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Abstract:

Bulb initiation in long-day onion is regulated at the physiological level in a similar way to the 

photoperiodic regulation of flowering in Arabidopsis. This study establishes in onion, the 

diurnal time-course expression, in onion, of key genes particularly linked to circadian 

regulation in Arabidopsis. The long-day onion variety ‘Renate’ and the short-day (SD) onion 

variety ‘Hojem’ were used for these experiments. Onion plants were grown under natural LD 

conditions in the Phytobiology Glasshouse and immediately after bulbing they were 

transferred to two SANYO 2279 controlled environment cabinets for 10 d providing constant 

LD (16 h photoperiod including 8 h fluorescent followed by 8 h incandescent light) and 

constant short days (8 h photoperiod with fluorescent light). Five FLOWERING LOCUS T 

(FT) and three CONSTANS-LIKE (COL) genes were identified in onion, including two novel 

COL sequences through RNA-Seq analysis. The new AcCOL2 shows a diurnal pattern of 

expression similar to Arabidopsis CONSTANS (CO). Allium cepa FLAVIN-BINDING, 

KELCH REPEAT, F-BOX PROTEIN 1 (AcFKF1), Allium cepa GIGANTEA (AcGI) and 

AcCOL2 showed good diurnal expression patterns consistent with photoperiod sensing and 

regulation of AcFT1. All FT genes exhibited different diurnal expression patterns peaking at 

different times of the day. Notably, AcFT1 was expressed in the later part of the day which is 

very similar to the expression of Arabidopsis FT, while AcFT4 was expressed late in the night 

and the early morning in both Renate and Hojem varieties of onion, with the caveat that, 

AcFT4 is under less stringent daylength control in Hojem than in Renate. The timing of the 

peaks and expression pattern in both Renate F1 and Hojem suggest that AcFT5 may be under 

circadian or diurnal regulation under LD conditions and AcFT6 might not be circadian or 

diurnally regulated. These findings will help to understand the basis of the difference between



	 	

responses of onions adapted to different latitudes, which is important for developing new 

varieties.

Keywords: AcFKF1, AcGI, AcCOL, AcFT, Circadian clock genes, LD, SD, RNA-seq
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1. Introduction

Onion (Allium cepa L.) belongs to the family Alliaceae, is one of the most important 

vegetable and spice crops cultivated (Brewster, 1994; McCallum, 2001). Numerous onion 

cultivars have been developed for size, form, colour, pungency, storability, resistance to pests 

and pathogens, and climatic conditions (Griffiths et al., 2002). Onion is a monocotyledonous 

bulbous perennial (often biennial), outcrossing and highly heterozygous crop plant, which is 

propagated by seeds, bulbs or sets (Eady, 1995). An onion plant is composed of 

photosynthetic leaf blades, which arise alternately from a base plate, or small-flattened scales 

(bulb), which is the vegetative overwintering stage in the life cycle of the plant (Lancaster et 

al., 1996). Bulb formation in onions from different global regions is adapted to local 

environmental conditions, particularly the daylength (Cardoso and da Costa, 2003). Onions 

are classified as long-day, intermediate-day or short-day, depending on the minimum daily 

duration of light required for bulbing, also known as the critical daylength (Albert, 2016). 

Temperate onions require long days (LD) for bulbing whereas tropical onions will form bulbs 

in short days (SD) (Rashid et al., 2016). The life cycle of onion can be divided into three main 

stages, namely seedling growth and bulb formation in the first year and, following 

overwintering, flowering in the second year (Brewster, 1990). Bulb initiation will not occur 

during early seedling growth, sometimes referred to as the Juvenile phase, regardless of plants 

being exposed to favourable environmental conditions (Massiah, 2007). When the onion plant 

becomes mature and the daylength has reached a critical length, bulb formation is initiated 

(Lee et al., 2013). At this stage, onion leaves must be exposed continuously to an inductive 

photoperiod in order to initiate and complete bulbing (Brewster, 2008). The long-day onion 

cv. Renate requires at least 14 h of light to initiate bulbing (Rashid et al., 2016), whereas 

Hojem, a short-day cultivar requires at least 10 h to enable bulbing.
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Arabidopsis flowering and onion bulb formation are both photoperiodically driven processes 

(Thomas et al., 2006), induced by LD, signal perception is in the leaf and response is at the 

apex. Sepals, petals, stamens and anthers are produced as the end product in Arabidopsis, 

whereas, a storage scale leaves are produced as the end product in onion (Summerfield, 

1991). Arabidopsis flowering and onion bulb formation can be compared in terms of the 

involvement of phytochrome, and both processes are promoted by far-red light, through 

PHYA (Brewster, 1977). Flowering in Arabidopsis has been characterised at the molecular 

and genetic level and is regulated by 6 major separate pathways viz., photoperiodic, 

convergent autonomous, sucrose, gibberellin, temperature and light quality pathway (Jack, 

2004; Thomas et al., 2006). For onion, the main environmental stimuli are photoperiod and 

temperature (Brewster, 1990), but these are mainly based on physiological rather than 

genetics analyses (Khokhar, 2017).

In this study we focus on the photoperiodic pathway, which is mediated by the circadian

clock, an autonomous mechanism that generates endogenous rhythms in a 24-hour period in 

the leaf (Jackson, 2009) and is controlled by various feedback loops (Hayama and Coupland, 

2003). Light plays an important role in the photoperiodic response in Arabidopsis and 

interacts with the circadian clock as part of the photoperiodic flowering pathway (Michael et 

al., 2003). In the leaf, light is perceived by different photoreceptors, both cryptochromes in 

blue light and phytochromes in red/ far-red light and inputs into the circadian clock (Devlin 

and Kay, 2000; Lin, 2002). Numerous key genes are involved in circadian regulation, where 

the clock derives the rhythmic expression of key genes FLAVIN-BINDING, KELCH 

REPEAT, F-BOX (FKF1), GIGANTEA (GI) and CONSTANS (CO). FKF1 and GI promote 

CO expression (Sawa et al., 2007) and this CO positively regulates FLOWERING LOCUS T 

(FT) (Jung et al., 2007). The FT protein is then translocated to the apical meristem through 

the phloem and forms a FT/FD (FLOWERING LOCUS D) complex (Abe et al., 2005; Pnueli
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et al., 2001; Purwestri et al., 2009; Taoka et al., 2011; Wigge et al., 2005). This complex 

activates the APETALA 1 (AP1) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 

1 (SOC1) genes, which trigger LEAFY (LFY) gene expression and cause flowering at the 

floral apical meristem in Arabidopsis (Greg et al., 2015; Nakamichi, 2011; Yoo et al., 2005). 

In a previous study the expression of onion GI, FKF1 and ZTL homologs under SD and LD

conditions was examined using quantitative reverse transcription-PCR (qRT-PCR), where the

results showed that key genes namely GI, CO and FT controlling photoperiodic flowering in 

Arabidopsis are conserved in onion, and a role for these genes in the photoperiodic control of 

bulb initiation is predicted (Taylor et al., 2010). Also, Lee at al (2013) identified 6 members 

of the FT family (FT1-6) in onion. They proposed that two of them, FT1 and FT4 acted to 

regulate bulbing, being promoter and inhibitor respectively, although they did not look at their 

circadian expression. This raised the question of how these genes are linked to the daylength- 

sensing system to establish the critical daylength in long-day and short-day onions. To 

address this question, experiments were designed to quantify the diurnal expression of FT, 

CO and other key genes in two onion cultivars with contrasting daylength responses, namely 

a long-day type cv. Renate and a short-day type cv. Hojem.

2. Materials and methods

This work has been conducted at the School of Life Sciences, the University of Warwick, 

Coventry, CV4 7AL, UK during the period from July 2013 to September 2016 to investigate 

the diurnal expression of Arabidopsis gene homologs during daylength-regulated bulb 

formation in onion (Allium cepa L.). The plant physiological experiments including growing 

of onion plants have been performed at the Phytobiology Facility and all laboratory analyses 

have been done at the School of Life Sciences Plant Lab of the University of Warwick.
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2.1. Plant materials

The long-day onion (Allium cepa L.) variety ‘Renate F1’ (also called Renate) (Elsoms Seeds 

Ltd., Spalding, UK) and the short-day onion variety ‘Hojem’ were used for these experiments. 

Seeds of Hojem were collected from the Vegetable Genetic Improvement Network (VeGIN, 

UK) project Diversity Set.

2.2. Diurnal time-course experiment to study gene expression in long-day cv. Renate

For the LD diurnal time-course, onion plants were grown under natural conditions in the 

Phytobiology Facility during the period from 26th July to 16th September 2013 when daylight 

ranged from 15 h 42 min initially to 12 h 35 min at the end of the experiment. Supplementary 

illumination with HPS lamps was provided to maintain a minimum 16 h daylength. Initially, 

Renate seeds were sown in modular trays and after 4 weeks plants were potted up into 9 cm 

pots containing Levington M2 compost (Gro-Well, Cherry Tree Cottage Farm, 210 Peasehill 

Road, Ripley, Derbyshire, DE5 3JQ, UK). At 52 d from sowing, at the time of expected bulb 

initiation, all plants were transferred to two SANYO 2279 controlled environment cabinets 

(SANYO Electric Co., Ltd., Biomedical Division, Gunma Factory, Japan) for 10 d providing 

constant LD (16 h photoperiod including 8 h fluorescent followed by 8 h incandescent light). 

Both SANYO cabinets were set at a constant 22°C day/night with 60% relative humidity and 

ambient CO2 concentration (405 ± 0.1 ppm), and provided with a Photosynthetic Photon Flux

Density (PPFD) of 460 umol.m-2.s-1. Timing of ZT 0 (lights on) was offset by 8 h in the two 

cabinets and harvesting of leaf materials was scheduled to provide continuous samples at 2-h 

intervals over two consecutive 24-h cycles from ZT 0. Three plants were harvested each time 

point and pooled together. Plants were selected for harvesting using a random number 

generator (Haahr, 2006). Sampling involved removing the middle part of the first newly
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expanded leaf, chopped into small pieces and freezing in liquid nitrogen before storing at - 

80°C. The harvested materials were used for molecular analysis.

For the SD diurnal time-course, onion plants were grown in natural conditions in the

Phytobiology Facility during the period from 14th August to 13th October 2013 when daylight 

ranged from 14 h 40 min to 10 h 50 min. Supplementary illumination with HPS lamps was 

provided to maintain a minimum 16 h daylength. Plants were grown as for the LD experiment 

and, at 61 d from sowing, when bulbing had been initiated, were transferred to two SANYO

2279 controlled environment cabinets (SANYO Electric Co., Ltd., Biomedical Division,

Gunma Factory, Japan) for 10 d providing constant SD (8 h photoperiod with fluorescent 

light). Other environmental conditions were the same as for the LD diurnal time-course 

experiment (Figure 1). Sampling, harvesting and storing were carried out as described for the 

LD diurnal time-course.

2.3. Diurnal time-course experiment to study gene expression in short-day cv. Hojem

For the LD diurnal time-course, onion plants were grown in a photoperiod controlled 

glasshouse compartment of Phytobiology Facility at 12 h daylight during the period from 17th 

March to 27th May 2014. Initially, Hojem seeds were sown in modular trays and after 4 weeks 

plants were potted up into 9 cm pots containing Levington M2 compost (Gro-Well, Cherry 

Tree Cottage Farm, 210 Peasehill Road, Ripley, Derbyshire, DE5 3JQ, UK). At 71 d from 

sowing, all plants were transferred to two SANYO 2279 controlled environment cabinets 

(SANYO Electric Co., Ltd., Biomedical Division, Gunma Factory, Japan) for 10 d providing 

the same environmental conditions as described for LD diurnal time-course in cv. Renate. 

Sampling, harvesting and storing were also carried out as described in the previous section. 

The harvested materials were used for molecular analysis.
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For the SD diurnal time-course, onion plants were grown in a photoperiod controlled 

glasshouse compartment of Phytobiology Facility at 12 h daylight during the period from 16th 

May to 23rd July 2014. At 68 d from sowing, all plants were transferred to two SANYO 2279 

controlled environment cabinets (SANYO Electric Co., Ltd., Biomedical Division, Gunma 

Factory, Japan) for 10 d providing same environmental conditions as described for SD diurnal 

time-course in cv. Renate. Sampling, harvesting and storing were also carried out as described 

for LD. The harvested materials were used for molecular analysis.

2.4. RNA Sequencing

RNA-Seq analysis was performed to generate an onion transcriptome reference sequence and 

for more widespread identification of genes differentially expressed in response to 

photoperiod. Leaf and bulb material was harvested from Renate grown in long or short day 

and used to prepare libraries for Illumina sequencing in the Life Sciences genome centre. Leaf 

and bulb samples were then multiplexed to obtain differentiation between LD and SD samples 

and for biological replication (Supplementary Table S1). Two multiplex combinations were 

run: Multiplex 5 = Leaf (SD groups 3 & 4 and LD groups 5 & 6) and Multiplex 6 = Bulb (SD 

groups 3 & 4 and LD groups 5 & 6). All sequences obtained from RNA seq analysis were 

used for onion gene assembly with the assistance of the Life Sciences Bioinformatics support

officer Mr. Siva Samavedam using Galaxy Biotinformatics Platform

(http://galaxyproject.org/).

2.5 Gene identification and isolation

Arabidopsis sequences were obtained from National Center for Biotechnology Information 

(NCBI) database (NCBI., 2016 and blasted against the onion EST database 

(www.ncbi.nlm.nih.gov/nucest/?term=onion). The resulting EST sequences were aligned with
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Arabidopsis sequences using MegAlignTM. Onion ESTs and transcriptome sequences obtained 

from RNA seq analysis were used to design primers (Forward and Reverse) for each gene

amplification using Primer3Plus (http://www.bioinformatics.nl/cgi-

bin/primer3plus/primer3plus.cgi) and synthesised by Invitrogen Ltd and Sigma-Aldrich® 

(UK). Primers used for obtaining the full-length of key genes in onion are presented in 

Supplementary Table S2 and Supplementary Table S3. cDNA was also synthesised from 

DNase treated RNA and used for RT-PCR. Small amounts of cDNA from 4 individual samples

(LD leaf, LD bulb, SD leaf & SD bulb) were pooled together for preliminary isolation of the

genes. Primers used for reference genes were designed from the full-length sequences obtained 

from onion transcriptome sequences (Supplementary Table S4). qRT-PCR primers for other 

key genes (Supplementary Table S5) were designed from the full-length cDNA obtained from 

gene isolation together with the EST sequences.

2.6. RNA extraction, DNase treatment and cDNA synthesis

Total RNA was extracted from leaf and bulb material from onion grown under LD and SD 

using the Z6 buffer method (Rashid et al., 2016), following the manufacturer’s (Roche 

manufacturing Ltd., Republic of Ireland) guidelines. Samples were ground using pestle and 

mortar and then approximately 100 mg of frozen plant tissue was homogenised using a 

Dremel drill. In this step, Z6 buffer reagent and b-Mercaptoethanol were added which act to 

remove RNase. Two extra reagents, 3M Sodium acetate (NaOAC) and 7.5M Lithium 

chloride, which remove carbohydrates and polysaccharides, respectively, were included in 

this method to obtain high quality RNA. After isolation, the quality and quantity of total RNA 

was measured with the Thermo Scientific NanoDropTM 1000 Spectrophotometer (NanoDrop 

Technologies, Inc., USA).
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PCR products were purified following PCR and agarose gel electrophoresis using QIAquick 

PCR Purification Kit (QIAGEN) and QIAquick Gel Extraction Kit (QIAGEN), respectively, 

following the manufacturer’s guidelines and samples were eluted in 30-50 µl of SDW. For gel 

purification, bands were cut out under UV light with a wavelength of 302 nm (Bio-Rad UV 

Transilluminator 2000) using a scalpel blade. A volume of 1 µl purified DNA was quantified 

using a NanoDrop™ ND-1000 spectrophotometer (Thermo Scientific).

A total amount of 10 µl (Premix 5 µl template of 20-80 ng/µl conc. + 5 µl Primer of 5 pmol/µl

conc.) purified PCR products were sent to GATC Biotech for sequencing. Sequence files 

were viewed and edited using the EditSeq package of DNAStar Lasergene (DNAStar Inc.). 

Chromatograms where analysed and interpreted using 4Peaks Chromatogram and edited 

using SeqManTM, SeqBuilderTM and MegAlignTM of DNAStar Lasergene (DNAStar Inc.).

The TURBO DNA-free treatment kit (Ambion, USA) was used to eliminate the genomic 

DNA contamination following the manufacturer’s guidelines. A PCR was set up to check for 

genomic DNA contamination using primers for ALLINASE (ALL) gene and visualized on 

RNA gel electrophoresis. Sequencing of PCR products from genomic DNA confirmed that 

the primers contained no mismatches.

cDNA was synthesised using 2 µg total RNA using ThermoScriptTM Reverse transcription

polymerase chain reaction (RT-PCR) System (Invitrogen by Life Technologies, Cat. No. 

11146-016) for RT-PCR using oligo(dT) following the manufacturer’s guidelines and 

subsequently treated with RNase H.

2.7. Analysis of gene expression using qRT-PCR

The extraction of total RNA and synthesis of cDNA was carried out following manufacturer’s 

guidelines. The expression of reference genes and genes of interest was analysed by qRT- 

PCR using the CFX384 TouchTM Real-time PCR machine from BioRad (Bio-Rad
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Laboratories Ltd., UK). The protocol and primer details are provided in Supplementary 

Tables S3, S4, S5 and S6. At the end of PCR run, the qRT-PCR data were normalised against 

expression levels of the house keeping genes such as PP2AA3, PP2A1, TIP41 and UBL for 

each sample (Supplementary Table 4) were achieved by using Biogazelle qBase+ software 

(www.biogazelle.com). qbase+ software based on the geNorm (Vandesompele et al., 2002) 

and qBase technology (Hellemans et al., 2007). Forty-eight hour averages of expression were 

calculated and standard errors included. Standard curves (using 10-fold serial dilutions) were 

plotted using cDNA synthesised from approximately 2 µg of total RNA extracted from leaf 

material harvested at various time-points (0-48) in a 48-hour period as used for cDNA 

synthesis. The significance of the differences in gene expression between treatments were 

assessed by using two-way analysis of variance (ANOVA), which was carried out using 

statistical software package Prism 7.

3. Results

3.1. Transcriptome analysis and sequence comparison in Renate

An objective of the study was to identify and isolate a range of key genes hypothesised to be 

involved in bulbing in response to daylength. A combination of approaches was used, 

including identifying genes from EST databases, sequences from published work and through 

a transcriptome assembly. For the latter, RNA-seq analysis provided 12604 differential 

expressed transcripts in LD leaf vs bulb, 13665 in SD leaf vs bulb, 484 in SD leaf vs LD leaf 

and 964 in SD bulb vs LD bulb of onion. Differentially expressed sequences included both 

upregulated and downregulated genes (Figure 2). The data in Table 1 shows the summary of 

the genes of study in onion and their degree of homology to Arabidopsis gene sequences 

(NCBI, 2016) at the nucleotide and amino acid levels. It was found that all of the sequences 

used in this study had at least 46% identity with Arabidopsis homology with E-values <0.001.
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have been presented in the result (Table 1). New sequences of onion homologs of genes that 

have known function in the daylength regulation of flowering e.g. FT and CO were obtained 

from the transcriptome assembly.

Prior to this study, only one CO-like gene (AcCOL) had been identified in onion (Taylor et

al., 2010). Sequence analysis revealed that this gene contains both a B-Box and CCT domain, 

which are found in all CO and CO-like genes (Robson et al., 2001; Taylor et al., 2010). Three 

COL genes including two novel sequences (AcCOL2 & AcCOL3) were identified in the 

transcriptome assembly. AcCOL2 (Accession number KY012331) showed 52.5% nucleotide 

and 23.1% amino acid sequences similarity with Arabidopsis CO (Accession number 

X94937.1) (Table 1). AcCOL3 showed 46.5% nucleotide and 30.9% amino acid sequences 

similarity with Arabidopsis CO. Both AcCOL2 and AcCOL3 contain B-Box and CCT domain 

regions, the conserved domains, which are present in all CO and CO-like genes.

Lee et al. (2013) published a paper in which the authors identified 6 FT-like genes (AcFT1-6).

Five out 6 FT genes were identified in Renate, with the exception of FT2, which was, 

however, detected in Hojem. Sequencing of PCR products confirmed the identity of the FT 

genes. Further analysis revealed that AcFT5 is identical to the previously identified FT-LIKE 

PROTEIN 2 and AcFT6 is identical  to FT-LIKE PROTEIN 1. RNA-Seq analysis also 

supports those results.

3.2. Diurnal time-course expression of the genes in onion by qRT-PCR

3.2.1. Expression of clock genes

In Renate, AcFKF1 showed a clear diurnal expression pattern peaking at around ZT8 in both 

LD and SD conditions (Figure 3a). This result is slightly different to Arabidopsis AcFKF1, 

which showed peaks at around ZT10 in LD and ZT7 in SD (Imaizumi et al., 2003). In Hojem,
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AcFKF1 also showed clear diurnal expression pattern peaking at around ZT8 in both LD and 

SD conditions (Figure 3b).

AcGI showed a clear diurnal expression pattern peaking at around ZT8 in both LD and SD

(Figure 3c), which is quite similar to the expression of Arabidopsis AcGI, where it peaks at 

ZT10 in LDs and ZT8 in SDs (Taylor et al., 2010). In Hojem, AcGI also showed a clear 

diurnal expression pattern peaking at around ZT8 in both LD and SD conditions (Figure 3d).

3.2.2. Expression of COL genes

For both AcCOL1 and AcCOL3  there was no indication of a consistent diurnal pattern of 

expression in LD and SD in either Renate or Hojem (Figure 4a-b, 4e-f). In contrast, in both 

Renate and Hojem, AcCOL2 showed a distinct diurnal expression pattern, peaking at around 

ZT10-12 in LD and later in SD (Figure 4c-d).

3.3. Expression of FT genes

All FTs showed different diurnal expression patterns peaking at different times of the day. In 

Renate, AcFT1 showed a distict and repeatable diurnal pattern of expression in LD, being 

expressed in the later part of the day and during the dark period in both cycles (Figure 4a). In 

contrast, there was no expression of AcFT1 in SD (Figure 5a). The pattern of expression of 

AcFT1 in Hojem was similar to that of the expression in Renate, peaking in the later part of 

the day during the dark period at both cycles in LD but showing no detectable expression in 

SD (Figure 5b).

The expression of AcFT2 was initially investigated in Renate, a long-day onion variety but it

was not expressed in either LD or SD conditions. The expression of AcFT2 was further 

investigated in Hojem, a short-day onion variety. Expression was detected in these plants with 

some indication of a diurnal pattern, at least in LD. It was expressed in the early part of the



	 	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

day peaking at about ZT2-4 during the light period in both cycles in LD but otherwise showed 

no obvious pattern in SD (Figure 5c).

In Renate, AcFT4 showed a clear diurnal expression pattern peaking at the end of the dark

period and in the early part of the day in SD, but, in contrast, showed limited expression with 

no obvious trend in LD (Figure 5d). The high expression in the early part of the day only in 

SD is consistent with the proposal that AcFT4 is inhibitory for bulbing. In Hojem, AcFT4 was 

expressed under both LD and SD conditions. It showed a clear diurnal expression pattern, 

peaking at the end of the dark period and in the early part of the day in SD, as seen in Renate. 

The expression in LD was higher in Hojem than seen in Renate but there was a less obvious 

pattern in LD than in SD for Hojem although expression tended to be higher in the early part 

of the day compared to the later period (Figure 5e). However, AcFT4 showed a consistent 

pattern of expression in both long-day (Renate) and short-day (Hojem) varieties of onion in 

SD conditions. Therefore, it was confirmed that AcFT4 shows distinct circadian or diurnal 

regulation under SD conditions.

In Renate, AcFT5 was expressed throughout the day in LD, although the expression patterns

were variable between the first and second 24 h cycles, while, showed very limited expression 

in SD (Figure 5f). It was difficult to explain the variable expression patterns of Renate AcFT5 

in LD, as repeating the qPCR revealed the same results. In addition to that, the same samples 

were used as for the other genes, including AcFKF1 and AcGI, which show consistent 

patterns of expression in both LD and SD conditions and between first and second cycles. 

Therefore, while no circadian pattern of expression could be confirmed for AcFT5 expression 

did seem higher in LD than in SD in Renate. In Hojem, AcFT5 showed a clear diurnal rhythm 

peaking at the middle part of the day and around ZT8 during light period in LD, while, 

showed no obvious diurnal expression in SD where various peaks were seen between the first 

and second 24 h cycles (Figure 5g).
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In Renate, AcFT6 showed a clear diurnal expression pattern peaking at the early part of the 

day and during the light period in both LD and SD conditions (Figure 5h). In Hojem, AcFT6 

showed a clear diurnal expression pattern peaking at around ZT8 during light period in both 

LD and SD (Figure 5i).

4. Discussion

In this work we studied the expression patterns of putative onion homologs of Arabidopsis 

genes involved in the photoperiod regulation of flowering. Homology is the existence of 

shared common ancestry between a pair of structures, or genes, in different taxa (Pearson, 

2013) and common rule of thumb is that two sequences are homologous if they are more than 

30% identical over their entire lengths. Sequences that share more than 40% identity are very 

likely to be considered as high homology or functional similarity as judged by Enzyme 

Commission (E.C.) numbers (Pearson, 2013). In addition to percent identity, E-value is also 

very useful which reflect the evolutionary distance of the two aligned sequences, the length of 

the sequences, and the scoring matrix used for the alignment. The similarity scores for two 

sequences are always be statistically significant when E-value is <0.001 (Pearson, 2013).

In Arabidopsis, the circadian clock regulates FKF1 and GI genes, which can mediate CO

stability for the precise control of flowering time (Song et al., 2014). While the expression of 

AcFKF1 and AcGI genes are not expected to be directly correlated with bulb initiation they 

should show a diurnal rhythm of expression if part of the daylength sensing system. Under 

both long-day (Renate) and short-day (Hojem) varieties of onion AcFKF1 showed a clear 

diurnal expression patterns in LD and SD, consistent with a role in daylength sensing. The 

diurnal expression patterns of AcFKF1 and AcGI can also be considered as internal controls 

for assessing diurnal rhythmicity for the other genes assayed in the experiment.
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The diurnal expression pattern of AcFKF1 also showed no distinct difference between the 

timing of expression in LD and SD conditions in onion varieties under study. We were unable 

to repeat the small difference of timing of peaks reported by (Taylor et al., 2010). However, it 

is clearly evident that AcFKF1 shows a diurnal rhythm of expression, similar to that of 

Arabidopsis FKF1, consistent with AcFKF1 being homologous to Arabidopsis FKF1 (Nelson 

et al., 2000; Somers et al., 2000; Taylor et al., 2010).  Similarly, the data showed that AcGI 

has a clear diurnal expression pattern, characteristic of genes involved in the photoperiod 

response ( Mizoguchi et al., 2005; Sawa et al., 2007; Jackson, 2009). In Arabidopsis, AcFKF1 

interacts with AcGI through the LOV domain to form a complex in a blue-light dependent 

manner in the late afternoon and regulates the expression of CO and induction of flowering 

specifically under LD conditions (Mizoguchi et al., 2005; Sawa et al., 2007). In the LD 

conditions, sufficient FKF1-GI complex is formed to activate CO transcription during the 

daytime, and which is stabilized by light at the end of the day.

In Arabidopsis, CO is a direct output from the clock and functions at the site of perception in

leaf (Thomas et al., 2006). It plays a central role in the mechanism of photoperiod 

measurement, integrating clock and light signals to provide photoperiod-specific induction of 

the mobile floral integrator, FT and thus controls flowering in Arabidopsis (Andres and 

Coupland, 2012; Song et al., 2013; Thomas, 2006). AcCOL2 showed a diurnal expression in 

both LD and SD in both Renate and Hojem, peaking towards the end of the LD and slightly 

later, into darkness, in SD (Suarez-Lopez et al., 2001). This is very similar to the expression 

pattern of CO, reponsible for daylength regulation of flowering in Arabidopsis. The 

expression and sequence data suggest that AcCOL2 is a CO-like gene that is under circadian 

regulation and which has a diurnal expression pattern consistent with a role in daylength 

regulation of bulb initiation. Therefore, it could be confirmed that AcCOL2 is diurnally 

regulated and would be a good candidate for being a homolog of Arabidopsis CO.
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In contrast, AcCOL1 and AcCOL3 showed no consistent diurnal expression in Renate or 

Hojem and the expression pattern of this gene is not similar to the expression pattern of 

Arabidopsis CO. This result is also consistent with the earlier study conducted in Renate, 

where the authors did not find a diurnal expression pattern for AcCOL1 (Taylor et al., 2010). 

AcCOL1 and AcCOL3 may be CO-like genes but the expression patterns suggest that they do 

not have a role in the photoperiodic control of bulb formation. The literature reports the 

presence of CO-like genes in SD plants such as rice and Pharbitis nil, which suggests a 

conserved pathway that regulates flowering during an inductive daylength (Shrestha et al., 

2014). Also overexpression of Arabidopsis CO in potato, impairs tuberisation in SD inductive 

conditions, indicating a wider role for CO in daylength regulation than just the control of 

flowering (Martínez-García  et al., 2002). However, in both these instances, the CO-like genes 

show diurnal patterns of expression.

The previous study of Lee et al. (2013) proposed that AcFT1 promoted bulb formation in

onion and the data here are consistent with AcFT1 being responsible for the correlation of 

bulbing under LD conditions. The diurnal expression pattern of AcFT1 suggests that this gene 

could be a homolog of Arabidopsis FT, and might be positively regulated by AcCOL2 and 

have an important role in the daylength regulation of bulb formation in onion (Lee et al., 

2013). AcFT2 was not expressed in Renate but was expressed in Hojem. Lee et al. (2013) 

reported that the flowering is promoted by vernalization and correlates with the upregulation 

of AcFT2 and the expression of this gene was either not detected or at very low levels in 

seedlings and older plants before or after bulb formation. The precise timing of the peaks was 

not distinct, or consistent in the first cycle with that of the second cycle confirming that this 

gene is not fully under circadian or diurnal regulation under these non-flowering conditions. 

In Renate and Hojem, AcFT4 showed a clear diurnal expression peaking in the early part of 

the day in SD, but was expressed at a lower level in LD, particularly in Renate. Lee et al.
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(2013) proposed that FT4 inhibited bulb formation. The higher expression in SD is consistent 

with that proposal. The expression of FT1, which might induce bulbing and FT4, which might 

inhibit bulb formation show evidence of negative correlation. For example, AcFT1 is 

expressed in the later part of the day in LD but shows very limited, or no, expression in SD, 

whereas AcFT4 is expressed at the end of the dark period and in the early part of the day in 

SD but has more limited expression in LD. It is therefore possible that AcFT1 may be 

negatively regulating AcFT4 or vice versa. The timing of the expression also suggests that 

AcFT4 could be contributing to the juvenile phase by inhibiting bulb formation at early stages 

of growth. For the other two FT genes, FT5 and FT6, there was no obvious pattern that could 

be easily linked to the bulbing response to daylength. In Renate, AcFT5 was expressed 

throughout the day in LD but showed no or very limited expression in SD. Lee et al (2013) 

reported in their supplementary information that AcFT5 expression appears higher in LD than 

SD but there was no obvious effect of daylength on AcFT6. In Hojem, AcFT5 showed a clear 

diurnal expression pattern in LD but no obvious trend in SD. AcFT6 showed distinct 

expression pattern in the early (Renate) to middle (Hojem) part of the day in both LD and SD, 

which suggesting that AcFT6 might be circadian or diurnally regulated. However, further 

work is required to understand the roles of these genes.

In summary, onion homologs of CO, FT, GI and FKF1 genes showed diurnal patterns of

expression in both long-day and short-day onions. The findings support their involvement in 

the daylength regulation of bulbing through a mechanism similar to that found in Arabidopsis 

flowering. Two new CO-like genes were identified from an RNA-seq library. One of these, 

AcCOL2, showed an expression pattern very similar to CO from Arabidopsis and is consistent 

with a role in daylength regulation. The patterns of mRNA expression presented in this paper 

support the proposal that AcFT1 promotes bulbing in LD while AcFT4 inhibits bulbing in SD
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Lee et al. (2013). In addition, this paper shows that these genes are expressed at different 

times of the day, with AcFT1 expressed in the evening and ACFT4 in the morning.
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Table

Table 1. Summary of the genes of study in onion and their degree of homology to Arabidopsis gene 

sequences (NCBI, 2016) at the nucleotide and amino acid levels. The homology was compared over 

the entire region of the genes. The similarities of the sequences are statistically significant when E- 

value is <0.001.

Legends: AcFKF1: Allium cepa FLAVIN-BINDING KELCH REPEAT PROTEIN; F-BOX 1 

PROTEIN, AcGI: Allium cepa GIGANTEA, AcCOL: Allium cepa CONSTANS LIKE 1FT-LIKE 

PROTEIN: FLOWERING LOCUS T-LIKE PROTEIN, AcFT: Allium cepa FLOWERING LOCUS T.

Gene name GeneBank ID for

Arabidopsis

Degree of homology to Arabidopsis (%) E-value

Nucleotide level Amino acid level

AcFKF1 NM_105475.3 66.1 66.7 <0.001

AcGI NM_102124.3 67 60.9 <0.001

AcCOL1 X94937.1 47.9 41.6 <0.001

AcCOL2 X94937.1 52.5 23.1 <0.001

AcCOL3 X94937.1 46.5 30.9 <0.001

FT-LIKE

PROTEIN 1

AB027504.1 60.2 84.9 <0.001

FT-LIKE

PROTEIN 2

AB027504.1 61.1 65.7 <0.001

AcFT1 AB027504.1 90.1 72.4 <0.001

AcFT2 AB027504.1 64.7 49.1 <0.001

AcFT3 AB027504.1 69.7 67.4 <0.001

AcFT4 AB027504.1 65.3 58.5 <0.001

AcFT5 AB027504.1 69.7 67.4 <0.001

AcFT6 AB027504.1 56.5 55.2 <0.001
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Figures

Figure 1. Growth of Renate F1 plants under SD conditions (8 h light) in the Controlled Environment 

SANYO Cabinet to generate material for molecular analyses in SD diurnal experiment. A similar 

design was employed for plants grown in LD and other diurnal experiments. White coloured labels 

represent different replications in completely randomised design (CRD).
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Figure 2. Heat Map showing differential expressed transcripts in Renate F1 grown under different 

daylengths.
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Figure 3. Expression of AcFKF1 and AcGI genes in lon-day (cv. Renate F1) and short-day (cv. Hojem) 

varieties of onion over a 48-hour period using qRT-PCR. White and black bars denote light/dark 

cycles. Error bars represent the SEM. (a) AcFKF1 in Renate F1. (b) AcFKF1 in Hojem. (c) AcGI in 

Renate F1. (d) AcGI in Hojem.
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Figure 4. Expression of CONSTANS LIKE (COL) genes in long-day (cv. Renate F1) and short-day (cv.

Hojem) varieties of onion over a 48-hour period using qRT-PCR. White and black bars denote light/

dark cycles. Error bars represent the SEM. (a) AcCOL1 in Renate F1. (b) AcCOL1 in Hojem. (c) 

AcCOL2 in Renate F1. (d) AcCOL2 in Hojem. (e) AcCOL3 in Renate F1. (f) AcCOL3 in Hojem.
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Figure 5. Expression of AcFT1 and AcFT4 genes in long-day (cv. Renate F1) and short-day (cv. 

Hojem) varieties of onion over a 48-hour period using qRT-PCR. White and black bars denote light/

dark cycles. Error bars represent the SEM. (a) AcFT1 in Renate F1. (b) AcFT1 in Hojem. (c) AcFT2 in 

Hojem. (d) AcFT4 in Renate F1 (e) AcFT4 in Renate F1. (f) AcFT5 in Renate F1. (g) AcFT5 in Hojem. 

(h) AcFT6 in Renate F1. (i) AcFT6 in Hojem.
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