total costs are shown along with their
respective 95% confidence interval.

Results on the small case study show that ε policies’ cost performances are close to the
cost obtained by the full enumeration policy. In fact, ε = 20% and ε = 10% result in the
exactly same capacity budget. The relatively high percentage of flights not being assigned
is due to the limited menu of routes available in the small case study. For example, all the
route options for flights on the north-south flow use sectors S1, S2, T1 and T2. This means
that under scenarios where one of these sectors has a capacity shortage, there are no other
options than assigning a share of flights to the dummy route.

All policies show consistent behavior across the different simulation scenarios. Policy AV
results in the minimum capacity ordering. In contrast, the displacement cost returned by this
policy is the highest, with an average of 1% flights not being assigned. The best policy in
terms of overall cost is ε = 5%. However, we also notice that uncertainty on the time and
location of non-scheduled flights and capacity scenarios does not have a significant impact on
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Table 2: Simulation results on small network under full knowledge of scenario distribution.
Exactly the expected number of non-scheduled flights and capacity materialize (sampled from
S ′0 = S). Small Network. 600 simulation runs.

Policy Capacity cost Displacement cost Total cost Flights not assigned (%)

FE 29,380 27,153 56,533 ± 3,718 6.23%
AV 26,240 31,521 57,761 ± 3,940 6.72%

ε = 20% 29,380 27,502 56,533 ± 3,718 6.23%
ε = 10% 29,380 27,502 56,533 ± 3,718 6.23%
ε = 5% 31,800 26,595 58,395 ± 3,622 6.08%
ε = 1% 32,720 26,595 59,315 ± 3,622 6.08%

SA 28,460 29,683 58,143 ± 3,652 6.24%

Table 3: Simulation results on real network under full knowledge of scenario distribution.
Exactly the expected number of non-scheduled flights and capacity materialize (sampled from
S ′0 = S). 600 simulation runs.

Policy Capacity cost Displacement cost Total cost Flights not assigned (%)

AV 43,932 60,959 104,891 ± 6,689 1.00%
ε = 20% 49,461 44,860 94,321 ± 5,764 0.83%
ε = 10% 50,350 40,153 90,503 ± 5,209 0.74%
ε = 5% 53,017 33,804 86,821 ± 4,427 0.63%
ε = 1% 59,462 30,190 89,652 ± 4,163 0.57%

SA 49,951 44,796 94,747 ± 5,676 0.81%

Table 4: Simulation results on real network with somewhat incomplete knowledge of scenario
distribution. Exactly the expected number of non-scheduled flights and capacity materialize
(sampled from S ′1 ! F). 600 simulation runs.

Policy Capacity cost Displacement cost Total cost Flights not assigned (%)

AV 43,932 66,793 110,725 ± 7,069 1.14%
ε = 20% 49,461 48,606 98,067 ± 5,960 0.91%
ε = 10% 50,350 43,272 93,622 ± 5,381 0.82%
ε = 5% 53,017 38,026 91,043 ± 4,784 0.72%
ε = 1% 59,462 32,803 92,265 ± 4,385 0.63%

SA 49,951 47,931 97,882 ± 5,835 0.88%
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Figure 3: Snapshot of non-scheduled flights at a fixed point in time. This snapshot shows
non-scheduled traffic under the low uncertainty scenario, i.e. only 160 flights.

the results. This uncertainty is absorbed with the existing capacity or by demand measures.
This is not too surprising when we consider a snapshot of the non-scheduled traffic shown in
Figure 3: due to the relatively low volume of flights, the non-scheduled traffic is fairly widely
distributed so that its impact on individual sectors is small.

However, if we additionally increase uncertainty over the number of non-scheduled flights
and capacity scenarios, results change as can be seen in Table 5. Specifically, we test the
policies assuming that the number of non-scheduled flights materializing is twice the one
assumed in the traffic scenarios during the policy building stage. This results in a total of
1,300 flights, 30% of which are non-scheduled.

Table 5: Simulation results on real network with highly incomplete knowledge of scenario
distribution. Twice the expected number of non-scheduled flights materialize. Scenarios
sampled from wider collection S ′1 ! F . 200 simulation runs.

Policy Capacity cost Displacement cost Total cost Flights not assigned (%)

AV 43,932 123,965 167,897 ± 14,505 1.83%
ε = 20% 49,461 73,767 123,228 ± 12,365 1.05%
ε = 10% 50,350 66,685 117,035 ± 11,067 0.93%
ε = 5% 53,017 56,711 109,728 ± 9,744 0.79%
ε = 1% 59,462 45,931 105,393 ± 9,038 0.68%

SA 49,951 72,028 121,979 ± 11,365 1.00%

The added uncertainty in traffic volume in the network has a clear impact on displacement
cost, which increases across all policies. The perhaps most interesting result is that now
ε = 1% yields the lowest total cost; this intuitively makes sense since the ε policies are
hedging against the risk of underprovision so that with higher levels of uncertainty, we overall
perform better. As expected, policy AV still performs worse than all the other policies. This is
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because ε policies result in higher capacity orderings, giving them more room to accommodate
the additional traffic. In summary, under high uncertainty on the number of non-scheduled
flights to appear we may want to use more risk-adverse ε policies. If the number of non-
scheduled flights tends to be fairly stable, less conservative ε policies can be selected. Results
also consistently show that AV policy fails to provide acceptable displacement costs. The
sampling policy SA was dominated by the ε = 10% policy in all scenarios.

In Table 6 we compare the computing time of solvingG(S) for a given scenario with
CPLEX versus using the perfect foresight (PF ) algorithm 1. The first column shows the
number of flights in F and the second reports the computing time required by CPLEX to
solve G(S) to optimality. A single scenario S is sampled from S and used to test the runtime of
CPLEX. Finally, the last column shows the average computing time used by Algorithm 1 per
flight scenario (this can vary somewhat depending on how quick the cost function parameters
converge in the various scenarios). The number of decision variables and constrains used by
G(S) and iterations required by PH are reported as well.

Table 6: Average computational times to solve an instance G(S). Note that the times for the
perfect foresight approach are averaged over the samples F ∈ F .
Number of flights CPLEX time (s) Variables Constraints Average PF time (s) PF iterations

1,000 511 11,225 2,693 2.5 15
1,100 1,755 12,313 2,793 3.8 21
1,200 4,655 13,417 2,893 5.9 30
1,300 13,363 14,570 2,993 6.6 32
1,400 n.a. 15,654 3,093 7.2 31

Solving the problem for just one traffic scenario becomes rapidly impossible with CPLEX
as the number of flights increases. As for the 1,400 flights case, the solver stopped after
failing to find the optimal solution within 250 minutes. This illustrates that a direct solution
approach is not scalable, as opposed to the proposed decomposition approach.

6 Conclusion

Inadequate capacity planning in ATM is a real issue with increasingly costly implications
upon airspace users. This is probably best condensed in a recent statement of Airlines for
Europe (A4E), the association of 15 leading European airlines, accounting together for more
than 70% of European passenger journeys: “Nevertheless, when broken down, it is argued
that in many cases that much of this [‘unacceptable increase in delay and disruption to the
travelling public’ in 2018] was due to sub-optimal staffing both in terms of core numbers and
in rostering practices, which resulted in shortfalls in required sector openings to best manage
the demand” (NM 2018). With this in mind, knowing that estimated cost of en-route ATFM
delay amounted to 1.93 billion EUR (Eurocontrol 2018c), it is clear that any improvement in
this respect might have significant positive implications on quality of service provided by the
ANSPs by means of decreasing unnecessary delay (and associated costs) imposed on airspace
users.

Capacity planning for air traffic navigation service provision is a challenging problem
due to uncertainty in traffic and capacity supply and the volume of decisions to be taken
on sector configurations, re-routing and delaying of flights. We propose a decomposition
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approach that can solve this problem in a manner that is scalable to real-life applications:
it is very efficient since the decomposition exploits the problem structure in a way such that
the resulting sub-problem becomes very easy to solve (specifically by separating decisions on
demand management from decisions on sector opening schemes). Once the algorithm has
stopped, the resulting output can be used to construct various capacity planning policies,
including one that can reflect the risk attitude of the decision maker. The study is evaluated
on a small artificial network and on a case study built with real data from Central European
airspaces with over 1,000 flights.

We feel that one of the main advantages of the approach is that we can use it in con-
junction with any non-scheduled traffic forecasting approach that can generate traffic scenario
samples. This includes traffic predictions that are derived with distribution-free methods such
as machine learning approaches. Moreover, we demonstrate that it can be used to test for
robustness against disruptions of capacity provision.

A limitation of this work is the assumption that capacity planning can be reduced to
deciding on the number of sector-hours required for each airspace. In practice, it may not
always be straight-forward to link such a budget decision to concrete staff rosters. Further-
more, airport congestion is not explicitly taken into consideration and it is indeed a highly
relevant aspect in ATFM research and potentially influential on results. However, accounting
for such congestion requires including associated terminal airspace, which connects en-route
airspace with airports. This is beyond the scope of this manuscript. Future work in this
direction is already under development. Regarding delay propagation, it is partially captured
by means of delay costs, i.e. by also taking into account the costs of reactionary instead of
solely primary delays. An interesting future research development is to explicitly model delay
propagation by including airports and turnaround process.
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APPENDIX: ACCs and Sectors in the Simulation

Table 7: ACCs used in the simulation
Country ANSP ACC/cluster(s) ACC/cluster Name

Germany DFS EDUUUTAC Karlsruhe UAC Central
EDUUUTAE Karlsruhe UAC East
EDUUUTAS Karlsruhe UAC South
EDUUUTAW Karlsruhe UAC West

Germany, Belgium, Netherlands MUAC EDYYBUTA MUAC Brussels Sectors
EDYYDUTA MUAC Deco Sectors
EDYYHUTA MUAC Hannover Sectors

Switzerland Skyguide LSAGUTA Genève ACC Upper FL 245-999
LSAZUTA Zurich (Dübendorf) ACC Upper FL 245-999

Czech Republic ANS LKAACTA Praha CTA 095/125-305
LKAAUTA Praha UTA FL 285-999

Slovakia LPS LZBBCTA Bratislava ACC
Austria Austro Control LOVVCTA Wien ACC
Hungary Hungarocontrol LHCCCTA Budapest ACC
Poland PANSA EPWWCTA Warszawa ACC
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Table 8: Number of elementary and collapsed sectors used in the simulation
Area Control Elementary Collapsed Min sectors opened Max sectors opened Number of different
Centre/Cluster sectors sectors in a configuration in a configuration configurations

EDUUUTAC 11 14 1 9 13
EDUUUTAE 10 14 1 9 13
EDUUUTAS 12 29 1 8 13
EDUUUTAW 10 12 1 8 11
EDYYBUTA 8 13 1 6 10
EDYYDUTA 9 12 1 6 7
EDYYHUTA 12 19 1 7 12
EPWWCTA 18 77 1 10 26
LHCCCTA 10 24 1 7 7
LKAACTA 6 9 1 5 6
LKAAUTA 6 9 1 5 8
LOVVCTA 26 58 2 12 21
LSAGUTA 6 9 1 6 11
LSAZUTA 6 7 1 5 7
LZBBCTA 27 69 1 5 8

Table 9: Probability distribution of capacity provision
Area Control Nominal conditions 10% cap. reduction 30% cap. Reduction 50% cap. Reduction Zero-rate

EDUUUTAC 0.5 0.2 0.2 0.1 0
EDUUUTAE 0.5 0.2 0.2 0.1 0
EDUUUTAS 0.5 0.2 0.2 0.1 0
EDUUUTAW 0.5 0.2 0.2 0.1 0
EDYYBUTA 0.7 0.05 0.05 0.1 0.1
EDYYDUTA 0.7 0.05 0.05 0.1 0.1
EDYYHUTA 0.7 0.05 0.05 0.1 0.1
EPWWCTA 0.75 0.1 0.05 0.05 0.05
LHCCCTA 0.9 0.05 0.03 0.02 0
LKAACTA 0.95 0.02 0.02 0.01 0
LKAAUTA 0.95 0.02 0.02 0.01 0
LOVVCTA 0.9 0.05 0.03 0.02 0
LSAGUTA 0.9 0.05 0.03 0.02 0
LSAZUTA 0.9 0.05 0.03 0.02 0
LZBBCTA 0.95 0.02 0.02 0.01 0
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