

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/127560

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/233043137?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/127560
mailto:wrap@warwick.ac.uk

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Shadows Don’t Lie: n-sequence Trajectory

Inspection for Misbehaviour Detection and

Classification in VANETs

Anhtuan Le

Warwick Manufacturing Group

University of Warwick

Coventry, UK

a.le.1@warwick.ac.uk

Carsten Maple

Warwick Manufacturing Group

University of Warwick

Coventry, UK

cm@warwick.ac.uk

Abstract—This paper presents a machine learning

approach to detect and classify misbehaviour in Vehicular Ad-

hoc Networks. We describe three novel features obtained from

analysis of 𝒏 consecutive locations of a vehicle to form a

judgement about its behaviour. These features are used in two

machine learning algorithms (K-Nearest Neighbour and

Support Vector Machine) for detecting attacks in the VeReMi

dataset. We show that the overall precision rates can be as

high as 99.7%, whilst the recall rates are consistently higher

than 99%. The features we propose also help to reduce the

overall confusion rate to less than 4.7% when classifying

different types of attacks. We also show that our models can be

used for effective classification after as few as 3 observations,

suggesting the potential for application of the method in near

real-time situations thereby improving safety and security.

Keywords—location spoofing, trajectory inspection, VeReMi,

machine learning, misbehaviour detection

I. INTRODUCTION

A. VANET Security

Vehicular Ad-hoc Networks (VANET) are systems that
are being employed to enhance road safety and transport
efficiency through the exchange of information between
vehicles (V2V) and infrastructure (V2I). For example, a
vehicle can send information (e.g. current location, speed, or
acceleration) through Basic Safety Messages (BSMs)
exchanged with other vehicles thereby improving the overall
sensor’s line-of-sight and situational awareness [1].
However, such vehicular networks are susceptible to a
number of security and privacy concerns [2]. One of the
most critical issues is that attackers can inject falsified
information into the communication stream to manipulate
others’ driving decisions, leading to consequences such as
false warnings, fake traffic reports, sudden braking or even
accidents. Verifying the correctness of the information
exchanged remains an open challenge [1].

B. Misbehaviour Detection and Classification

Misbehaviour attacks need to be detected to eliminate
harmful sources of information. Moreover, attackers can
employ numerous strategies to spoof data with the aim of
achieving different objectives. Therefore, in addition to
detecting attacks, classifying the attackers is also a concern if
we are to understand their behaviours and improve future
decision making.

The data-centric approach is one of the main techniques
employed to tackle spoofing attacks, and involves collecting
and analysing performance data using plausibility and
consistency metrics. Some researchers have tried to predict
future locations through models such as vehicle dynamics for

verification, whereas others have focussed on finding
malicious patterns in the data. While a number of features
have been proposed for detection and classification purposes
[1, 3, 4], their performance is still poor in many situations.

C. Contributions and Paper Structure

In this paper, we investigate the feasibility of using
historical trajectory to detect and classify misbehaviour
attacks. We develop machine learning models (K-Nearest
Neighbour and Support Vector Machine, KNN and SVM,
respectively) based on three features which can be extracted
from 𝑛 consecutive location observations in the trajectory
data: Movement Plausibility Check, Minimum Trajectory
Distance, and Minimum Translation Trajectory Distance. We
evaluate the performance of our models in detecting and
classifying attacks in the VeReMi dataset [5], a labelled
dataset built in VEINS [6], which offers five different types
of location spoofing attacks (see Table I). We compare our
solution to a similar machine learning approach presented in
[1]. We also vary the length of the sequences inspected to
study its impacts on performance.

Our contributions are three-fold:

 We introduce three novel features to use in machine
learning models, which can significantly improve
performance in misbehaviour detection and
classification.

 Our approach reduces the dependency on velocity
data to make judgements, therefore avoiding the
chance that attackers can craft useful velocity data to
circumvent detection.

 We study the impact of the length of observations on
detection capability. This study shows that our
models can detect and classify misbehaviour attacks
effectively after as few as three consecutive
observations, which makes them applicable for near
real-time detection.

The rest of the paper is organised as follows. Section II
reviews the related work in VANET misbehaviour detection.
Section III details our proposed approach. Section IV
describes the experimental setup while Section V evaluates
the performance. Finally, Section VI concludes the paper and
presents suggestions for future work.

II. RELATED WORK

When V2V data are used to support driving decisions,
detecting falsified information being broadcasting becomes
more important. Most existing detection approaches require
the presence of a central authority to make judgements based

mailto:a.le.1@warwick.ac.uk
mailto:cm@warwick.ac.uk

on monitoring and analysing messages broadcast from all
vehicles in the VANET [1].

A comprehensive survey on misbehaviour detection can
be found in [4], in which the authors categorised the
detection techniques into two main themes: node-centric and
data-centric. The former technique focusses on verifying the
interactions between nodes through information such as
packet frequencies or message formats. Alternatively, the
latter approach investigates the content of exchanged
messages to determine validity.

This paper uses a data-centric approach. We focus on
specifying the key plausibility features of the location
information to detect and classify the senders of malicious
data. A number of techniques have been developed to check
the plausibility of location data. Based on previous
information, some researchers have tried to estimate
plausible locations and compare them with the reported
locations. Margins are used for detection purposes. For
example, authors in [3] have developed simple plausibility
checks for fast and efficient processing. However, existing
approaches have shown limited performance, while also
requiring a majority of the network to be legitimate. Other
researchers have tried to improve the accuracy of detection
by applying more sophisticated models for estimation. For
instance, researchers in [7] used a Kalman Filter while
authors in [8] used the vehicle dynamics model. However,
these models require all the previous data to be accurate for
an accurate estimation, which is not the case when attackers
inject false data consistently into the communications.
Recently, plausibility checks have been used as features
integrated into machine learning models (such as KNN and
SVM) to detect forged locations [1]. However, these models
require full journey information of the suspected vehicle
before making a final decision. Moreover, some of the
features rely on the velocity information broadcast from
suspect vehicles, which may be crafted to disrupt detection
mechanisms.

When legitimate vehicles operate in transportation, their
logged trajectories are reliable reference sources to predict
moving behaviour. For example, in [9], trajectory data was
used to predict upcoming journeys for safety purposes.
However, to the best of our knowledge, there has been little
work which uses trajectory data to detect and classify
location spoofing attacks. In this work, we use trajectory data
as relaxed ground truths to differentiate the falsification
misbehaviour of attackers rather than to accurately predict
next locations.

III. PROPOSED APPROACH

In this section, we will first present definitions of basic
concepts to learn from the trajectory data. We then introduce
the features we have designed to detect and classify the
attacks.

A. General Definition

Definition 1 State. The state 𝑠 of a vehicle is a set of
information to exchange with others. In this paper, 𝑠 contains
location, velocity, and time information 𝑠 = {𝑥, 𝑦, 𝑣𝑥, 𝑣𝑦, 𝑡},
where (𝑥, 𝑦) is the latitude and longitude position, (𝑣𝑥, 𝑣𝑦)
indicates the latitude and longitude velocity, and 𝑡 is the time
that this information was logged.

Definition 2 Trajectory. The trajectory m is a set of
consecutive sequences of vehicle state data:

 𝑚 = {𝑠1, 𝑠2, … , 𝑠𝑘} = {(𝑥1, 𝑦1, 𝑣𝑥1, 𝑣𝑦1 , 𝑡1), … ,
(𝑥𝑘 , 𝑦𝑘 , 𝑣𝑥𝑘 , 𝑣𝑦𝑘 , 𝑡𝑘)}, where the states are reported
continuously and sorted by ascending time, which means
∀𝑖 ∈ {1, … , 𝑘 − 1}: 0 < 𝑡𝑖+1 − 𝑡𝑖 ≤ 𝜀𝑡, where 𝜀𝑡 is the
maximum time allowed between consecutive sampling.

Definition 3 Legitimate trajectory history. We define the
legitimate trajectory history as the set of unique trajectories
recorded by all legitimate vehicles in transportation and
denoted as 𝐿 = {𝐿1, … , 𝐿𝑙}.

Definition 4 n-sequence inspection trajectory. Given a
suspected trajectory 𝑚 with 𝑘 states, 𝑘 > 𝑛, an n-sequence
inspection trajectory 𝑚𝑖 is a subset of 𝑛 consecutive states
extracted from the k states:

𝑚𝑖 = {(𝑥𝑖 , 𝑦𝑖 , 𝑣𝑥𝑖 , 𝑣𝑦𝑖 , 𝑡𝑖),
(𝑥𝑖+1, 𝑦𝑖+1, 𝑣𝑥𝑖+1, 𝑣𝑦𝑖+1, 𝑡𝑖+1), … ,
(𝑥𝑖+𝑛, 𝑦𝑖+𝑛, 𝑣𝑥𝑖+𝑛 , 𝑣𝑦𝑖+𝑛 , 𝑡𝑖+𝑛)} | 𝑖 + 𝑛 ≤ 𝑘

Definition 5 Distance between two trajectories. Given
two equal k-length trajectories 𝑚𝑢 and 𝑚𝑣, the distance
𝑑(𝑚𝑢, 𝑚𝑣) between them is a measure of how close the two
trajectories are. We only consider the positions of the
trajectories rather than other factors such as velocity and
time. The distance will be calculated as:

𝑑(𝑚𝑢, 𝑚𝑣) =
1

𝑘
∑ √(𝑥𝑖

𝑚𝑢 − 𝑥𝑖
𝑚𝑣)2 + (𝑦𝑖

𝑚𝑢 − 𝑦𝑖
𝑚𝑣)2

𝑘

𝑖=1

where (𝑥𝑖
𝑚𝑢 , 𝑦𝑖

𝑚𝑢) and (𝑥𝑖
𝑚𝑣 , 𝑦𝑖

𝑚𝑣) is the 𝑖𝑡ℎ location

states of trajectory 𝑚𝑢 and 𝑚𝑣 respectively.

B. Feature Selection

We design the three following features to detect and
classify the misbehaviour attacks: Movement Plausibility
Check (𝑀𝑃𝐶), Minimum Distance to Trajectories (𝑀𝐷𝑇)
and Minimum Translation Distance to Trajectories (𝑀𝑇𝐷𝑇).
The 𝑀𝑃𝐶 aims to record misbehaviours when the vehicle
attackers are moving (𝑣𝑥 ≠ 0 or 𝑣𝑦 ≠ 0), but reported
locations are unchanged. The 𝑀𝐷𝑇 is used to investigate
whether the movement pattern of the suspected vehicles is
similar to any of the logged trajectory patterns. Finally, the
𝑀𝑇𝐷𝑇 will check whether the movement pattern of the
suspected vehicles is similar to any of the logged trajectory
translation.

Feature 1: MPC. Given an observed trajectory 𝑚 =
{𝑠1, 𝑠2, … , 𝑠𝑛} and a pre-selected constant K, for every two

consecutive observation {𝑠𝑖−1, 𝑠𝑖} (𝑖 = 2, 𝑛̅̅ ̅̅̅), we verify the
movement attack via 𝑘𝑖 as:

After calculating all 𝑘, the 𝑀𝑃𝐶 of 𝑚 will be calculated
as:

𝑀𝑃𝐶(𝑚) = ∑
𝑘𝑖

𝑛 − 1

𝑛

𝑖=2

𝑘𝑖 = {
𝐾 𝑖𝑓 𝑠𝑖−1(𝑣) ≠ 0 ⋀ 𝑠𝑖−1(𝑥) = 𝑠𝑖(𝑥) ⋀ 𝑠𝑖−1(𝑦) = 𝑠𝑖(𝑦)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Feature 2: MDT. Given an 𝑛 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 trajectory 𝑚
and the set of legitimate trajectories 𝐿, 𝑀𝐷𝑇 of 𝑚 will be
calculated as follows:

𝑀𝐷𝑇(𝑚, 𝐿) = min{𝑑𝑚𝑖𝑛(𝑚, 𝐿𝑖) ∀𝐿𝑖 ∈ 𝐿}

where 𝑑min(𝑚, 𝐿𝑖) = min{𝑑(𝑚, 𝐿𝑖
𝑛)} ∀𝐿𝑖

𝑛 as a subset of
𝑛 consecutive sequences in 𝐿𝑖.

Feature 3: MTDT. Given an observed trajectory 𝑚 with
𝑛 sequences 𝑚 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2) … , (𝑥𝑛 , 𝑦𝑛)} and the set
of legitimate trajectories 𝐿, the 𝑀𝑇𝐷𝑇 between 𝑚 and 𝐿𝑖 is
calculated in three steps as follows:

1) Calculate the centroid point of 𝑚: �̅� = (𝑚𝑥̅̅ ̅̅ , 𝑚𝑦̅̅ ̅̅) as:

𝑚𝑥̅̅ ̅̅ =
1

𝑛
∑ 𝑥𝑘

𝑛

𝑘=1

 𝑎𝑛𝑑 𝑚𝑦̅̅ ̅̅ =
1

𝑛
∑ 𝑦𝑘

𝑛

𝑘=1

2) Let 𝐿𝑖 as one of the legitimate trajectories in L, assume
that 𝐿𝑖 has 𝑞 consecutive location data sequences: 𝐿𝑖 =

{(𝑥1
𝐿𝑖 , 𝑦1

𝐿𝑖), (𝑥2
𝐿𝑖 , 𝑦2

𝐿𝑖), … , (𝑥𝑞
𝐿𝑖 , 𝑦𝑞

𝐿𝑖)}. We calculate the

minimum translation distance between m and 𝐿𝑖 as follows.

For every 𝐿𝑖
𝑗
 as a subset of 𝐿𝑖 with 𝑛 consecutive

observations 𝑗 = 1, 𝑞 − 𝑛 + 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝐿𝑖
𝑗

= {(𝑥𝑗
𝐿𝑖 , 𝑦𝑗

𝐿𝑖),

(𝑥𝑗+1
𝐿𝑖 , 𝑦𝑗+1

𝐿𝑖), … , (𝑥𝑗+𝑛−1
𝐿𝑖 , 𝑦𝑗+𝑛−1

𝐿𝑖)}.

2.1) Calculate the centroid point of 𝐿𝑖
𝑗
: 𝐿𝑖

�̅�
= (𝐿𝑖𝑥

𝑗̅̅ ̅̅ , 𝐿𝑖𝑦
𝑗̅̅ ̅̅) as:

𝐿𝑖𝑥
𝑗̅̅ ̅̅ =

1

𝑛
∑ 𝑥𝑘

𝐿𝑗

𝑗+𝑛−1

𝑘=𝑗

 𝑎𝑛𝑑 𝐿𝑖𝑦
𝑗̅̅ ̅̅ =

1

𝑛
∑ 𝑦𝑘

𝐿𝑗

𝑗+𝑛−1

𝑘=𝑗

2.2) Calculate the translation vector as:

𝑡̅ = (𝑡�̅�, 𝑡�̅�) = (𝑚𝑥̅̅ ̅̅ − 𝐿𝑖𝑥
𝑗̅̅ ̅̅ , 𝑚𝑦̅̅ ̅̅ − 𝐿𝑖𝑦

𝑗̅̅ ̅̅)

2.3) Calculate 𝑚𝑡 (𝑚 after translation by 𝑡̅) as:

𝑚𝑡 = {(𝑥1 − 𝑡�̅�, 𝑦1 − 𝑡𝑦)̅̅ ̅̅ , (𝑥2 − 𝑡�̅�, 𝑦2 − 𝑡�̅�), … , (𝑥𝑛 −

 𝑡�̅�, 𝑦𝑛 − 𝑡�̅�)}

2.4) The translation distance �̅� between 𝑚 and 𝐿𝑖
𝑗
 will be

the distance between 𝑚𝑡 and 𝐿𝑖
𝑗
: �̅�(𝑚, 𝐿𝑖

𝑗
) = 𝑑(𝑚𝑡 , 𝐿𝑖

𝑗
).

2.5) After calculating all �̅�(𝑚, 𝐿𝑖
𝑗
), the minimum

translation distance between 𝑚 and 𝐿𝑖 will be:

�̅�𝑚𝑖𝑛(𝑚, 𝐿𝑖) = min{�̅�(𝑚, 𝐿𝑖
𝑗
)} ∀𝐿𝑖

𝑗
∈ 𝐿𝑖 as a subset of 𝑛

consecutive observations in 𝐿𝑖.

3) The minimum distance between 𝑚 and 𝐿 will be
calculated as:

𝑀𝑇𝐷𝑇(𝑚, 𝐿) = min{�̅�𝑚𝑖𝑛(𝑚, 𝐿𝑖)} ∀𝐿𝑖 ∈ 𝐿.

Fig. 1 illustrates the translation vector and the translation
distance of two 5 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 trajectories.

IV. EXPERIMENTAL SETUP

The VeReMi dataset has recently been published and is
built specifically for testing location spoofing attacks in V2X
scenarios [5]. The advantages of using the VeReMi dataset
are (i) it presents different types of attackers; (ii) it simulates
varied density conditions of vehicle network; (iii) it is
consistent with its BSM’s broadcast rate; and (iv) the
scenarios are conveniently labelled for using a machine
learning approach. This section will describe VeReMi and

present the applications of our three designed features in
machine learning for detecting and classifying attacks in this
dataset.

A. Attacker Model

Attackers in VeReMi are assumed to be local, insider and
active, and able to operate in both uniform and non-uniform
areas [1]. A local attacker can only broadcast falsified
information within their defined communication range,
hence the damage created should be equally local. Attackers
are also assumed to be insiders so that they can communicate
with other vehicles regardless of the cryptographic defence
used in communication. Attackers can be active, which
means they can inject falsified information in the network the
way they want. Finally, uniform areas (e.g. highway regions)
refer to the areas where the travelling information of the
attackers can be consistently transmitted to other vehicles,
which is the opposite of non-uniform areas (e.g. rural areas).

B. Scenario and Attack Types

The VeReMi dataset comprises of 5 position forging
attacks, 3 vehicle densities (low, medium and high), 3
attacker densities (10, 20 and 30 per cent) and each
parameter set was repeated 5 times for randomization. The
dataset contains the message logs of the attacking and benign
vehicles including reception time stamp, claimed
transmission time, claimed sender, unique message ID, GPS
position (x, y, z), RSSI value, position noise and speed noise
vector, for each receiving vehicle in every scenario. The
messages are broadcasted every second, so we chose 𝜀𝑡 = 1
for trajectory extraction (see Definition 2). Along with that, a

Fig. 1. Illustration of calculating MTDT

 TABLE I. VEREMI ATTACK TYPES DESCRIPTION [1]

Type Details Parameters

T1
Constant Attacker transmits a fixed

location

x = 5560

y = 5820

T2
Constant

Offset

Attacker transmits a fixed,

offset added to the real

position

∆x = 250

∆y = -150

T4
Random Attacker sends a random

position inside the

simulation area

Uniformly random in

playground

T8
Random

Offset

Attacker sends a random

position in a rectangle

around the vehicle

∆x, ∆y are uniformly

random in [-300,

300]

T16

Eventual

Stop

Attacker behaves normally

for some time and then
attacks by transmitting the

same position repeatedly

Stop probability

increase by 0.025

each position update

ground truth file is also maintained which records the true
values of the BSM attributes of both attacker and benign
vehicles. The attacker type attribute in the Ground Truth file
keeps the label of the attack ID as described in Tab. I.

C. Machine Learning Designs

Given an 𝑛 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 trajectory for inspection, it can
be legitimate (referred as 𝑇0) or one of five types of attacks
(referred as 𝑇1, 𝑇2, 𝑇4, 𝑇8, 𝑇16). The purposes of our
designed features in detecting and classifying the attacks are
as follows.

𝑀𝑃𝐶 aims at classifying 𝑇1 and 𝑇16 from other attacks.
We have 𝑀𝑃𝐶(𝑇0, 𝑇2, 𝑇4, 𝑇8) = 0 because 𝑘𝑖 = 0 ∀𝑖. On
the other hand, 𝑇1 report constant location all the time,
therefore 𝑘𝑖 = 𝐾 ∀𝑖, so 𝑀𝑃𝐶(𝑇1) = 𝐾. Meanwhile, for
𝑇16, there should be at least one 𝑖 so that 𝑘𝑖 = 0 to indicate
the time when attackers transform from normal state to attack
state; while there should be at least one 𝑗 that 𝑘𝑗 = 𝐾 to

reflect the attack. Therefore, we have
𝐾

𝑛−1
≤ 𝑀𝑃𝐶(𝑇16) ≤

𝐾(𝑛−2)

𝑛−1
 (1). Our experiments show that choosing a small K

may lower the performance of KNN and SVM as the
classification distances will become too small. In this work,
we select 𝐾 = 1000.

When 𝑇1 and 𝑇16 are detected, 𝑀𝐷𝑇 will help to
differentiate 𝑇0 from the remaining types 𝑇2, 𝑇4, 𝑇8 because
𝑀𝑇𝐷(𝑇0) values should be close to 0 as normal trajectories
should find similar moving patterns in the legitimate set. On
the other hand, 𝑀𝐷𝑇(𝑇2, 𝑇4, 𝑇8) values should be large due
to the small chance of having similar movement patterns.
Moreover, 𝑀𝐷𝑇 can help to classify 𝑇4 from others because
the 𝑀𝐷𝑇(𝑇4) values are much larger compared with 𝑀𝐷𝑇
of other types.

Our experiments show that 𝑀𝑇𝐷(𝑇2) and 𝑀𝑇𝐷(𝑇8)
values are close, therefore 𝑀𝑇𝐷 alone cannot help to
differentiate between 𝑇2 and 𝑇8. Therefore, we design
𝑀𝑇𝐷𝑇 for further classifying these two types. As 𝑇2 is
translated from a legitimate trajectory, 𝑀𝑇𝐷𝑇(𝑇2) values
should be close to 0. Meanwhile, 𝑀𝑇𝐷𝑇(𝑇8) values will
remain large due to the small chance of having movement
pattern which is similar to a translated legitimate trajectory.

With the three features, we implemented similar machine
learning algorithms (i.e. 𝐾𝑁𝑁 and 𝑆𝑉𝑀) with [1] for
comparison. In details, the 𝐾𝑁𝑁 was done using the
MATLAB built-in function 𝑓𝑖𝑡𝑐𝑘𝑛𝑛 with Euclidean distance
to compute the nearest neighbour. The number of nearest
neighbours 𝐾 was tuned from 1-100, while 𝐾 with the
highest correct-classification-rate (CCR) was chosen as the
best 𝐾 for prediction model. For 𝑆𝑉𝑀, instead of using the
binary classification 𝑓𝑖𝑡𝑐𝑠𝑣𝑚 function as presented in [1],
we use the 𝑓𝑖𝑡𝑐𝑒𝑐𝑜𝑐 function which allow to classify for
more than two types of attacks. We also use 𝑓𝑖𝑡𝑐𝑒𝑐𝑜𝑐 in
binary classification as our experiments show that it always
performs better than the 𝑓𝑖𝑡𝑐𝑠𝑣𝑚.

D. Parsed Dataset and Feature Extractions

The VeReMi dataset provides results of 225 simulations,
45 for each type of attacks. We selected 80% of the data for
training while the remaining 20% are used for testing. For
each type of attack, 36 sets of simulation logged data were
chosen randomly to include in the training data, while the
remaining 9 logged results are included in the testing data.

We extracted all the unique legitimate trajectories from the
80% training dataset into a database. We assume that this
database will be maintained by a central authority, where the
vehicles can send their suspected observations to for
querying and getting the judgement. We also extract the
three features for every 𝑛 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 trajectory in the
training dataset to build the machine learning models. Notes
that to calculate the 𝑀𝑇𝐷 and 𝑀𝑇𝐷𝑇 of a trajectory, this
trajectory will be excluded from the legitimate database to
avoid any duplication. Finally, for testing, for every 𝑛 −
𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 trajectory in the 20% testing dataset, we calculate
its three features based on the extracted legitimate database
to query with the detection and classification models. The
behaviour labels of the trajectory will be used to verify the
accuracy performance of the models.

E. Inspection Length Consideration

To apply our approach, we need all the three features to
be valid for all inspected trajectories. It is obvious that
𝑀𝑃𝐶(𝑇16) is invalid when 𝑛 = 1 or 𝑛 = 2 according to (1).
Therefore, the minimum value of 𝑛 to be considered in this
paper is 3. As 𝑛 will influence all the values of the three
features significantly, we vary 𝑛 from 3 to 10 to study its
impacts. Notes that when judging the behaviours of a
suspected vehicle, if the central authority can gather
observations from all other vehicles, 𝑛 can be very large as
desired. However, if the observations come from a single
source, 𝑛 is not likely to be too large as the suspected vehicle
may move out from the communication coverage of the
source, which break the continuity of the observations.

F. Evaluation Metrics

The detection performance of the approach can be
evaluated through the precision and recall. Firstly, each
prediction result will be counted in one of the four following
categories: True Positive (TP): detect an attacker as an
attacker; False Positive (FP): detect a legitimate observation
as an attacker; False Negative (FN): detect an attacker as a
legitimate vehicle; and True Negative (TN): detect a
legitimate observation as legitimate. The precision is

calculated as
𝑇𝑃

𝑇𝑃+𝐹𝑃
, while the recall is calculated as

𝑇𝑃

𝑇𝑃+𝐹𝑁
.

We also formulate a confusion matrix to see the performance
of the classification.

V. RESULTS AND DISCUSSIONS

We evaluate our approach in a similar way to the
evaluations in [1]. Firstly, we evaluate the detection for each
type of attacks by combining only the corresponding attack
data and the normal data to use in training and testing. For
example, to evaluate the detection of 𝑇2, we keep only 𝑇2
and normal data in the training and testing dataset while
excluding all other attack types. Secondly, we evaluate the
overall performance in differentiating between attacks and
non-attacks by generalise the attack type, which means that
all the attack label 1, 2, 4, 8, 16 will be relabelled as 1.
Lastly, we evaluate the classification performance for the
original labelled attack dataset in two cases: with and without
the normal behaviours. Notes that authors in [1] avoided the
evaluation of classifications when normal behaviours were
included due to unbalance dataset which led to poor
performance.

A. Detection per Attack Type

Fig. 2 illustrates the detection capability of different types
of attacks when applying 𝐾𝑁𝑁 and 𝑆𝑉𝑀, based on [1] and

our approach. As can be seen in the figure, our approach
achieved near 100% in precision and recall for
𝑇1, 𝑇4, 𝑇8, 𝑇16 when applying either 𝐾𝑁𝑁 or 𝑆𝑉𝑀. The
𝑀𝑃𝐶 feature will always be 1000 if a trajectory is 𝑇1, and
always be 0 if it is normal. For 𝑇16, 𝑀𝑃𝐶 have a minimum
value of 111 and maximum value of 888, both when
inspecting with 10 sequences. Therefore, 𝑀𝑃𝐶 can be
considered as a plausibility check for both 𝑇1 and 𝑇16 to
achieve accurate detections. On the other hand, 𝑇4 and
𝑇8 trajectories will have much larger 𝑀𝑇𝐷 and 𝑀𝑇𝐷𝑇
values than the normal trajectories (most of 𝑀𝑇𝐷(𝑇4) and
𝑀𝑇𝐷𝑇(T4) values are larger than 1000; most of 𝑀𝑇𝐷(𝑇8)
and 𝑀𝑇𝐷𝑇(T8) values are larger than 100 and much smaller
than 1000; while most of other 𝑀𝑇𝐷(𝑇0) and 𝑀𝑇𝐷𝑇(𝑇0)
are smaller than 20), therefore it is not difficult to detect
these attacks.

For 𝑇2, we achieved much better precisions (the best rate
is 98.5% for KNN with 3-sequence) and recalls (94% for
KNN with 3-sequence) compared to [1]. [1] has low
performance because it does not have any feature that can
separate 𝑇2 from normal performance. Meanwhile, in our
approach, the 𝑀𝑇𝐷 is specifically designed to separate 𝑇2
from normal performance. Fig. 3a shows 𝑇2 detection
capability with different 𝑛 sequence when applying KNN
and SVM. It can be seen that in general when 𝑛 increase, the
precision rates decrease significantly while the recall rates
increase slightly. Notes that unlike other verification
approaches, we do not try to predict the accurate locations of
the trajectories. Instead of that, we try to find the minimum
deviation of the reported trajectories compared with the
normal patterns. A small 𝑛 is expected to create small
accumulated deviations, hence lead to smaller 𝑀𝑇𝐷(𝑇0)
margin (upper bound values are at about 50 when 𝑛 ≤ 5 and
about more than 150 when 𝑛 > 5). On the other hand,
statistics of 𝑀𝑇𝐷(𝑇2) are not affected much by 𝑛, because
the deviations are always high. Therefore, when 𝑛 is small,
the models may create better separations between normal and
attack dataset, which lead to higher precision. However, the
smaller margin will make the model more sensitive, so the
𝑀𝑇𝐷(𝑇0) outliers will likely be detected as attacks, which

leads to lower recall rates. When 𝑛 is large, deviations will
be accumulated, 𝑀𝑇𝐷(𝑇0) will be increased so the models
will have to increase the margin, which makes more 𝑇2 to be
detected as normal and decrease the precisions. Nevertheless,
the 𝑀𝑇𝐷(𝑇0) outliers will less likely be detected as attacks,
which make the recall rates increase slightly.

B. Overall Detection Performance

For evaluations in detecting attacks in general (all attacks
are re-labelled as 1), Fig. 2 shows the comparisons between
our approach and [1], while Fig. 3b presents the comparisons
between using KNN and SVM with different length of
inspected trajectories in our approach. As can be seen from
the figures, our approach shows significant better
performances than [1], while there are always trade-offs
between the precision and recall rates when choosing
different inspection length. With KNN, our approach got a
precision rate of 99.7% (𝑛 = 3), which decreases gradually
to 96.84 (𝑛 = 10), whilst the recall rates are around 99%.
When using SVM fitcecoc, the precision rates are always
larger than 99.7%, however, the recall rates are ranging from
93.2% (𝑛 = 4) to 95.2% (𝑛 = 10). On the other hand, when
using the SVM fitcsvm, the precision rate is highest at 98.7%
(𝑛 = 3), which decrease gradually to 88.77% (𝑛 = 10),
while the recall rates are around 99%. As the model show
very good performance when detecting 𝑇1, 4, 8, 16, the main
misdetections should come from 𝑇2, so the explanations will
be similar to these of Section V.B.

C. Classification Performance

Tab. II shows the confusion matrix of best CCR
performance in classification over all the implementations,
which is 𝐾𝑁𝑁 with 𝑛 = 6, 𝑘 = 97. As can be seen, 𝑇2 is the
most difficult attack to classify, which was detected as
normal in 6.39% of the cases. For all the experiments, the
overall misclassification rates are always lower than 4.7%.

When 𝑇0 are removed from the dataset, our models
classify correctly 𝑇1, 𝑇4, and 𝑇16 in most of the cases. The
main confusions are those between 𝑇2 and 𝑇8. Tab. III
shows the confusion matrix between 𝑇8 and 𝑇2 when using
the SVM fitcecoc. Our approach achieved small
misclassified rates at less than 0.6%, which is a significant
improvement from [1] where about 20% of 𝑇2 are
misclassified as 𝑇4 or 𝑇8. The confusion rates also decrease
when 𝑛 increase. 𝑀𝑇𝐷𝑇 is the main reason for this
improvement. As 𝑇2 is a translated form of a legitimate

T1

T2

T4

T8

T16

Tall

KNN in [1]

Our KNN T2

T16

T1

T16T1 T4 T8

T8
T1

T4

Precision Precision

R
e
c
a

ll

R
e
c
a

ll

SVM in [1]

Our SVM

T2

T2

T16T1 T4 T8

Tall

(a) KNN (b) SVM

 Fig. 2. Detection capability for different attack types

10
8

7

6
5

3

4

10

6

5

8

7

9
3

4

5

6

7

8

9

10

10

3

4
5

6

7
8

9

R
e
c
a

ll

R
e
c
a

ll

Precision Precision

KNN

SVM

KNN

SVM

Type 2 Overall

3
4

5

9

(a) T2 performance (b) Overall performance

 Fig. 3. T2 & overall detection capability in different n-sequence

TABLE II. CONFUSION MATRIX OF BEST CCR KNN (N=6, K=97) (%)

Ground Truth

T0 T1 T2 T4 T8 T16

P
re

d
ic

te
d

T0 98.25 0 6.39 0 0 0

T1 0 100 0 0 0 0

T2 1.75 0 93.61 0 0.04 0

T4 0 0 0 100 0 0

T8 0 0 0 0 99.96 0

T16 0 0 0 0 0 100

TABLE III. COMPARISONS OF CONFUSION RATES (%) BETWEEN T2 AND T8

(SVM - FITCECOC)

 n = 3 n = 4 n = 5 n ≥ 6

T2 T8 T2 T8 T2 T8 T2 T8

T2 99.83 0.36 99.9 0.3 99.94 0.01 1 0

T8 0.17 99.64 0.1 99.97 0.06 99.99 0 1

trajectory, 𝑀𝑇𝐷𝑇(𝑇2) value should be small. Meanwhile,
𝑀𝑇𝐷𝑇(𝑇8) values should be much larger than 𝑀𝑇𝐷𝑇(𝑇2)
because 𝑇8 will have high deviations from any translated
trajectories. These deviations will also be accumulated to be
higher when 𝑛 increases, which helps to classify between 𝑇2
and 𝑇8 better.

D. Inspection Length Considerations

As can be seen from previous discussions, a small 𝑛 can
give high precision rates in most of the cases, however, the
prediction models will be more sensitive, which leads to
lower recall rates. Moreover, too small 𝑛 can also lead to
misclassification between 𝑇2 and 𝑇8. On the other hand, a
large 𝑛 provides high recall rates and help to classify the
attacks correctly. However, it will also decrease the precision
rates significantly, not mention that in reality, long
observations of the suspected vehicles are more difficult to
achieve. Therefore, for a balance between the detection and
classification capability and the potential to apply in real life
scenarios, the recommended value of n to choose is 5.

VI. CONCLUSION

In this paper, we introduced three novel features
extracted from an 𝑛 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 trajectory for use in
machine learning models to detect and classify misbehaviour
attacks. We implemented these features in KNN and SVM
and compared them to a previous approach that used
different features. We evaluated the detection performance of
our models using the VeReMi dataset and achieved overall
precision of up to 99.7% while maintaining a recall in excess
of 99%. The classification accuracy also outperforms the
previous best obtained results with less than a 4.7%
misclassification rate. Moreover, by studying the impacts of
observation length on our models’ performance, we showed
that our approach can provide reliable judgements even after
as few as 3 observations (i.e. 3 seconds), which suggests that
they can be useful for near real-time detection and
classification. In the future, we aim to extend the attack

models (e.g. adding more sophisticated types of
misbehaviours) and improving the attack detection
techniques to be able to detect and classify more types such
as Sybil, replay, or stealthy attacks.

ACKNOWLEDGEMENT. This work was funded by UK
Research and Innovation through INNOVATE UK in project
CAPRI (TS/P012264/1).

REFERENCES

[1] S. So, P. Sharma, and J. Petit, "Integrating Plausibility Checks

and Machine Learning for Misbehavior Detection in VANET," in
2018 17th IEEE International Conference on Machine Learning

and Applications (ICMLA), 2018, pp. 564-571.

[2] C. Maple, "Security and privacy in the internet of things,"
Journal of Cyber Policy, vol. 2, no. 2, pp. 155-184, 2017/05/04

2017.

[3] R. W. v. d. Heijden, A. Al-Momani, F. Kargl, and O. M. F. Abu-
Sharkh, "Enhanced Position Verification for VANETs Using

Subjective Logic," in 2016 IEEE 84th Vehicular Technology

Conference (VTC-Fall), 2016, pp. 1-7.
[4] R. W. v. d. Heijden, S. Dietzel, T. Leinmüller, and F. Kargl,

"Survey on Misbehavior Detection in Cooperative Intelligent

Transportation Systems," IEEE Communications Surveys &
Tutorials, vol. 21, no. 1, pp. 779-811, 2018.

[5] R. W. van der Heijden, T. Lukaseder, and F. Kargl, "VeReMi: A

Dataset for Comparable Evaluation of Misbehavior Detection in
VANETs," Cham, 2018, pp. 318-337: Springer International

Publishing.

[6] C. Sommer, R. German, and F. Dressler, "Bidirectionally
Coupled Network and Road Traffic Simulation for Improved

IVC Analysis," IEEE Transactions on Mobile Computing, vol.

10, no. 1, pp. 3-15, 2011.
[7] H. Stübing, J. Firl, and S. A. Huss, "A two-stage verification

process for Car-to-X mobility data based on path prediction and

probabilistic maneuver recognition," in 2011 IEEE Vehicular
Networking Conference (VNC), 2011, pp. 17-24.

[8] C. Yavvari, Z. Duric, and D. Wijesekera, "Vehicular dynamics

based plausibility checking," in 2017 IEEE 20th International
Conference on Intelligent Transportation Systems (ITSC), 2017,

pp. 1-8.

[9] J. Firl, Probabilistic Maneuver Recognition in Traffic Scenarios.
KIT Scientific Publishing, 2015.

	I. Introduction
	A. VANET Security
	B. Misbehaviour Detection and Classification
	C. Contributions and Paper Structure

	II. Related Work
	III. Proposed Approach
	A. General Definition
	B. Feature Selection

	IV. Experimental Setup
	A. Attacker Model
	B. Scenario and Attack Types
	C. Machine Learning Designs
	D. Parsed Dataset and Feature Extractions
	E. Inspection Length Consideration
	F. Evaluation Metrics

	V. Results and Discussions
	A. Detection per Attack Type
	B. Overall Detection Performance
	C. Classification Performance
	D. Inspection Length Considerations

	VI. Conclusion
	REFERENCES

