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ARTICLE INFO ABSTRACT

Keywords: Bayesian inference using Gibbs sampling (BUGS) is a set of statistical software that uses Markov chain Monte
Statistics Carlo (MCMC) methods to estimate almost any specified model. Originally developed in the late 1980s, the
Modelling software is an excellent introduction to applied Bayesian statistics without the need to write a MCMC sampler.
]:;Z;S;n The software is typically used for regression-based analyses, but any model that can be specified using graphical

nodes are possible. Advanced topics such as missing data, spatial analysis, model comparison and dynamic
infectious disease models can be tackled. Three examples are provided; a linear regression model to illustrate
parameter estimation, the steps to ensure that the estimates have converged and a comparison of run-times
across different computing platforms. The second example describes a model that estimates the probability of
being vaccinated from cross-sectional and surveillance data, and illustrates the specification of different models,
model comparison and data augmentation. The third example illustrates estimation of parameters within a
dynamic Susceptible-Infected-Recovered model. These examples show that BUGS can be used to estimate
parameters from models relevant for infectious diseases, and provide an overview of the relative merits of the

Infectious diseases

approach taken.

1. Introduction

BUGS is a software for Bayesian inference using Gibbs sampling
(Gilks et al., 1994). The software is now in its third decade, and has
undergone several developments in its use and application. Although
the software is sufficiently generic that it can be used within many data-
driven fields, perhaps due to the affiliations of its developers BUGS is
often used in medical sciences, but has also been widely used in social
sciences, ecology and environmental sciences.

For a full description of the developments of BUGS see the article by
(Lunn et al. (2009)) and the associated commentaries at the end of the
article. The rationale behind developing BUGS was a need to make
Bayesian analysis more accessible. Whilst the 1970-2000s saw many
developments in Bayesian analysis, markov chain monte carlo (MCMC)
analysis was largely restricted to models in closed form where a con-
jugate prior was required for specification of the model (where a con-
jugate prior is part of the same family of probability distributions as the

posterior). A simple example of using conjugacy to estimate parameters
from a model is the estimation of probability of occurrence from data.
The likelihood is assumed to be binomially distributed where the data
consists of k successes from n trials, Pr(x = k|p,n) = @M pk(l -p)“’k.
To estimate the posterior distribution of the probability of success (p)
we first specify the posterior from Bayes rule; Pr(p|n,k) « Pr(n,k|p)Pr(p)
where Pr(p) is assumed to be a beta prior with parameters a and . The
probability density function of a beta distribution is Pr(p) =p®'(1 - p)*
!, Conjugacy occurs in this circumstance because the prior and posterior
have the same distributional form, and the posterior can be sampled
using p ~ B(a + kB + n - k) as Pr(p|n,k) « p* X1 - p)B+" (Rice,
2007). However, a closed form posterior distribution is unusual for
most problems and additional (often impractical) mathematical ma-
nipulation is required to identify the posterior distribution, which
prevents widespread use. The solution developed by Lunn et al. (2009)
makes use of graphical modelling theory (Bellot, 2016), and the de-
velopment of the BUGS language to specify models. The network of
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nodes define the model where each node is either data or a parameter,
and the edges between each node define the dependencies between the
nodes. The dependencies illustrate the conditional probabilities as-
sumed between nodes (which are usually directed), and is a core ele-
ment of Bayesian inference. Additionally, the specification of directed
acyclic graphs (DAGs) and automated translation to code means that
scientists without a statistics or programming background are able to
develop their own models.

As opposed to other languages that require considerable translation
of equations into code (Handel, 2017), the language used to specify
models in BUGS has a much lower learning curve for scientists to
translate theory into practice. The original WinBUGS software has been
available since the 1990s (Gilks et al., 1994). Programming develop-
ments, applications and interest within the scientific community has
grown steadily since. The estimation procedures within the software
expanded from using a Gibbs sampler to a self-tuning Metropolis up-
dater, to increase the flexibility of the full conditional probability that
can be specified and increase the efficiency of the estimation procedure.
Additional modules were developed for specific applications; PkBUGS
for application to pharmacokinetic models (Lunn et al., 2002) and the
associated complex functions, and GeoBUGS for spatial modelling and
the use of structured random errors (Thomas et al., 2004). Over 30
years of development has led to multiple software platforms performing
very similar tasks. In the early 2000s clones and suitable alternatives of
the original software were developed; first OpenBUGS (Thomas et al.,
2006) and then JAGS (just another gibbs sampler (Plummer, 2003)),
both of which facilitated use of the software by linux and MacOS users.
To make use of multi-core processors (common to most computers) and
reduce the run-time of MCMC estimation, multiBUGS was released in
2017 (Goudie et al., 2017). Small but important differences between
them (Table 1) mean that all versions are likely to be in use for the
foreseeable future. Integration with other software such as R is fa-
cilitated by calling the software within bespoke libraries (eg. BRugs
(Thomas et al., 2006), R2ZWinBUGS (Sturtz et al., 2005), runJAGS
(Denwood, 2016)). Development of additional custom distributions
within JAGS is possible and requires a working knowledge of C+ +
(Wabersich and Vandekerckhove, 2014).

There are now a vast number of worked BUGS examples and ap-
plications, which are available via affiliated websites, tutorials, peer-
reviewed papers and books. Most applications are centred on the ana-
lysis of data where variation in the response requires explanation.
Examples include the classic linear and generalised linear model
structure, as well as mark-capture, markov-models, non-linear func-
tions, and differential equations. Useful reference books include; Kery
(2010), Kery and Schaub (2011), and McCarthy (2007), Lawson (2009)
and Kruschke (2011) as they explain the statistical details well and
provide examples including code.

There are several reasons for choosing BUGS over other modelling
options. First, BUGS fits data within a Bayesian context (for an in-
troduction to Bayesian analysis see the first few chapters of Kery
(2010)). Second, the language and almost absence of additional coding
required to implement models and estimate parameters brings the
model structure to the front of what the researcher does. From the
beginning of learning BUGS and Bayesian analysis the researcher is
encouraged to consider what form the data takes, for example by asking
what distribution approximates the response variable, and what
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corresponding parameters (and data) determine this distribution. It is
then a relatively simple process to translate this equation to the BUGS
code and a few clicks or lines of code later a posterior distribution of the
parameter(s) are available to examine (Cowles, 2004). This is especially
important when learning statistical modelling and in developing models
that are different to those ‘off the shelf’ varieties which may, for ex-
ample, require the researcher to make invalid assumptions about the
data or removing data points because they are not fully observed. The
model specification within BUGS makes it a useful stepping-stone into
Bayesian analysis and model construction (Cowles, 2004); to this end
BUGS is used in many postgraduate epidemiology courses (LSHTM,
2019; ICL, 2019). Whilst the estimation procedure is largely automated,
knowledge of the appropriate MCMC parameters to select is needed to
ensure that the posterior target distribution is stationary (ie. a random
sample of the posterior of sufficient size that additional samples will not
influence its shape or summary statistics). An ability to assess the
MCMC chains for convergence is required and some practical advice is
given in this article. Data simulation from a BUGS model is possible
with only a small number of alterations, making model checking and
validation a more natural process when compared to other software.

The rest of this paper provides working examples of common ap-
plications of BUGS to models of infectious disease, how to sensibly
assess the output of a model, and a commentary on the relative merits
and disadvantages elicited within each example.

2. Case studies

2.1. A linear model, associated output and comparison of run time between
software

2.1.1. Model specification

A simple linear regression model assumes that the response variable
Y = {Y i = 1,...,N} is normally distributed with mean p and precision
T (ie. Y ; ~ N(ut)). We assume that an explanatory variable X =
{X;,i = 1,...,N} explains some of the variation in Y. We assume that the
model takes the form p = a + (X, which introduces two additional
parameters that require estimation. Within a Bayesian setting priors are
assigned to these parameters; both are assumed to be normally dis-
tributed with mean 0 and precision of 0.5, which can be written as o ~
N(0,0.5) and  ~ N(0,0.5). These priors are regarded as minimally
informative as they can encompass a wide range of values and conse-
quently the posterior will largely be informed by the data. Selection of
appropriate priors can be a challenging process and it is important to
examine priors and understand the influence of priors on the posterior
distribution (Seaman et al., 2012). Additionally, specification and es-
timation of the standard deviation is often more intuitive than use of
precision for a parameter, and additional code may be used to specify
the standard deviation instead of precision. This model can be written
either as a DAG (Fig. 1) or directly within the BUGS language;

Table 1
The available BUGS software and current scope of each for analysing data.
WinBUGS OpenBUGS JAGS multiBUGS
First available Mid 1990s 2006 2008 2017
Operating system MS Windows MS Windows/Linux/Mac” MS Windows, Mac, Linux Windows (Linux under development)

Extensions PkBUGS, glm, GeoBUGS

GeoBUGS, glm, MultiBUGS

glm, geoBUGS? glm, GeoBUGS

@ But note that OpenBUGS hasn’t been fully tested within the Mac OS. > GeoBUGS has not yet been fully tested within JAGS.
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y,~ Normal(u,0)
B=at I3’Xi

® ®

R0

Datai=1, 2...,n

Fig. 1. Directed acyclic graph (DAG) for the linear model example.
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model{
for(i in 1:N){

y[i] ~ dnorm(mu[i],tau)
mu[i] <- alpha + beta*x[1i]

alpha ~ dnorm(0,0.5)
beta ~ dnorm(@,0.5)
log.sigma ~ dunif(0,100)
sigma <- exp(log.sigma)
sigma.sq <- pow(sigma,2)
tau <- 1/sigma.sq

The code is deliberately similar to the mathematical equations,
creating a natural bridge from equations to code and vice versa. Note
that BUGS specifies a normal distribution using the mean (u) and pre-
cision (t). For a generalised linear model structure it is also possible to
specify the model using the standard lme-4 style syntax within R
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Fig. 2. MCMC output from example 1 illustrating visual diagnostics used to assess whether a stationary distribution for each of the parameters has been reached. A)
Gelman-Rubin diagnostic plot, B) autocorrelation plot of the un-thinned MCMC iterations, c) time-series plots of each of the parameters estimated, d) posterior

density plots.
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through loading the runjags package (Denwood, 2016); model < —
template.jags(y ~ x, data, n.chains = 3, family =‘gaussian’).

Continuing with the linear model example above, this model is used
to generate simulated data with sample sizes ranging from 100 to
10,000 to examine the differences between software and platforms. In
MS Windows the models were run on a 4-core machine consisting of
3.40 GHz and 8 processors with 16GB of RAM. In the Mac operating
system the models were run on a 3.2 GHz Intel core i5 machine with 4
processors consisting of 16GB of RAM. Estimation of the posterior
distribution was implemented by specifying the number of MCMC
iterations, the number of initial iterations that will be discarded (ie.
burn-in), the extent of thinning (ie. extracting every j iteration of the
MCMC), and the number of MCMC chains. The general principal of
specifying these settings is to obtain a stationary target posterior dis-
tribution. There is no certain way to assess when the stationary dis-
tribution has been reached, but rather there are techniques to establish
when it has not been reached (Toft et al., 2007). It is ideal to obtain the
equivalent of 1000 independent samples of the posterior distribution,
and given that autocorrelation of MCMC chains is common, generating
at least 10,000 samples per chain should be considered a minimum
value. Some software provides estimates of the effective sample size
which provides an estimate of the equivalent number of independent
samples (for example the coda package in R (Plummer et al., 2006)),
and this value should exceed 1000 for all parameters. Chain con-
vergence can be assessed visually by plotting the sampled value against
its number in the chain. Running several chains with different starting
values and comparing the sampled values on the same figure will il-
lustrate whether enough burn-in has been specified (more noise in early
iterations may be identified) and that the chains have converged to a
common mean value, if convergence has been achieved. To assess
convergence, the Multivariate Potential Scale Reduction Factor (also
known as the Gelman-Rubin statistic (Brooks and Gelman, 1998)) can
be applied. The Gelman-Rubin statistic compares the variance between
the chains to the variance within the chains of each parameter, and if
these are similar (indicating convergence) then its value should be less
than 1.05. Autocorrelation plots can be used to assess the extent of
autocorrection in MCMC chains and further inform the extent of thin-
ning that needs to be specified.

2.1.2. Model results and interpretation

For this example each model was specified in an identical form and
15,000 MCMC iterations were run within each of three chains. The first
5000 iterations were regarded as ‘burn-in’ and discarded. The Gelman-
Rubin statistic was applied to an initial round of samples where values
were < 1.01 which suggests that the between-chain variance is low and
consistent with convergence of the chains (Fig. 2). The autocorrelation
plot illustrated a lag to approximately 5, so the model was re-run
(10,000 iterations with 5000 burn-in) and the output was thinned to
every 10" iteration. The time-series and density plots of the subsequent
output (Fig. 2) illustrate consistent values across the chains. The ef-
fective sample size of the 10,000 iterations was at least 1435.

Table 2 illustrates that the run-time for each version of BUGS is

Table 2
Runtime (in seconds) of the linear regression model according to the size of the
dataset. (all models were run for 100,000 iterations using 3 chains).

Dataset size WinBUGS OpenBUGS JAGS Nimble multiBUGS
100 6 15 15 <5 11

1000 31 194 175 29 92

5000 1565 1083 1157 135 452
10,000 3500 2314 2970 214 937

run time of 1000 332 414 189 3 98

independent samples
from the dataset of
1000
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linear with the size of the data for WinBUGS, JAGS and OpenBUGS.
Whilst the run time also increases with models that have more para-
meters, the size of the data is usually the limiting factor for medical
problems (especially when considering that the number of parameters
should be much less than the number of observations within data). The
relatively slow run time associated with the MCMC estimation has
perhaps limited more widespread use of BUGS (Cowles, 2004), but
these issues are not unique to BUGS but are common to most MCMC
estimation approaches. Recent developments of the R library Nimble
enables conversion of BUGS code to C+ + code, which in the example
above, has improved the run time by a factor of approximately 25.
Inclusion of Nimble into the model construction adds additional pro-
gramming complexity, but a suitable model can be developed within
BUGS on a subset of a large dataset, and once developed, then specified
within Nimble. Using multiBUGS to run the models resulted in a faster
run time than JAGS, openBUGS and winBUGS and did not require any
additional coding.

2.2. Spatio-temporal analysis of data: estimating vaccine effectiveness

Analysing polio vaccination data from Ethiopia shows how BUGS is
particularly useful for combining multiple data sources into a statistical
model. The aim of the analysis was to estimate the probability that a
child aged 12 months would be vaccinated with the oral polio vaccine
(OPV), and examine whether there was evidence for spatial or temporal
variation in this estimate of vaccination coverage. Three different data
sources were used: (1) Demographic and Health Survey (DHS) 2011; (2)
DHS 2016; and (3) non-polio Acute Flaccid Paralysis (AFP) surveillance
data for 2005-2016 from the WHO Polio Information System
(Tangermann et al., 2017). Within the DHS data, the number of OPV
doses were reported for each child aged < 5 years of age included in
each cross-sectional survey. For the non-polio AFP data, cases of non-
polio AFP were assumed to be an opportunistic sample of children
aged < 5 years of age within Ethiopia where OPV vaccination histories
were recorded as part of the case investigation. The non-polio AFP data
have been previously used to estimate country- and province-level
probabilities of being immunised with 3+ doses, where higher values
were previously associated with a lower probability of reporting po-
liomyelitis outbreaks (O’Reilly et al., 2017; Tegegne et al., 2018), but its
predictive ability may be affected by the uncertainty in the estimates.
With the addition of DHS data estimates of vaccine effectiveness are
likely to be more representative and reliable.

2.2.1. Model formulation

The reported number of OPV doses were converted to a response
variable of whether 3 + OPV doses had been received (y;(d) where i
refers to a child’s index and d refers to the dataset origin, which is
omitted from further equations for clarity), and explanatory variables
included in the model were year of vaccination according to the
Gregorian calendar (t;, which was inferred from the child date of birth
and that routine OPV doses in Ethiopia are administered at 6, 10 and 14
weeks (WHO, 2019)), district of residency (z;), number of eligible
supplementary immunisation activities (SIAs, s;) extrapolated from an
OPV SIA calendar and exposure to routine immunisation (r;) using
Diptheria-Tetanus-Pertussis (DTP) vaccination information (the DTP
vaccine is administered concurrently with OPV drops in the routine
immunisation series). Dose history of DTP vaccination was included
within the DHS surveys and was used to augment DTP vaccination data
for AFP cases, as DTP vaccination is not included in the AFP surveil-
lance data in Ethiopia.

The model was used to test the hypothesis that estimates of vacci-
nation coverage vary across districts and in time and that SIAs increase
the probability of a child being ‘fully vaccinated’ (i.e. receiving
3 + OPV doses). Additionally, each data source is assumed to have an
associated reporting factor to account for small changes in how the
survey question is asked, differences in the sampled populations and
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potential reporting bias (Cutts et al., 2013), modelled using an adjust-
ment factor B4. We assume a binomial model for the response with
associated regression coefficients as described above and mechanistic
variables that describe individual vaccination histories from the data.
The response variable Y. = {Y; ,i = 1,...,N} takes the value of 0 or 1
according to whether 3 + OPV were reported by data source (Y,: AFP,
Yq41: DHS 2011, Yg46: DHS 2016) while z;, t;, d; are covariates used to
explain the variation (in district, time and dataset, respectively) and s;
are the number of SIA campaigns inferred from the childs birth date and
interview date and dtp; are the number of OPV doses received via
routine immunisation. The parameters ;s and (3, correspond to the
parameters associated with SIAs and DTP OPV doses, (3, and f3; are the
corresponding variables for the covariates. The effectiveness (ie. the
probability of receiving 3 + OPV doses associated with each incre-
mental increase in SIA or DTP) is 1 - (1/exp(fs)) and 1 - (1/exp(p.))-
The model is as follows;

Y, ~ binomial (1;, 1)

logit (u;) = B,z + Bt + Byd; + B;sia; + B.dtp,

Developing the model in BUGS allowed for changes in the model
structure such as inclusion of interaction terms and adaptation of the
model beyond a standard generalised linear model framework to be
made with relative ease. For example, data on OPV doses provided via
routine immunisation was not available within the AFP dataset so it
was augmented (Kery and Schaub, 2011) from the spatial-temporal
patterns in the DHS data assuming,

dtp; ~ binomial(u, ;, 1)

logit (u, ;) = o t; . ¥,2; . log(age;)

To complete the model, we specify minimally informative priors
where the regression coefficients were assigned 3., B, Ba, Bs, Br ~ N
(0,7) and T ~ U(0.1,1) so that the posterior was largely influenced by
the data. In this circumstance selection of these and alternative priors
resulted in consistent posterior distributions but sometimes the pos-
terior is unidentifiable and different variances were selected [Lawson,
2009]. The model was implemented in JAGS and the outputs examined
within R. We generated three MCMC chains of length 10,000 iterations
with a burn-in of 5000 and thinning to every 10™ to obtain 1500
samples from the joint posterior distribution. To transform the model
parameters into more interpretable outputs, the parameters were used
to estimate the district-level probabilities of receiving 3+ doses of OPV
through routine immunization and the probability of a child 12 months
of age receiving 3 + OPV doses through both routine immunization and
scheduled SIAs for 2011, along with estimates of vaccine effectiveness.

Different models were run in order to assess district estimates of
vaccination in the presence of different covariates. The deviance in-
formation criteria (DIC) was used to compare the fit of each model and
the model with the smallest DIC was assumed to provide the best fit to
the data. At least two runs of the model were generated to compare the
DICs to ensure consistency of the outputs.

2.2.2. Model results and interpretation

A model was developed to account for district of residency and year
of vaccination as explanatory variables, and was compared to including
the impact of the number of SIAs (by adding 3;) and whether this im-
pact varied by district, year, or both. The DIC values illustrate increased
evidence for inclusion of the SIA exposure histories into the models
(DIC 22,679.3 compared to 22,842.8, respectively). Further model de-
velopments included augmented data so it was not possible to directly
compare DIC values. Outputs of the probability of being vaccinated via
routine immunisation and overall vaccination probabilities show that
OPV vaccination coverage in Ethiopia varies spatially (Fig. 3), and
vaccination has steadily improved since 2012 (Table 3). The effec-
tiveness of the first SIA was estimated to be 0.44 (95% CI 0.34-0.53),
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and subsequent SIAs were estimated to further improve the chances of
being fully vaccinated but with diminishing returns (DIC of constant
effectiveness model = 36,348.8 vs. DIC of per-dose model = 36,285.9,
difference = 62.9). The model also suggests that the source of vacci-
nation data impacts estimates of vaccination coverage, with DHS data
typically reporting a lower odds of a child 12 months of age being
vaccinated with 3+ doses of OPV than the AFP data (odds ratio asso-
ciated with DHS data 0.35 (95% CI 0.32-0.38)).

2.2.3. Comments as a first time user

Building the model in JAGS was relatively straightforward and ex-
isting example code (from similar applications) was easily replicable,
which made the process behind building the model easier. Because
adjusting priors and parameters within the JAGS model could be done
with ease, the model could be built in a stepwise manner for each da-
taset by adding one covariate and corresponding prior at a time until
the final model with all the data was constructed. Once all data was
added to the final model, it was straightforward to parameterise the
model and easy to apply the aforementioned minimally informative
priors. In an effort to fit the best model to the data, a conditional au-
toregressive model (CAR model (McCarthy, 2009)) was trialed using
spatial adjacency data and implemented in OpenBUGS (as the GeoBUGS
module has not yet been fully tested in JAGS). This model takes into
account spatial autocorrelation between neighbouring areal units and
uses a spatial covariance matrix to assess spatial correlation that cannot
be explained by the other model covariates alone, assuming that v[1 :
N] ~ car.normal(adj[],weights[],num[],t,) where adj is a spatial ma-
trix describing the neighbourhood structure, weights are the corre-
sponding weights for the neighbourhood structure, num is the sum of
all neighbours and t, is the standard deviation. Here, the adjacency
weights were taken to be simple binary values; 1 if district d; has a
common boundary with dj and 0 otherwise.

In comparison to the model implemented in JAGS, making changes
to the openBUGS model was more difficult. Priors needed adjusting
each time a new covariate or parameter was added into the model (to
prevent the model from crashing) and the run time was much longer
than when run in JAGS. OpenBUGS trap windows pop up each time an
unsatisfactory model is run and deciphering the convoluted error
messages can be difficult and time consuming to amend. JAGS errors
appear directly in the R Console and contain more constructive feed-
back, such as indicating exactly which line of code contains the error.
We found the model without the CAR structure had a much better fit to
the data (difference in DIC > 100) so the CAR model was discarded.

2.3. Infectious disease dynamics: estimating transmission from outbreak
data

Mechanistic (as opposed to statistical) transmission models are ex-
tremely useful in understanding disease dynamics. In particular, the
class of Susceptible-Infectious-Resistant (SIR) models are widely used to
estimate transmission and test the efficacy of control measures. SIR
models describe the spread of infectious disease through a population in
time, and the extent of spread depends on natural history parameters
such as the transmission rate and the duration of infectiousness (Keeling
and Rohani, 2008; Renshaw, 1991). Such parameters are traditionally
assumed known, however with appropriate (i.e. detailed) data, these
can be estimated exploiting the flexibility of Bayesian modelling to
allow for flaws in the data, and to fully quantify the associated un-
certainty.

Here, we consider data on occurrence of Salmonella typhimurium in
pigs, using simulated data based on (Correia-Gomes et al. (2014)). The
data consists of bi-weekly counts (over 18 weeks so that t = 1,..., 9) of
animals that are either classified as susceptible (S) or infectious (I) or
resistant/carrier (R), for 8 pig cohorts. These classifications of infection
state were based on imperfect tests, a point we return to later.
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Table 3 2.3.1. Model formulation
Summary of the outputs from the polio vaccination model applied to Ethiopia. Most conventional SIR models assume that the rate at which an
< hr size = 0 width ="52%" animal has infectious contacts is constant in time and proportional to
align = center > the density of infectious animals. The constant of proportionality B is
Value Relation to equations  Estimated value called the transmission rate parameter. Assuming contacts between
(95% CI) animals are random, the number of infections in a bi-weekly time step is
Scalar of output associated with OR of Ba1, Baz 0.35 (0.33, 0.38) Poisson diStri,bUted with mean_ _Kt = la(It/Nt)’ where N is the t,Otal
DHS data number of animals. The probability of no infectious contacts per animal
Mean value of district variation mean(B,) —0.09 (-0.25, is then exp(-f(I;/Ny)) so that the probability of infection is p; = 1 - exp
Sabilit of . X 0.06) (-B/NY). The number of new cases assumed to be C; ~ Binomial
Mean probability of receiving ogit™ "(t;) 0.35 (0.16, 0.57) s 1e1s .
3+ OPV doses in 2005 (St’Pt).' To allow for cohort varlablhty'(] =1,..., 8) as well as temporal
2006 logit™ ' (B(2) 0.33 (0.26, 0.41) variation due to external factors, we include a zero mean random co-
2007 logit ™ }(B«(3) 0.26 (0.21, 0.33) hort-time effect, so that p;; = 1 -exp(-B(I;¢/Nj0))exp(r;). As such, we can
2008 logit ™" (B«(4) 0.26 (0.2, 0.32) formulate the model for new infections at the end of time period t as
2009 logit ™ }(B«(5)) 0.3 (0.23, 0.36)
2010 logit ™ }(B(6)) 0.22 (0.17, 0.27) Cj: ~ Binomial(S;;, pj0)
2011 logit ™ }(B«(7)) 0.15 (0.12, 0.19)
2012 logit ™ '(B«(8)) 0.29 (0.22, 0.38) pit = 1 - exp{-B;-1/Nj--1exp(r;)}
2013 logit ™ }(B(9) 0.34 (0.27, 0.41)
2014 logit~'(B.(10)) 0.42 (0.34, 0.5) cloglog(pjo) = log(B) + log(Ij-1) - log(Nj-1) + 1
2015 logit™ ' (B(11)) 0.43 (0.36, 0.51) R .
2016 logit™1(B(12)) 0.36 (0.3, 0.43) I ~ N(tj,eq,0;) fort > 1, j=1,...,8
2017 logit ™ 1(B(13)) 0.43 (0.36, 0.51)
2018 logit ~(B.(14)) 0.36 (0.3, 0.43) rj; ~ N(0100)
Effectiveness of first SIA 1- (1/(eg)) 0.44 (0.34, 0.53) .
second SIA 1-(1/ek) 0.57 (0.49, 0.64) So that for each cohort, j, the effects rj capture the any unobserved
third SIA 1-1/E) 0.64 (0.57, 0.7) but structured (modelled by a random walk) effects in time.
forth SIA 1-(1/(eB) 0.73 (0.67, 0.77) Recall however, that the detection of the infection was based on
fifth and subsequent SIAs 1-(1/(ef) 078 (0.74, 0.81) imperfect tests (serological and bacteriological), whose parallel speci-

ficity (true negatives) can nonetheless be assumed 100%. However, the
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posterior probability distribution of not detecting an infected case.

sensitivity (true positives) of both tests is not 100% and as such the
observed number of infected animals Iobs;, are a lower bound of the
true (unobserved) number L. We can then write Iy = Iobs; + Iobj
where Inobj; is the number of false positives. This can be modelled as:

Inob;; ~ Binomial(Nj, pND)

Where the probability of not detecting an infected case pND = (1 -
SenC)(1 - SenE), with SenC and SenE representing the sensitivity
probability of each test (and perfect specificity (Eriksson and Aspan,
2007; Harris, 2003)). Treating Inobj, as unobserved allows formal
quantification of the uncertainty due to the test sensitivity. Historical
information on the sensitivity of both tests ((Eriksson and Aspan, 2007;
Harris, 2003)) was used to construct informative beta prior distribu-
tions for SenC and SenE, namely SenC ~ Beta(48.5,50.5) and SenE ~
Beta(58.5,27.5).

To model the transition from infectious to resistant we can use si-
milar arguments as before (see (Correia-Gomes et al. (2014)) for de-
tails) and write

Rnew;; ~ Binomial(lj;, pRj)
cloglog(pRj) = log(a) + sj
sj ~ N(0,0,%)

Where Rnew;; is the number of (new) animals that become resistant
at the end of t, and pRj is the probability that an animal becomes re-
sistant. Parameter a is the associated recovery rate, while sj is a cohort
random effect allowing for cohort heterogeneity.

Finally, considering the transition from resistant to infectious we
use the following model

Inewj; ~ Poisson(u;c)
log(y;) = log(w) + log(Rj1) + qj
4j ~ N(0,0,)

again using similar arguments to before, but replacing the binomial
with a Poisson on the basis that this transition is a very rare event and

that a Poisson distribution is a good approximation to the binomial
distribution for small values of p (Rice, 2007). Inewy; is the number of
new infectious animals (from this transition) in cohort j at end of time t,
while v is the transmission rate parameter from resistant to infectious.
Rj¢1 is the number of resistant animals in the previous time step, so its
logarithm is used an as offset. Lastly, q_j is another cohort random ef-
fect.

2.3.2. Model implementation and results

To complete the model, we use minimally informative priors for the
inverse of the three variance parameters (1/0,%1/0,%,1/ 0q2 ~ Gamma
(0.5,0.005)). This prior has mean 100 and variance 20,000 so it is still a
flat prior. Unlike conventional Gamma priors with mean 1, the larger
mean of 100 can avoid the chains getting stuck at very low values. Also,
we use flat priors N(0100) for log(f3), log(a) and log(v) (note the large
standard deviation). The model was written in the BUGS language, but
implemented in the Nimble package within R (de Valpine et al., 2017).
The run-time using Nimble was 20 min on a 16GB RAM laptop with an
i7-8550U CPU. Three MCMC chains were ran for 300,000 iterations,
and 200,000 of those were discarded as the burn-in. Only one in ten
samples were collected to improve mixing, resulting in a total of 30,000
samples. Here the maximum Gelman-Rubin statistic (across 94 quan-
tities) was 1.03, implying the chains had likely converged to the pos-
terior.

The median estimates of the transmission parameters and the Ry
from this case study are within what is expected for this infectious
disease (i.e. Salmonella is an agent that mainly spreads via the faecal-
oral route). These estimates are also comparable with estimates from
other simulation studies (Hill et al., 2008; Lurette et al., 2008) and very
similar to what is known from experimental and field studies (Fravalo
et al., 2007; Nicholson et al., 2005). The estimate of the transition rate
(PB) is slightly higher than that reported in (Lurette et al. (2008)). For a
more detailed discussion please see (Correia-Gomes et al., 2014).

The top three panels of Fig. 4 show the posterior distributions of the
three transmission parameters f3,a and v. These are the parameters of
interest, and point estimates of these can be used to run SIR models,
noting that the associated uncertainty can also be propagated by using
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the MCMC samples. The bottom left panel shows the posterior density
of Ry = [3/a, the basic reproduction ratio which quantifies the number
of secondary cases to which a primary case gives rise during the in-
fectious period. If Rgp < 1 then the disease is receding, but Ry > 1 im-
plies the disease is spreading. The bottom middle panel shows the
posterior mean and 95% credible intervals of r; given the data. This is
the temporal random effect that captures any latent temporally varying
effects in the transition from susceptible to infectious, in cohort 1.
Lastly, the bottom right plot shows the posterior density of the prob-
ability of not detecting an infected case, pND, showing that although it
is small, it is non-zero. As expected both tests are imperfect as bacter-
iology lacks sensitivity given intermittent shedding of Salmonella by
infected pigs, and there is a delay between infection and expression of
antibodies detected by serology. It was consequently important to in-
clude test sensitivity within the model as not accounting for this lack of
sensitivity could generate a lower transmission rate (Correia-Gomes
et al., 2014).

2.3.3. Comments as a first time user

Building the model in WinBUGS was relatively straightforward,
existing example code from different models were easily replicable,
which made the process behind building the model easier. We have
started with a simpler model (without cohort effects) and then step-by-
step incorporated additional complexity. At each step the priors and
parameters had to be adjusted to prevent the model from crashing. As
mentioned previously the WinBUGS trap windows pop up each time an
unsatisfactory model is run and deciphering the convoluted error
messages can be difficult and time consuming to amend the model.

3. Conclusions

The BUGS language is a useful way to put the theory of Bayesian
inference into practice due to the clear distinction between model
specification and model implementation (MCMC). BUGS has adapted to
current best practice in statistical inference (through additional soft-
ware development) applied to infectious diseases and many other
medical fields. All versions of BUGS continue to gain popularity in re-
search. Typing “WinBUGS Bayesian”, “OpenBUGS Bayesian” or “JAGS
Bayesian” into Google Scholar returns > 24,700 > 4800 and > 8400
hits respectively. Using R to run BUGS models is preferred because of
the ease in data manipulation, efficiency in running models and ma-
nipulation of the outputs.

For complex models applied to large datasets, model implementa-
tion can become increasingly slow. However, the option of using BUGS
with R for model implementation, and the recent availability of
multiBUGS have made BUGS more computationally efficient. The pro-
cess behind model development and implementation was illustrated
using the examples in this article. However, once the software becomes
limiting, it is likely that alternative programming languages that enable
alternative implementation to MCMC, or are just faster, would need to
be considered. Moderate speed is not a issue unique to BUGS, so the
choice of programming langugue becomes a trade-off between mode
run-time and user friendliness.

This article aims to illustrate the utility of using BUGS rather than
being an exhaustive list of models that can be implemented, but some
additional frameworks are worth mentioning. Accounting for correla-
tion between parameters and non-independent data are important for
spatiotemporal analyses, for which several methods are available, such
as the CAR model that was trialed using the OPV data. This class of
auto-regressive models have been used to account for spatial infectious
disease data and covariates not being fully independent, and enables a
robust analysis (for example see Lawson (2009) and a specific appli-
cation to dengue modelling by Lowe et al. (2013). If it is not possible to
specify a model using the distributions provided within BUGS, the
likelihood function can be specified using the ‘ones’ or ‘zeros’ trick (and
the log-likelihood minimised (OpenBUGS, 2006)) and the MCMC

Epidemics xxx (xxxx) XXxx

machinery used to estimate the posterior distribution (example pro-
vided in the SI).

The versatility, ease of use and implementation of Bayesian analysis
makes BUGS an excellent tool in infectious disease modelling. For the
authors, this means that BUGS has been used for over 10 years and will
continue to be used in both teaching and research.
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The full code for each example is provided at https://github.com/
kath-o-reilly/Command-BUGS

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the
online version, at doi:https://doi.org/10.1016/j.epidem.2019.100361.
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