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Mechanistic mathematical models are often employed to
understand the dynamics of infectious diseases within a
population or within a host. They provide estimates that
may not be otherwise available. We have developed a
within-host mathematical model in order to understand how
the pathophysiology of Salmonella Typhi contributes to its
incubation period. The model describes the process of
infection from ingestion to the onset of clinical illness using
a set of ordinary differential equations. The model was
parametrized using estimated values from human and
mouse experimental studies and the incubation period was
estimated as 9.6 days. A sensitivity analysis was also
conducted to identify the parameters that most affect the
derived incubation period. The migration of bacteria to the
caecal lymph node was observed as a major bottle neck for
infection. The sensitivity analysis indicated the growth rate of
bacteria in late phase systemic infection and the net
population of bacteria in the colon as parameters that most
influence the incubation period. We have shown in this study
how mathematical models aid in the understanding of
biological processes and can be used in estimating parameters
of infectious diseases.
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1. Background
Typhoid fever is a systemic infection caused by the bacteria
Salmonella Typhi. It is endemic in developing countries; however,
a sporadic disease in developed countries with infection
occurring mainly in travellers returning from endemic regions [1].
Community-wide outbreaks associated with widely distributed
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products [2,3] or water supply [4–6] are commonly reported as well as point source outbreaks associated

with dairy [7], red meat [8,9] and vegetables [10,11] have been reported.
Possible control measures that can be applied to typhoid fever depend on the population. In

developing countries, this will involve provision of potable drinking water and hygienic food
preparation [1]. In developed countries, activities such as prompt investigation of outbreaks,
identification of travel-related cases and confirming cases as either sporadic or outbreak-related, all of
which require accurate knowledge of the incubation period, contribute to reducing the burden of
disease. Furthermore, the efficacy of typhoid vaccine has been tested in experimental and field studies.

The incubation period of typhoid fever is defined as the time between the exposure to the pathogen
and the onset of clinical illness. Individual variation in the incubation period, due to host and pathogen
characteristics, means that this parameter is reported as a distribution rather than a single estimate. In
addition to understanding the pathophysiology of the disease, accurate knowledge of the distribution
of incubation period is important for surveillance, outbreak investigations and conducting
epidemiological and ecological studies [12]. Available reports on the incubation period of S. Typhi
vary extensively. Some community-wide outbreaks have reported incubation periods with a mean of
19 days [13] or a range of 2–11 days [14] and some point source outbreaks have reported ranges of
5–12 days [7] and 1–28 days [15].

International health organizations, such as WHO and CDC [16,17], report the incubation period as
ranging from 3 to 60 days and 3 to 30 days, respectively, possibly in an attempt to include the
possible extremes of the distribution. These estimates are probably based on the observations from a
limited number of studies and factors influencing the distribution are unknown. Understanding the
distribution of incubation period and the influencing factors may be possible by undertaking a
systematic review of observational or experimental studies; however, mathematical models have the
potential to provide a more complete description and identify influencing factors not detected using
other research methods.

Mathematical models have been employed in understanding areas of infectious diseases such as the
spread of a pathogen within a host [18] and the immune process of the human body [19]. They can also
be used to estimate parameters like incubation period and dose–response or predict outcomes by fitting
data to the developed models. The process of model formulation helps us to increase the understanding
of the pathophysiology, clarify and document assumptions and data gaps. It is also useful in assessing
the sensitivity of the model output to changes in parameter values in an attempt to identify
influencing factors.

We developed a compartmental model that described the process of infection from ingestion of a
contaminated liquid meal to the onset of clinical illness using a set of ordinary differential equations.
Each equation represented the transition from one compartment to the next and estimated the
duration of each step. The model was parametrized using estimated values identified from the
literature. Observed values from the model output were compared to expected values identified from
the data of a human experimental study. We also conducted a sensitivity analysis to identify
parameters or variables that influence the distribution of the incubation period. Our model represents
infection in a naive case or population which has not been previously exposed to or infected with
S. Typhi.
2. Methods
2.1. Model formulation
We summarized the pathophysiology of S. Typhi into mathematical equations and developed a
compartmental model. This represented the transfer of bacteria per unit time from initial ingestion to
the onset of clinical symptoms (mouth to the secondary bacteraemia) (figure 1). Ordinary differential
equations were used to describe the rate of change of bacteria in each compartment which included a
combination of the processes: migration, replication or clearance (electronic supplementary material,
appendix S1). The model was solved using the deSolve package in the R statistical software [20].

2.2. Model parametrization
The model has 17 parameters (we do not include the initial number of bacteria ingested as a parameter)
and parameter values were derived from the literature. Reviewing the available evidence for the various
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Figure 1. Flowchart of the model showing the mathematical representation of the infection process.
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transit times and rates, we identified, calculated and estimated values for our model parameters. Where
possible, values indicating duration or proportion were converted to rates. Bacteria transit times in the
gastrointestinal tract and flow rates in the lymph and blood were estimated using the identified
human experimental studies. At cellular level, we assumed that the replication and death of bacteria
and their interactions with macrophages are similar in mice and humans, hence, we used several
mouse models of Salmonella typhimurium (S. typhimurium) infection to describe cellular infection
in humans [18,21,22].

2.3. Uncertainty sampling and sensitivity analyses
The parameter values inputted in our model have some degree of uncertainty due to factors such as
natural variation between individuals or measurement error in experiments. We, therefore, conducted
an uncertainty analysis to quantify the degree of uncertainty in the parameter estimates and then a
sensitivity analysis to explore the effect of changes in the model parameters on the incubation period.
The sensitivity analysis was conducted in a two-step process: first, determining the effect of each
parameter individually on the incubation period and identifying the most sensitive parameters; then
determining the combined effect of all identified sensitive parameters on the incubation period. We
used a computational modelling software called Sampling and Sensitivity Analysis Tool (SaSAT)
developed by Hoare et al. [23] for both the uncertainty sampling and the sensitivity analysis.

2.3.1. Uncertainty sampling

In conducting the uncertainty analysis, we employed Latin hypercube sampling (LHS) method, a form of
Monte–Carlo simulation. It uses stratified sampling [24] to randomly select parameter values within the
given parameter distributions that result in an unbiased estimate of the average model output [25]. For
each parameter value, we specified a range from which the random values were selected (table 1). Some
of the parameter values had corresponding measures of variation such as standard deviation or 95%
confidence interval, hence the range specified was based on empirical evidence. For other parameter
values, the range was selected based on the best available evidence from the literature or best-guess
estimates-based biological expectations. We also defined the underlying distribution of each parameter
value from which the random samples were selected. A triangular distribution was mostly chosen in
the absence of evidence for other type of distribution, and this included a peak value and plausible
minimum and maximum values. Due to the triangular shape of the distribution, more random
samples were selected around the peak value. A uniform distribution was selected when there was
neither evidence of other type of distribution, nor evidence supporting the parameter value. In this
case, minimum and maximum values are selected to give a range, which could include the actual
parameter value. The uniform sampling from this range, due to the uncertainty of the parameter
value, produces a uniform distribution. The parameter estimates, range and underlying distribution,
used to derive the random parameter values, are summarized in table 1.

2.3.2. Sensitivity analysis

In order to examine the sensitivity of each parameter independently, the single-parameter models were
run with the values of the parameter of interest varying according to the samples generated by the LHS,
while the values of the other parameters were fixed. For example, when examining the sensitivity of δ,
the model was run with varying values of δ and fixed values for the other parameter. Using the 100
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random samples generated by the LHS, 100 reiterations were run for each parameter considered in the

sensitivity resulting in 16 sets of 100 model outputs (we did not include the transit time from mouth
to stomach in the sensitivity as this was such a short duration).
 lsocietypublishing.org/journal/rsos
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3. Results
Parameter values were derived to solve the ordinary differential equations. A list of the estimated
parameter values, to be included in the model, is available in table 1.

3.1. Model parametrization

3.1.1. Gastric-emptying rate (δ)

Following ingestion, the bacteria transits through the mouth and arrives in the stomach within a few
seconds (ϕ) (this parameter is not tested for sensitivity as it is so short a duration).

According to Bennink et al. [26], the liquid-emptying rates for both males and females are similar
(2.34% min−1 and 2.33% min−1, respectively), hence, we decided on a single emptying rate for both
genders of 2.3% min−1. We calculated the average emptying time using the equation

p(t) ¼ 1 � e�dt , ð3:1aÞ
where p(t) is the proportion emptied per minute (0.023) and t is time (1 min), therefore

d ¼ ln (1� p(t))
t

d ¼ �1
ln (1� 0:023)

¼ 42:9:

9>>=
>>;

ð3:1bÞ

It will take an average of 43 min for gastric content to be emptied. Calculating the reciprocal of the
emptying time results in a rate of 1.40 h−1 (1/(43/60)).

3.1.2. Fraction of bacteria migrated to duodenum (γ)

For the purpose of our model, we assumed that gastric acid was neutralized and the altered gastric pH
increases the likelihood of the ingested bacteria to pass through the stomach unrestricted. Thus, we
estimated that about 95% (0.95) of the ingested bacteria migrated to the duodenum.

3.1.3. Small bowel transit time (κ)

The compartmental transit model, developed by Yu & Amidon [27], can be used to characterize the
variation in the population. The model assumes that the gastric content flows through the small intestine
by passing through a series of segments/compartments, where each compartment has different food
volumes and flow rates but equal transit times. The mean transit time can be derived, and the ideal
number of compartment (N) can be determined from the compartmental analysis by adding and
subtracting compartments until the residual sum of squares (SSE) becomes small. From their analysis, Yu
et al. [36] identified a seven-compartment transit model as the best model to describe the flow process.

Reproducing the analysis from Yu et al., the values of N with the smallest SSE were 6.9 and 7.0 and
the corresponding SSE were 10.8 and 11.1, respectively. Although the SSE for 6.9 was the smallest,
inputting non-integers into our model could not be justified as it is not possible to have a fraction of a
model compartment. Hence, we opted for seven compartments and a mean transit time of 199 min
(κ), which was the same value reported by Yu et al. [36]. This resulted in an emptying rate of 0.30 h−1.

3.1.4. Bacteria in the colon (β, μ and α)

The average doubling time of Salmonella in the colon, according to Knodler et al. [28], was 95 min. From
the doubling time formula

log2 ¼ rt, ð3:2Þ
where r and t are the replication rate and doubling time (in hours), respectively; we solved for r as
r ¼ log2=t. The resulting replication rate was β = 0.43.
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According to the combined experimental study and mathematical models undertaken by Kaiser et al.

[29], the resulting probability of migration in the first 24 h was 3 × 10−7. Therefore, the probability of a
bacterium migrating in 1 h is μ = 1.25 × 10−8.

Considering the high replication rate of bacteria in the colon and the low probability of migrating to
the caecal lymph node, more bacteria will be shed through faeces compared to the quantity that continue
towards systemic infection.

However, for gut invasion to be sustained and for infection to progress, the replication rate of bacteria
in the colon should be higher than the rate it sheds through faeces. In order to avoid total bacterial
clearance, the net bacterial population needs to be greater than 1. Considering that the average
doubling time of bacteria is approximately 95 min, we would expect that for gut invasion to be
sustained, the clearance of bacteria would occur at a slower rate and the time it takes bacteria to shed
from the colon would be nearly twice as long as the doubling time. In the absence of evidence in the
literature, a shedding time that is 1.8 times the doubling time is our best-guess estimate, allowing the
net population of bacteria in the colon to be greater than 1, yet not resulting in a very slow rate that
may unreasonably prolong the incubation period. This results in a shedding time of 171 min and a
corresponding shedding rate per unit time of 0.35 h−1.

3.1.5. Rate of phagocyte invasion/engulfment (ρ)

Based on the physical model conducted by Gog et al. [30], the rate of phagocyte invasion was 2.5 × 10−5 s−1

per bacterium or 0.09 h−1.

3.1.6. Proportion of bacteria replicating in a phagocyte (θ)

Van Dissel et al. [37] carried out experiments and developed a model to estimate the intracellular killing
of bacteria using phagocytes from three types of mice. In both the experiments and the model, the
number of viable bacteria in the phagocyte decreased after 90 min in all three types of macrophages.
In the experiment, the percentage of viable bacteria decreased to 69, 25 and 13%, while from the
developed model, the number of bacteria decreased to about 20% in two types of macrophages and to
50% in the third [37].

Based on the experiment and model developed by van Dissel et al. [37], the average proportion of
viable bacteria available in the cell after phagocytosis in the three types of mice was approximately 30%.

3.1.7. Growth rate of bacteria in phagocyte

Extracting the experimental data from Forest et al. [38] for the increase in intracellular bacterial
population, we derived the replication rate of intracellular bacteria. We fitted the extracted data to a
logistic replication model (electronic supplementary material, appendix S2)

P ¼ CB0

B0 þ (C� B0)e�rt , ð3:3Þ

where P is the number of bacteria in the phagocyte after replication, B0 is the initial number of bacteria in
the phagocyte and C, r, and t represent the maximum value (the ‘carrying capacity’), exponential growth
and time, respectively. The predicted intracellular growth rate was 0.3 h−1 in the first 6 h after infection
which results in a doubling time of 2.3 h.

3.1.8. Rate of phagocyte rupture (ν)

Data from Monack et al. [31], on the proportion of dead phagocytes at different time intervals after
infection, were extracted. The median rupture time, which is the time it will take for 50% of the
phagocytes to rupture, is chosen to be representative of the average rupture time. We fitted the data
to a logistic model (after checking the fit against one using a lognormal distribution)

f(x) ¼ 1
1þ e�k(x�x0)

: ð3:4Þ

The resulting intercept and gradient were 4.59 and −0.03179, respectively. Inputting these parameters
into equation (3.4) and solving for x resulted in a value of 144.38 (4.59/−(−0.03179)). Coincidentally,
this value also represented the ‘median rupture time’; hence, the time it took for 50% of phagocytes to
rupture was 144.38 min or 2.41 h. This corresponds to a rupture rate of 0.41 h−1.
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3.1.9. Population of bacteria in phagocyte at rupture (C)

The number of bacteria in the phagocyte at the time of rupture depends on the rate of intracellular
bacteria replication and rate of phagocyte rupture. Using the replication rate predicted from the model
in equation (3.3), and the median rupture time from the model in equation (3.4), we derived the
number of bacteria in the phagocyte at the time of rupture.

According to an experiment by Mitsuhashi et al. [39], when phagocyte cells and bacteria were
incubated at a ratio of 1–10, the proportion of infected phagocyte cells was 30% of which 80%
ingested one to two bacteria. We then assumed that at the time of phagocytosis, each cell would
contain a maximum of two bacteria. Inputting the derived doubling time of 2.3 h and the required
duration of 2.4 h, which is the median rupture time, into the formula B(2)t/d, where B is the initial
number of bacteria available, t is the period of interest and d is the doubling time, we can estimate
that the number of bacteria in the phagocyte at rupture would be 4.1.

3.1.10. Draining rate of lymph from the caecal lymph node (η)

In order to estimate the flow rate out of the caecal lymph node, we assumed that bacteria drain from the
caecal lymph node at the same rate that lymph flows through the intestinal lymphatic vessel. The vessel
has a flow velocity of 3400 µm s−1 and a corresponding flow rate of 14 mm3 s−1 [32]. Equivalent to
0.014 ml s−1. The lymph vessels in the human body have a total capacity of approximately 2 l [32];
therefore, the intestinal lymphatic vessel rate is 0.025 h−1.

3.1.11. Transfer rate into systemic organs (σ and ω)

In order to estimate the transfer rate of bacteria into the organs, we assumed that bacteria will travel into
organs at the same rate as blood flow in the portal vein and splenic arteries and that equal proportion of
bacteria enter into both organs. The liver receives about 70% of its blood supply via the portal vein,
which is also the direct venous outflow from the intestine [40]. In the light of this, we can conclude
that bacteria would enter into the liver via the portal vein. The mean blood velocity in the portal vein
was reported to be 13.9 ± 4.49 cm s−1 and the resulting mean volume flow was 662 ± 169 ml min−1

[33]. Considering that the total blood volume of a typical adult is 5 l (5000 ml), the transfer rate into
the portal vein is, therefore, 0.13 min−1.

According to Sato et al. [35], the mean blood velocity in the splenic artery was 18.7 ± 4.2 cm s−1 and
the resulting mean blood flow rate was 179 ± 37 ml min−1. The transfer rate into the spleen was
0.04 min−1.

3.1.12. Net growth of bacteria in systemic organs (τ)

According to the mouse model and accompanying mathematical model developed by Grant et al. [18],
the bacterial population in the organs slowly decreases in the first 6 h with a doubling time of 1.7 h
and a half-life of 1.1 h. The replication/birth rate was calculated using the formula in equation (3.2),
and the death rate was calculated using the half-life formula

log0:5 ¼ rt: ð3:5Þ
The resulting birth rate and death rate were 0.41 and −0.63, respectively. Thus, the net growth rate for
both the spleen and liver was −1.04 in the first 7 h post primary bacteraemia during the invasion phase.

In the replication phase of exponential bacterial growth, the doubling time decreases to 8 h [18]
resulting in a net growth rate of 0.09.

3.1.13. Transfer rate of bacteria from systemic organs into the blood and onset of the secondary bacteraemia

Based on the mouse model by Grant et al. [18], the relative rate of bacterial transfer out of the systemic
organs was about 1% of the bacterial transfer rate from blood to the organs (σ and ω). Therefore, the
transfer rates from the liver and spleen are 0.0013 min−1 and 0.0004 min−1, respectively.

3.2. Model analysis
From our model, we observed three critical stages for infection mathematically, and perhaps biologically,
including: the net population of bacteria in the colon (determined by β > α), the bacterial population
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during phagocytosis (determined by θC > 1) and the growth rate in late systemic infection (determined by
τ2 > 0). Most compartments in the model act to transit the bacterial load to other locations in the body or
remove bacteria. If these three conditions on parameters are not met, then bacterial population will
reduce over time and result in no infection.

3.3. Solving the model and interpretation
The initial state of each compartment was defined. We defined B0 as the initially ingested dose of
bacteria with a concentration of 104. We, therefore, set initial conditions such that all states are zero
except BM(0) = B0.

The transfer of bacteria through the stomach, small intestine and colon is represented in figure 2.
Gastric contents are completely emptied within 5 h of ingestion. Transit through the small intestine
follows a gamma distribution and using the seven subcompartments of the small intestine [36] in the
model resulted in a slight delay before the concentration of bacteria in the colon begins to increase
(figure 2).

The invasion of the caecal lymph node to the onset of the secondary bacteraemia is represented in
figure 3. At the early stages of systemic infection, the concentration of bacteria in the liver was higher
than that in the spleen and blood, but as the infection progressed, bacterial concentration in the spleen
and blood increased.



Table 2. Values from mathematical model and experimental study showing the effect of dose on the incubation period.

challenge dose and
mathematical model
initial state

experimental study (Waddington et al. [40]) mathematical model

time to typhoid
diagnosis
(median (IQR))

bacterial count at
typhoid diagnosis
(median (IQR))

time to reach
typhoid diagnosis
bacterial levels (0.5
and 1.1 CFU ml−1)

bacterial count at
the time of typhoid
diagnosis (9 and
8 days)

103 9 days (6.5–13) 0.5 CFU ml−1

(IQR 0–1.2)

10.5 days 0.03 CFU ml−1

(189 total CFU count)

104 8 days (6–9) 1.1 CFU ml−1

(IQR 0.4–2.1)

9.6 days 0.07 CFU ml−1

(345 total CFU count)
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3.4. Estimating incubation period
Using the experimental study conducted by Waddington et al. [41], we estimated the incubation period
from our model output. In the experimental study, participants were challenged with a dose of 104 and
monitored until typhoid diagnosis (TD). The median incubation time to TD was 8 days (IQR 6–9).
Quantitative blood culture performed at the time of TD showed median bacterial loads of 1.1 CFU
ml−1 (IQR 0.4–2.1).

From the mathematical model, the bacterial concentration observed at 8 days is 345.1 counts. As the
total volume of blood is 5000 ml, the resulting bacterial load from the model at 8 days was 0.07 CFUml−1.
The bacteria load in the model during the secondary bacteraemia reached the level reported from the
experimental study at 9.6 days. The bacteria concentration in the blood at this time was 5513 counts,
which is equivalent to 1.1 CFU ml−1.
3.5. Effect of dose on incubation period
In order to examine the effect of dose on the model output, we altered the value of the initially ingested
dose of bacteria such that B0 was defined as a concentration of 103. From the experimental study, cases
with a dose of 103 reported a median incubation time of 9 days to TD (IQR 6.5–13 days); and the
quantitative blood culture performed at TD showed median bacterial loads of 0.5 CFU ml−1 (IQR 0–1.2).

The output of the mathematical model showed the bacterial concentration at 9 days to be 0.03
CFU ml−1 (189 total CFU count); and the bacterial load reached the level observed in the experimental
study at 10.5 days, one day longer than the higher dose of 104 (table 2). In both the experimental
study and the mathematical model, an increase in ingested dose resulted in an increase in bacterial
concentration in the blood by a ratio of about 2.1, leading to a shorter incubation period (table 2).
3.6. Uncertainty sampling
In the first step of the uncertainty sampling, a hundred random samples were generated for each
parameter, and in the second step, a thousand random samples were generated. Electronic
supplementary material, appendix S3 shows the probability distribution functions of 1000 randomly
generated samples for each parameter displaying the shape of the distribution and the range of the
values selected.
3.7. Sensitivity analysis
We compared the output of all simulated models and identified six parameters as the most sensitive
including: β, α, μ, C, θ and τ2. This may be expected from the consideration of the equations
themselves as discussed in the model analysis section above as these contribute to the bacterial
growth rather than simply tracking the transit of bacteria around body. Of these parameters, α is the
most uncertain as it is the only parameter without supporting evidence from the literature.



Table 3. PRCC of model parameters.

parameter correlation coefficient p-values

τ2 −0.77 <0.0001

α 0.62 <0.0001

β −0.60 <0.0001

μ −0.09 0.004

θ −0.09 0.005

C −0.04 0.201
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We ran 1000 reiterations of the model using 1000 randomly generated samples of the six sensitive
parameters. Using the output from the simulated models, we conducted a sensitivity analysis by
deriving the partial rank correlation coefficients (PRCC) and the corresponding p-values (table 3). This
provides a measure of the strength of the association between the six sensitive parameters and the
incubation period. The parameters with the strongest correlation with the incubation period included
τ2, α and β with correlation coefficients of −0.7, 0.6 and −0.6, respectively (figure 4). Growth rate in
late phase systemic infection (τ2) was most strongly correlated with the incubation period, where an
increase in the growth rate significantly reduced the incubation period (figure 5). With the exception
of C, all parameters were significantly associated with the incubation period (table 3).
4. Discussion
We have developed a compartmental model of ordinary differential equations to simulate the infection
process of S. Typhi in humans in order to estimate the incubation period and identify biological processes
that might influence the duration of the incubation period. To the best of our knowledge, this is the first
mathematical model on the incubation period of S. Typhi in humans.

Gastric acid acts as a barrier to most bacterial organisms including S. Typhi [42,43], restricting the
proportion of bacteria that continue towards infection. However, its effect can be minimized due to
the presence of any condition (drugs or disease) that reduces the stomach acid [43] or the constituents
of the ingested food vehicle [44]. Reduced gastric acid may result in shorter incubation period as more
bacteria will survive to transit through to cause infection. In our model, we have eliminated the effect
of gastric acid allowing nearly all bacteria to exit the stomach, mirroring the experimental study by
Waddington et al. [41] where sodium bicarbonate was used to restrict the effect of gastric acid.
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The bacterial population in the colon ismainly determined by the rate of shedding (α) and the replication
rate (β); hence, the difference of both parameters represents the net growth rate of bacterial population in the
colon. If the net population of bacteria is greater than one (β > α), infection would most likely proceed to the
systemic phase as bacteria will be available in the colon to migrate into the caecal lymph node (CLn). The
interaction between α and βmeans that increasing the value of either parameter produces contrasting effects
of equal magnitude on the incubation period, as shown in the tornado plot (figure 4).

The quantitative microbiology of S. Typhi in stool is currently unknown; hence, a biologically
plausible value of α had to be assumed. This introduced some uncertainty into our model, which was
further examined in the sensitivity analysis. The output of this analysis indicated that α is an
important determinant of the incubation period. The value of β = 1.8α is biologically plausible and
was deliberately selected using the Waddington study as a validation dataset independent of the
parametrization.

According to our model, bacteria persist in the colon for the duration of the infection process
(figure 2) and this is consistent with the literature where shedding has been reported to occur for the
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duration of infection and even for a few days after antibiotic treatment [45]. In cases without treatment,

shedding can occur for up to three months [45,46]. An experimental study showed that participants
had positive stool cultures for as long as three weeks and all participants were culture negative six
weeks after challenge [47]. In another challenge study, stool cultures were positive from 72 h after
ingestion and for the two-week duration of the experiment when samples were collected [41];
however, the proportion of participants shedding [41] and probability of stool shedding [47] declined
as the days post challenge increased.

Another critical point for infection, which also represented a major bottle neck, was the migration of
bacteria to the CLn (μ). At this point, bacteria had a very low probability of migration and the likelihood
of infection occurring largely depended on the bacteria crossing this threshold, thus encountering a major
bottleneck. This was also observed in a mouse experimental study conducted by Kaiser et al. [29].
According to the sensitivity analysis, an increase in the migration rate will reduce the incubation
period as the process of systemic invasion is quickened.

The net growth rate of bacteria in the liver and spleen during late phase systemic infection represents
the last critical point for infection. Bacterial growth in this phase was strongly correlated with the
incubation period and from figure 5, we can deduce that this is a dominant parameter for the
distribution of the incubation period. As the growth rate increases, the number of bacteria available to
enter into the bloodstream increases, and ultimately, this reduces the incubation period. This
conclusion is logical as it is the final opportunity for growth in the last step of the infection process
before the onset of the secondary bacteraemia. It is, therefore, plausible for any changes to bacterial
growth rate at this point to significantly alter the incubation period.

The concentration of bacteria in the blood during the secondary bacteraemia is predominantly made
up of bacteria exiting the spleen and liver; however, according to the sensitivity analysis, altering the exit
rate has limited effect on the duration of incubation period. Very early on in the onset of the secondary
bacteraemia, the spleen contributed more to the bacterial concentration; however, as infection progressed,
the bacterial concentration was sustained by bacteria exiting the liver. This is shown in figure 3 where the
bacterial population in the liver was initially higher than the spleen, but subsequently, the bacterial
population in the spleen increased and remained consistently higher for the duration of the infection.
The identical replication rate (represented by τ) in both organs, coupled with the difference in entry
and exit rates, with the liver having higher rates, may explain the alteration in bacterial concentration
and contribution observed between the liver and spleen.

Comparing the output of our model to data from a human experimental study, the estimated
incubation period from our model was 9.6 days. This value was similar to estimates from other
experimental and observational studies. A large experimental study conducted over 16 years [48]
reported a mean incubation period of 11.4 days with a median of 9 days. Another experimental study
reported a shorter incubation period of a median of 6 days (IQR 5.1 to 7.8) in a control group with no
vaccination who received a challenge dose of about 104 [49], similar to our initial value. In a
systematic review conducted to estimate the distribution of incubation period and identify influencing
factors [50], the mean incubation period between subgroups was reported to range from 9.7 to 21.2
days with previously vaccinated cases reporting longer incubation period. In an observational study
of a large outbreak associated with Spanish spaghetti, the mean incubation period was 10.5 days with
a median of 8 days [51]. In a community outbreak associated with corned beef, the mean incubation
period was reported to be 9.1 days with a median of 9 days [9].

According to our model, the bacterial levels in the blood at the time of diagnosis as defined by
Waddington et al. [41] were 0.07 CFU ml−1 which was lower than the 1.1 CFU ml−1 they reported,
although similar values of low bacterial concentration of about 0.1 CFU ml−1 have been detected in
the blood of typhoid cases [52,53].

The output of the model has shown that ingested dose, which could be a proxy for attack rate,
influences the duration of the incubation period. In both the mathematical model and the
experimental study, a 10-fold increase in the ingested dose reduced the incubation period by 1 day.
This relationship has also been reported in some observational studies where an increase in the
ingested dose shortened the incubation period [7,54].

Although the effect of vaccination has not been considered in this model, vaccination has been
reported to prolong the incubation period [50,55]. The effect of vaccination has been studied in an
experimental study [49] where the time to microbiological diagnosis was similar in participants with
and without vaccination; however, the median time to clinical diagnosis, which also represented the
incubation period, was longer in the vaccine groups with reports of 8.5 and 10.4 days compared to
the control group reporting 6.8 days. Some vaccines did not appear to affect the shedding pattern or
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attack rate [47,49]; however, the level of bacteraemia was lowered. In order to achieve this effect, we can

speculate that the most likely point of vaccine action will be restricting the replication of bacteria in the
systemic organs, thereby reducing the rate of τ2.

According to Grant et al. [18], individual immunological mechanisms can have different progressive
effect on the bacterial population. Hence, the immune response in one phase of the infection may be
different from another phase of the infection as the bacteria encounter resident phagocytes,
polymorphonuclear neutrophils and intracellular control mechanisms during the course of infection.
The reduced exit rate of bacteria from the systemic organs to the blood at 1% of the initial entry
rate may represent another possible adaptive immune response to slow down the process of
infection. At this stage, the bacteria have survived all immunological mechanisms and the onset of
sepsis in inevitable; however, slowing down this process might enable further innate responses to
intervene or maybe even allow acquired responses to kick in, intercepting the onset of the secondary
bacteraemia.

The purpose of our model was to estimate the incubation period of typhoid fever and did not focus
on the progress of illness afterwards. Nevertheless, according to our model, the concentration of bacteria
in the blood during the secondary bacteraemia continued to increase following the onset of illness at
9 days and this was ongoing even after three weeks of illness. This does not follow the pattern
observed in actual human infection where the bacterial counts in the blood decrease with increasing
duration of illness [52], such that by the fourth week, the bacterial concentration is 82% less than it
was in the first week. Although death typically occurs after the third week of disease, in cases that
survive, the fever declines in the fourth week without antibiotic therapy [56].

Our model was a deterministic. Given the unknown shedding rate, we have forced bacterial growth
in the colon by making β > α to ensure that infection progresses to the systemic phase. This, however,
could result in unnatural timing given the fractional entry of bacteria into the CLn and so a stochastic
model framework might have advantages. Although this is a limitation of our model, it does not
undermine the output or the knowledge contributed by this work as it is the first attempt at within-
host mathematical modelling of the incubation period of S. Typhi in humans. However, further work
involving a stochastic model framework is recommended.

Our study showed the application of mathematical models in understanding biological processes and
estimating parameters of infectious diseases. The model has been useful in identifying factors intrinsic to
the infection process that influence the incubation period and suggests that the late phase net replication
in organs and net replication rate in the colon are key determinants of the duration of the incubation
period and may explain variation at a population level as much as ingested dose. Other factors, such
as vaccination, have not been examined in this study and with the available evidence on the effect of
vaccination, further work is required to extend this model to include vaccination.
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