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A B S T R A C T

Particulate matter (PM) air pollution is one of the major causes of death worldwide, with demonstrated adverse
effects from both short-term and long-term exposure. Most of the epidemiological studies have been conducted
in cities because of the lack of reliable spatiotemporal estimates of particles exposure in nonurban settings. The
objective of this study is to estimate daily PM10 (PM < 10 μm), fine (PM < 2.5 μm, PM2.5) and coarse particles
(PM between 2.5 and 10 μm, PM2.5–10) at 1-km2 grid for 2013–2015 using a machine learning approach, the
Random Forest (RF). Separate RF models were defined to: predict PM2.5 and PM2.5–10 concentrations in monitors
where only PM10 data were available (stage 1); impute missing satellite Aerosol Optical Depth (AOD) data using
estimates from atmospheric ensemble models (stage 2); establish a relationship between measured PM and sa-
tellite, land use and meteorological parameters (stage 3); predict stage 3 model over each 1-km2 grid cell of Italy
(stage 4); and improve stage 3 predictions by using small-scale predictors computed at the monitor locations or
within a small buffer (stage 5). Our models were able to capture most of PM variability, with mean cross-
validation (CV) R2 of 0.75 and 0.80 (stage 3) and 0.84 and 0.86 (stage 5) for PM10 and PM2.5, respectively. Model
fitting was less optimal for PM2.5–10, in summer months and in southern Italy. Finally, predictions were equally
good in capturing annual and daily PM variability, therefore they can be used as reliable exposure estimates for
investigating long-term and short-term health effects.

1. Introduction

Air pollution, especially particulate matter (PM), is one of the major
causes of death. Recently, the World Health Organization estimated
around 4.2 million of deaths attributable to air pollution exposure
worldwide (WHO, 2018). Similarly, the latest update of the Global
Burden of Diseases study ranked PM as the sixth leading cause of death
out of a list of 84 risk factors, being responsible for over 4 million
deaths in 2016 (GBD 2016 Risk Factors Collaborators, 2017).

During the last decades, many epidemiological studies reported
consistent health effects of PM from both short-term (i.e. daily

variability) and long-term (i.e. annual averages) exposures, however
studies have been historically conducted in major cities, where mon-
itoring networks are more dense and allow measurements and models
of spatiotemporal PM variability with more accuracy (Atkinson et al.,
2014; Beelen et al., 2014; Brook et al., 2010; Cesaroni et al., 2013;
Raaschou-Nielsen et al., 2013; Rückerl et al., 2011; Samoli et al., 2013;
Stafoggia et al., 2013). However, it is important to better characterize
air pollution distribution and its health effects also in smaller cities,
sub-urban and rural areas, where a large fraction of the population lives
and which might display higher baseline risks because of less access to
healthcare facilities or more deprived socio-economic conditions (Bravo
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et al., 2017; Matz et al., 2015).
In the last ten years there has been an abundance of studies using

satellite measurements of Aerosol Optical Depth (AOD), sometimes
referred to as Aerosol Optical Thickness, to help predicting ground-level
PM concentrations over places or periods with no measurements (de
Hoogh et al., 2018; Di et al., 2016; Kloog et al., 2012; Lee et al., 2015;
Stafoggia et al., 2016). AOD quantifies the amount of light absorbed or
scattered by suspended particles, therefore it represents a relevant
parameter to predict PM variability, though an imperfect one, being a
columnar estimate while PM concentrations are measured at the ground
level. One of the main limitations of AOD is that it is often missing due
to cloud coverage, snow or water glint contamination, satellite cali-
bration maneuvers or lost data transmission, which has induced in-
vestigators to fill in large gaps in PM predictions by use of different
approaches such as kriging, spatiotemporal interpolation or geographic
weighted regression. Freely available AOD estimates from atmospheric
ensemble models might represent a promising source of data in order to
pre-impute satellite-based AOD missing values before PM calibration,
however applications in this field are scarce (Zhu et al., 2017).

We have previously developed a spatiotemporal model aimed at
predicting daily PM10 for each 1-km2 of Italy for the years 2006–2012
using satellite AOD, land use variables and meteorology. Specifically,
we have calibrated observed PM10 concentrations to AOD data using a
multivariate linear mixed model, with random intercepts by day and
slopes by AOD, and fixed effects for the other spatial and spatio-
temporal parameters. The model was able to predict 65% of PM
variability on held-out monitors, and displayed negligible bias
(Stafoggia et al., 2016).

Machine learning methods have recently become an integral part of
modern research, as they offer flexible and automated procedures for
the prediction of a target variable based on past observations, un-
raveling at the same time underlying patterns in data and dealing with
complex interactions among predictive variables (Liaw and Wiener,
2002). Among the many different machine learning approaches avail-
able, random forests have several advantages compared to other ma-
chine learning methods, including: the existence of user-friendly open-
source R libraries, among which ranger is designed to efficiently handle
big data; the simplicity of the method, which requires the selection of
only three parameters, mtry (the number of variables in the random
subset at each node), num.trees (the number of trees in the forest) and
min.node.size (which governs the depth of each regression tree); the
robustness of the model to parameter specifications; and the ability of
the model (inherent to all decision tree-based designs) to handle non-
linearity and high-order interactions among predictive variables.

Random forest methods have been applied to estimate pollutant
exposure at large spatial scale. Chen et al. (2018a, 2018b) used the
random forest approach to estimate PM10 and PM2.5 over China during
2005–2016 providing AOD, meteorology and land use information as
predictors. Similarly, Araki et al. (2018) developed a spatiotemporal
land use random forest model for estimating metropolitan NO2 ex-
posure in Japan and Hu et al. (2017) applied random Forests for PM
predictions in US.

The ongoing BEEP (Big data in Environmental and occupational
Epidemiology) project aims to collect, link and analyze a large amount
of data coming from different sources to support exposure assessment
and environmental epidemiology studies in Italy. In the frame of the
BEEP project, we developed a five-stage modelling strategy based on
random forests to impute missing AOD data using atmospheric ensemble
models, and to predict PM10, PM2.5 and PM2.5–10 daily concentrations at
1-km2 spatial resolution across Italy for the period 2013–2015. As
secondary aims, we also provide updated estimates of PM10 for the
period 2006–2012.

2. Materials and methods

2.1. Study domain

Italy is a boot-shaped peninsula located in southern Europe. It is
characterized by diverse geo-climatic areas, with two major mountain
ranges (Alps and Apennines), one large plain (the Po valley), a long
coastal line and many medium-sized urban areas (46 municipalities
above 100,000 inhabitants, 99 between 50,000 and 100,000, 165 be-
tween 30,000 and 50,000). Big metropolitan areas are also located
along the territory with population over 500,000 inhabitants. The
country's total area is 307,635 km2. For the aims of the project, we
divided the Italy spatial domain into 1-km2 grid cells, as previously
reported (Badaloni et al., 2018).

2.2. Data

2.2.1. PM monitored data
We obtained daily data on 24-hour mean PM10 and PM2.5 con-

centrations over the period 2006–2015 from all the available mon-
itoring sites provided by the Italian Institute for Environmental
Protection and Research (ISPRA). There were 198, 221 and 229 stations
measuring both PM10 and PM2.5 during 2013, 2014 and 2015 respec-
tively, while 308, 298 and 295 stations measured only PM10 con-
centrations. In each monitor where both PM fractions were available,
the coarse fraction (PM2.5–10) was derived by subtracting PM2.5 from
PM10. Since the availability of PM2.5 monitors before 2013 was very
limited, we restricted our models for PM2.5 and PM2.5–10 to 2013–2015.

2.2.2. Aerosol Optical Depth (AOD) data
Aerosol Optical Depth (AOD) is a satellite parameter measuring the

degree to which suspended particles affect the transmission of light by
absorption or scattering. Therefore it is an indirect measure of the
particles present in the column of air on a given time. Recently NASA
has developed an algorithm, the Multi-Angle Implementation of
Atmospheric Correction (MAIAC), which provides better quality AOD
data at 1-km2 spatial resolution compared with the standard MODIS
products (Lyapustin et al., 2018). In this analysis, as in our previous
application (Stafoggia et al., 2016), we used MAIAC AOD based on
collection 6 MODIS Aqua L1B data for the years 2006–2015.

MAIAC AOD data can be unavailable on a large sample of grid cells
and days because of cloud coverage, water/snow glint reflectance and
satellite calibration. Therefore, we downloaded modelled AOD data
from the Monitoring Atmospheric Composition and Climate - Interim
Implementation (MACC-II) project, developed within the Copernicus
Atmosphere Monitoring Service (CAMS) and available from the
European Centre for Medium-Range Weather Forecasts (ECMWF)
website (MACC-II Collaborative Group, 2014). CAMS provides pre-
dicted total AOD as the sum of five types of tropospheric aerosols: sea
salt, dust, organic and black carbon, and sulfates. Three-hour AOD es-
timates at five different wavelengths (469 nm, 550 nm, 670 nm, 865 nm
and 1240 nm) for all days in 2006–2015 were downloaded at the
maximum spatial resolution available in ECMWF, equal to
0.125°× 0.125° (approximately 10× 10-km2).

2.2.3. Meteorological parameters
Meteorological parameters (daily mean air temperature, sea-level

barometric pressure, precipitations, relative humidity, wind speed and
direction) and planetary boundary layer height were retrieved by the
ERA-Interim reanalysis project (Dee et al., 2011), the latest global at-
mospheric reanalysis produced by the ECMWF. Data have been down-
loaded at the spatial resolution of 0.125°× 0.125° for the hours 0.00
and 12.00 for each day in 2006–2015.

2.2.4. Other spatiotemporal data
We collected monthly estimates of Normalized Difference
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Vegetation Index (NDVI) from the publicly available MODIS NDVI
product (MOD13A3) at 1-km2 spatial resolution. Desert dust advection
days were identified across the whole country using a combination of
atmospheric tools, and a 0/1 indicator was defined for each grid cell
and day based on the absence/presence of a desert advection episode.
See Pey et al. (2013) for further details.

2.2.5. Spatial data
We computed a number of spatial predictors at the grid cell level,

e.g. variables changing from cell to cell but assumed to be fixed over
time. These are summarized in Table 1 and include: a) geo-climatic
zones, as defined by ISPRA; b) resident population, based on the Na-
tional Census 2011; c) point emission sources, provided by ISPRA and
expressed as tons/year of five pollutants (PM10, SO2, NO2, CO, NH3)
emitted in 2010 by 743 industrial plants distributed across the country;
d) total emissions (emitted from both point and areal sources on 2010)
of the five pollutants for each of the 110 Italian provinces; e) mean
elevation, obtained from the Copernicus Land Monitoring Service
(CLMS) - European Digital Elevation Model (EU-DEM), at 30m spatial
resolution; f) imperviousness surface areas (ISA), derived from CLMS
for the year 2012; g) light at night data, collected from the Visible In-
frared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB), year
2015 (Elvidge et al., 2017); h) land cover data, based on the Corine
Land Cover (CLC) database, year 2012 (EEA, 2013), and defined as
percentage of each grid cell covered by nine CLC classes (high/low
development, arable/agricultural land, crops, pastures, shrubs, decid-
uous, evergreen); i) road density data, collected from the TeleAtlas
TomTom_2012 road network, and defined as number of meters within
the cell, and distance of the cell centroid from the closest road, for three
types of roads: highway, major+ secondary, or local, based on CLC
Functional Road Classification; j) proximity of each cell centroid to
other features: airports, ports, sea, lakes.

2.3. Statistical methods

We developed a five-stage machine-learning approach, based on a
random forest methodology, aimed at: 1) predicting PM2.5 and PM2.5–10

concentrations in monitors where only PM10 data were available (stage
1), 2) imputing missing MAIAC-AOD data using co-located multi-band
CAMS-AOD data (stage 2), 3) calibrating the spatiotemporal PM con-
centrations with AOD data, meteorological parameters and land-use
terms (stage 3), 4) predicting the output of the stage 3 model over all 1-
km2 grid cells of Italy and all days in 2013–2015 (2006–2015 for PM10),
and 5) improving the stage 3 predictions by using additional informa-
tion at a finer spatial resolution (monitor coordinates or 150-m buffer),

with the aim of capturing local sources of PM not accounted for by the
wider 1-km2 resolution. Each of the five stages is briefly described
below while more details are reported in the online material, appen-
dices A to E. Fig. 1 displays a schematic representation of the five-stage
process.

2.3.1. The random forest model
Random forests, in general terms, represent a family of methods that

consist in building an ensemble (or forest) of decision trees. Different
versions of random forests have been proposed in the literature, de-
pending on how data are sampled and decision trees are grown at each
iteration (Breiman, 1994, 2001; Cutler and Zhao, 2001; Geurts et al.,
2006; Ho, 1998; Kwok and Carter, 1990; Rodriguez et al., 2006).

In the proper Random Forest design (Breiman, 2001, hereafter re-
ferred to as RF), each tree is built using a bootstrap sample of the data,
and each node of the tree is split according to the best of a subset of
randomly chosen predictors (Liaw and Wiener, 2002). Finally, outputs
from each tree are averaged to obtain an ensemble prediction of the
target variable. The model also provides an estimate of the “im-
portance” of each predictor by quantifying how much prediction error
increases when data for that variable is permuted while all others are
left unchanged (Liaw and Wiener, 2002).

In this study we have applied the RF design to each step, as sum-
marized below and described in detail in the online appendices A–E.

2.3.2. Stage 1: predicting PM2.5 and PM2.5–10 from PM10

The objective of the stage 1 is to estimate the PM2.5 and PM2.5–10

data at the monitors by using, as the main predictive variable, daily
PM10 concentrations from co-located stations. The number of monitors
measuring PM10 was 521, 539 and 546 for 2013, 2014 and 2015, re-
spectively. The corresponding figures for PM2.5 were 198, 221 and 229,
distributed across all the 20 Italian regions (before 2013, only 15 re-
gions had PM2.5 data, preventing the application of this method for the
years 2006–2012) (Fig. A.1). Each monitor is classified according to its
location into “traffic”, “industrial” and “background”.

The RF model for this stage is reported in detail in Appendix A.
Briefly, for each year in 2013–2015 we defined a RF model where daily
PM2.5 concentrations were the target variable, and co-located PM10

concentrations were the main predictor. Also, we included monitor
location (traffic, industrial or background), month, day of the week and
geographical coordinates of the monitor as additional parameters, in
order to capture temporal patterns (seasonal and weekly), smooth
geographical gradients in PM concentrations distributions and specifi-
city of the PM2.5/PM10 relationship by type of monitoring location in
the final predictions.

Table 1
Description of the spatial variables.

Variable Description Source Spatial resolution

Domain 307,635 1×1-km2 grid cells – 1 km
Administrative areas Regions, Provinces, Municipalities ISTAT Polygons
Geo-climatic zones Alpine ridge (zone 1), Po valley (zone 2), high Adriatic (zone 3), Appennine (zone 4), high Tyrrenum

(zone 5), mid Tyrrenum (zone 6), low Adriatic and Ionium (zone 7), low Tyrrenum and Sicily (zone
8), Sardinia (zone 9)

ISPRA 9 macro-areas

Population Resident population from census October 2011 ISTAT Census blocks
Corine land cover Land cover characteristics EEA ~100m
Imperviousness surface areas An indicator of the spatial distribution of artificial areas. Examples include housing areas, traffic

areas (airports, harbors, railway yards, parking lots), roads, industrial and commercial areas,
construction sites, etc.

EEA - CLMS ~20m

Light at night Satellite-based nighttime imagery VIIRS - DNB 750m
Elevation European Digital Elevation Model EU-DEM EEA - CLMS ~30m
Roads Road density (meters within the cell) and proximity (distance between centroid and closest road) by

road type: highway, major, secondary, local
TeleAtlas TomTom
network

Lines

Industrial emissions PM10, SO2, NO2, CO and NH3 emissions (year 2010) from 743 major industrial plants; proximity
from the closest point

ISPRA Points

Abbreviations: ISTAT (Italian Institute of Statistics), ISPRA (Italian National Institute for Environmental Protection and Research), EEA (European Environment
Agency), CLMS (Copernicus Land Monitoring Service), VIIRS-DNB (Visible Infrared Imaging Radiometer Suite-Day/Night Band).
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Model fitting was evaluated in two different ways: first, by checking
the correlation between observed PM2.5 concentrations and predictions
in out-of-bag (OOB) samples (i.e. data not included in the bootstrap
samples at each iteration of the forest, therefore not contributing to the
definition of each decision tree); second, by applying a 10-fold cross-
validation approach on the monitoring stations, i.e. randomly splitting
the total set of monitors into ten groups, then applying, in turn, the
model on nine groups (“training” set) and predicting it to the tenth
group (“testing” set), finally checking the correlation between observed

PM2.5 concentrations and predictions in held-out monitors. For each of
the two approaches we estimated the R2 (percent of variability of
measured PM2.5 captured by predictions), the root mean squared pre-
diction error (RMSPE), and the intercept and slope of the simple linear
regression between measured and predicted PM2.5. The same approach
has been applied to PM2.5–10 as the target variable.

2.3.3. Stage 2: imputing missing MAIAC-AOD from CAMS-AOD
As previously mentioned, MAIAC AOD data are often missing. In

Fig. 1. Graphical representation of the five stage process.
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Italy, the percentage of missing MAIAC AOD data ranged between 67%
in 2011 and 83% in 2014, with larger values in winter and autumn,
near the coast and at higher elevations. In our previous study we ac-
counted for such non-random missing patterns by applying inverse-
probability weights in the mixed models (Stafoggia et al., 2016). In the
present analysis we imputed missing MAIAC AOD values through a RF
model using multi-band co-located CAMS AOD values as input vari-
ables. Details of the RF model used in this stage are reported in Ap-
pendix B. Briefly, for each year in 2006–2015, and separately for the
two wavelengths (470 nm and 550 nm) for which MAIAC AOD esti-
mates are provided, we defined a RF model where daily 1-km2 MAIAC
AOD was the target variable and co-located multi-band three-hour es-
timates of AOD from CAMS were the most relevant input variables.
Also, we included day of the year and geographical coordinates of the
grid cells centroids as additional parameters, in order to capture re-
sidual smooth temporal and spatial patterns in the relationship between
MAIAC and CAMS AOD.

Model fitting was evaluated by comparing MAIAC AOD observa-
tions and model predictions in the OOB samples. As described in the
stage 1 model, we estimated R2, RMSPE, intercept and slope as fitting
statistics (see Appendix B for further details).

2.3.4. Stage 3: calibrating PM with AOD, meteorology and land-use data
The aim of the stage 3 model is to establish a relationship between

daily PM concentrations and AOD, meteorology, and land use data in
order to predict PM over locations and days without monitoring sta-
tions (stage 4). To this purpose, we developed a RF model having PM
(on the log scale) as the target variable (PM10 from the measurements,
PM2.5 and PM2.5–10 from the stage 1 estimates) and AOD (as imputed
from stage 2 model) and all other spatial and spatiotemporal para-
meters as potential input variables. We used logarithmic scale to model
PM as it displayed a log-normal distribution, and because we wanted to
derive non-negative predictions. The details of the model are reported
in the online material, Appendix C.

Briefly, for each year and PM metric we modelled log(PM) versus
spatiotemporal parameters (including predicted AOD at 470 nm and
550 nm, month, day of the week, meteorological parameters, PBL,
NDVI, Saharan dust)+ spatial parameters (including cell centroid co-
ordinates, administrative regions, geo-climatic zones, population den-
sity, elevation, ISA, light at night, point and areal PM10 emissions, CLC
variables, street density and distance, proximity to airports and sea). RF
parameters (mtry, num.trees and min.node.size) have been selected as
those which minimized OOB prediction error after a grid search over
multiple candidate values.

As the overall aim of the model is to predict PM in locations without
PM monitors, model fitting was evaluated comparing observed PM

concentrations with predictions in left-out monitors using 10-fold CV by
monitors, as described in stage 1. R2, RMSPE, intercept and slope have
been computed on the full spatiotemporal predictions and dis-
aggregating between spatial (annual averages) and temporal (difference
between daily and annual averages) components, as previously de-
scribed (Stafoggia et al., 2016).

Finally, we used the (spatial and temporal) intercepts and slopes of
the regression between observed and predicted PM in the CV datasets as
an estimate of the bias induced by the estimation procedure, and ap-
plied 10-fold CV regression calibration on the spatial and temporal
components of PM predictions, separately. See Stafoggia et al. (2016)
for further details.

2.3.5. Stage 4: predicting PM from stage 3 model over all Italy
We obtained estimates of daily mean PM concentrations for each 1-

km2 grid cell of Italy by applying the stage 3 model fit.

2.3.6. Stage 5: improving PM predictions from stage 3 by using small-scale
predictors

The fifth stage is aimed to improve stage 3 PM predictions by cap-
turing local sources of PM variation within grid cell. This is achieved by
estimating spatiotemporal predictors at the monitor location (e.g. ele-
vation) or around the monitor (e.g. population and road density within
150-m buffer), and regressing them on the residuals of the stage 3
model. To this aim, we developed an additional RF model, as detailed in
the Appendix E. While the output of this stage cannot be applied ev-
erywhere (because such small-scale data are not available over all
spatial locations of Italy), such data is available in many cohort studies,
where it is desirable to predict air pollution concentrations at individual
addresses.

All statistical analyses have been performed with the R statistical
software, version 3.4.2 (R Development Core Team; http://R-project.
org). All maps have been produced with ArcGIS software (ESRI. ArcGIS
Desktop: Release 10. Redlands, CA: Environmental Systems Research
Institute).

3. Results

PM monitor locations are displayed in Fig. A.1, Appendix A of the
online material, while descriptive statistics of PM2.5 and PM10 data
(2013–2015) are reported in Table 2 below. For PM2.5, both measured
and predicted concentrations from stage 1 are displayed. As a con-
sequence, the numbers of monitors for PM2.5 differs, as they reflect
measurements in the upper part, and predictions (which coincide with
PM10 monitors) in the bottom part.

The results of the stage 1 models are displayed in Appendix A, Table
A.1 (fitting statistics comparing PM measured concentrations with their
predictions in left-out observations and monitors), and Fig. A.2 (scat-
terplot of observed and 10-fold CV predicted PM concentrations for the
year 2015). In summary, PM2.5 and PM2.5–10 predictions on testing
monitors were unbiased (intercepts close to zero and slopes close to
one), with model fitting better for PM2.5 than PM2.5–10, possibly as a
consequence of the higher correlation between PM2.5 and PM10 com-
pared to PM2.5–10 and PM10 (R2=0.93 and 0.60 in 2015, respectively).

Maps with example data for MAIAC and CAMS AOD are presented
in Figs. B.1 and B.2 of the online material, Appendix B. Tables B.1 and
B.2 in the same Appendix show descriptive statistics of MAIAC and
CAMS data, by year and season. Table 3 below reports Pearson corre-
lation coefficients between MAIAC and CAMS AOD data, by year. For
the latter, data at 12.00 am have been used, to match as close as pos-
sible MAIAC retrievals (as AQUA overpass is at around 1.30 pm daily).
Correlations were higher than 0.5 and stable across the years, with
highest values at the same wave length 470 nm, as expected.

Table 4 presents the results of Stage 2 models. For each year, fitting
statistics from out-of-bag (OOB) samples are reported. Results show
very good out-of-sample prediction properties of the RF models, with

Table 2
PM10 and PM2.5 (observed and predicted in the stage 1) concentrations (μg/m3),
2013–2015.

No. monitors Mean SD Percentiles

5 25 50 75 95

PM10

2013 506 25.5 18.1 7.0 14.0 21.0 31.0 61.0
2014 519 24.1 16.9 7.0 13.5 19.9 29.3 56.0
2015 524 26.7 18.2 8.0 15.0 22.0 32.8 62.9

PM2.5

Observed
2013 198 17.4 14.7 4.3 8.2 13.0 20.8 47.0
2014 221 15.7 12.0 4.4 8.0 12.0 19.0 40.0
2015 229 18.3 14.7 5.0 9.0 14.0 22.1 48.0

Predicted
2013 506 17.0 14.3 4.7 8.3 12.9 19.9 45.9
2014 519 15.2 11.5 4.6 8.0 12.0 18.0 38.9
2015 524 17.9 14.4 5.0 9.0 13.7 21.3 47.5
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extremely high R2 (~0.95), negligible mean errors (RMSPE ~0.02) and
no bias (intercepts= 0 and slopes ~ 1). There are no differences by
years. Fig. B.3 in the appendix displays the maps of predicted MAIAC
AOD for two sample days. Finally, Fig. B.4 in the appendix shows the
scatterplot of MAIAC-AOD versus CAMS-AOD (left panel) and the
scatterplot of MAIAC-AOD versus stage 2 AOD predictions (right panel),
for the year 2015.

Table 5 presents the results of the stage 3 model fit for PM10 and
PM2.5 (2013–2015). The corresponding results for PM10 (2006–2012)
and PM2.5–10 (2013–2015) are presented in the Appendix C, Table C.1.
The Stage 3 calibration models for PM2.5 and PM10 all had good out-of-
sample predictive performance, with R2 ~ 0.80 and 0.75 respectively,
small prediction errors, negligible bias, and little differences across
years.

The most important predictors were spatiotemporal variables (air

temperature, PBL, wind components, AOD and Julian day) as they were
able to describe PM variability both in space and in time (Table 6).
Among the spatial terms, elevation, spatial coordinates and adminis-
trative regions showed the highest importance (Table 6).

Poorer fitting was achieved, instead, for PM2.5–10. There were dif-
ferences in model fitting by season and geographical area, with model
performing worse in summer and southern Italy, while we didn't find
differences based on monitor location (Tables C.2 and C.3 of the online

Table 3
Pearson correlation coefficients between MAIAC (470 nm) and CAMS AOD data
(estimated at h12.00, all bands), by year.

Year AOD

469 nm 550 nm 670 nm 865 nm 1240 nm

2006 0.622 0.611 0.592 0.562 0.523
2007 0.635 0.627 0.611 0.581 0.535
2008 0.592 0.589 0.581 0.564 0.535
2009 0.584 0.571 0.549 0.514 0.459
2010 0.619 0.612 0.598 0.570 0.521
2011 0.587 0.581 0.567 0.542 0.500
2012 0.617 0.611 0.598 0.576 0.543
2013 0.601 0.578 0.532 0.449 0.356
2014 0.539 0.523 0.494 0.452 0.416
2015 0.584 0.580 0.499 0.485 0.400

Table 4
Results of the stage 2 model. Fitting statistics comparing MAIAC AOD data (at
470 nm, unitless) and predictions, using OOB samples. Table displays R2 (per-
cent of explained variability), root mean squared prediction error (RMSPE),
intercept and slope, by year.

Year AOD

R2 RMSPE Inter. Slope

2006 0.957 0.027 0.000 1.004
2007 0.955 0.028 0.000 1.003
2008 0.954 0.027 0.000 1.004
2009 0.946 0.026 0.000 1.004
2010 0.950 0.026 0.000 1.004
2011 0.946 0.026 0.000 1.004
2012 0.942 0.026 0.000 1.003
2013 0.946 0.026 0.000 1.004
2014 0.944 0.025 0.000 1.005
2015 0.949 0.018 0.000 1.003

Table 5
Results of the stage 3 model for PM10 and PM2.5 (2013–2015). Fitting statistics comparing observed and 10-fold CV predicted PM concentrations, by PM metric and
year: R2 (percent of explained variability), root mean squared prediction error (RMSPE, μg/m3), intercept (μg/m3) and slope (μg/m3), overall and disaggregated by
spatial and temporal components.

Overall Spatial Temporal

R2 RMSPE Inter. Slope R2 RMSPE Inter. Slope R2 RMSPE Inter. Slope

PM10

2013 0.73 9.49 −0.34 1.03 0.62 4.99 1.51 0.95 0.75 8.14 0.00 1.04
2014 0.75 8.40 0.15 1.00 0.61 4.20 1.18 0.96 0.78 7.35 0.00 1.00
2015 0.75 9.05 −0.17 1.01 0.68 4.52 1.22 0.96 0.73 10.18 −0.06 0.99

PM2.5

2013 0.79 6.59 −0.58 1.02 0.76 3.10 −0.03 0.99 0.79 5.88 0.00 1.03
2014 0.78 5.36 −0.54 1.01 0.72 2.49 0.21 0.97 0.79 4.83 0.00 1.02
2015 0.81 6.39 −0.66 1.02 0.79 2.88 −0.10 1.00 0.80 7.05 −0.01 1.01

Table 6
Relative importance (%) of the predictors in the stage 3 model for PM10 and
PM2.5 (2013–2015).

Predictor PM2.5 PM10

2013 2014 2015 2013 2014 2015

Air temperature 13.6 7.2 13.4 7.4 4.4 7.4
PBL (hh 00.00) 9.5 7.3 9.5 9.5 5.7 9.4
Julian day 9.7 10.7 9.2 1.8 8.9 1.8
Barometric pressure 7.9 12.9 7.8 10.2 11.5 9.9
Elevation 7.3 4.7 7.1 9.3 6.7 9.3
PBL (hh 12.00) 6.3 6.2 6.7 8.2 6.0 8.4
Wind (v component) 4.2 4.1 4.0 4.8 5.1 4.6
AOD (470 nm) 2.5 2.5 3.0 2.8 2.8 3.2
AOD (550 nm) 2.5 2.5 2.9 2.8 2.7 3.1
Month 2.9 3.0 2.7 5.1 2.5 5.0
Latitude 2.6 2.9 2.6 3.7 3.7 3.7
Administrative region 2.3 2.0 2.2 0.9 1.5 0.9
Precipitations 1.9 2.5 2.1 3.3 4.0 3.4
Longitude 2.2 1.9 2.1 2.1 1.9 2.1
Wind (u component) 2.0 2.4 2.0 2.6 2.6 2.6
Distance from sea 1.5 1.5 1.4 1.5 1.3 1.5
Resident population 1.4 1.4 1.4 1.5 1.5 1.6
Distance from emission points 1.4 1.9 1.4 1.3 1.4 1.2
Distance from highways 1.3 1.2 1.3 1.2 1.2 1.2
Geoclimatic zone 1.3 1.5 1.3 0.5 1.2 0.5
Density of local streets 1.3 1.9 1.3 1.7 1.6 1.6
PM10 emissions from point sources 1.1 2.5 1.2 1.4 1.7 1.3
% Low development 1.1 1.0 1.1 1.1 0.9 1.1
NDVI 1.1 1.3 1.1 1.7 1.8 1.6
PM10 emissions from areal sources 1.0 1.1 1.1 1.2 1.0 1.2
Day of week 1.1 1.1 1.1 1.5 1.4 1.5
Distance from airport 1.0 1.2 1.0 1.1 1.3 1.1
% Arable land 0.9 0.9 0.9 0.8 0.8 0.8
Distance from major roads 0.8 0.9 0.8 0.9 0.9 0.8
Light at night 0.8 1.2 0.8 1.0 1.5 1.0
% Deciduous 0.8 0.8 0.8 0.8 0.7 0.7
% Agricultural 0.7 0.8 0.7 0.8 0.9 0.8
Density of major and minor roads 0.7 0.8 0.7 0.9 1.2 0.9
% Shrub 0.6 0.7 0.6 0.8 1.1 0.9
% Crops 0.5 0.5 0.5 0.6 0.5 0.6
Desert dust advection 0.6 1.5 0.5 1.6 3.9 1.5
% High development 0.5 0.5 0.5 0.5 0.6 0.6
% Evergreen 0.4 0.2 0.4 0.4 0.3 0.3
ISA 0.3 0.3 0.3 0.3 0.4 0.3
% Pasture 0.3 0.2 0.3 0.2 0.3 0.2
Density of highways 0.3 0.3 0.3 0.3 0.3 0.3
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appendix C). The stage 3 performance for PM10 in the years 2006–2012
from the RF approach was slightly improved compared with our pre-
vious study (Stafoggia et al., 2016), as displayed in Table C.4 of the
Appendix.

The final predictions of PM10 and PM2.5 at the national level for the
years 2013–2015 are presented in Fig. 2 and reported as annual average
PM concentrations by year. Corresponding results for PM10

(2006–2012) and PM2.5–10 (2013–2015) are presented in the Appendix
D, Figs. D.1 and D.2. PM10 and PM2.5 displayed similar spatiotemporal
distributions, with concentrations highest in 2015, especially in the
major metropolitan areas and in the Po valley.

The stage 5 model (based on small-scale predictors defined around
each monitor) substantially improved model fitting. The stage 5 local
predictions explained 81%, 87% and 65% of the total variability of
PM10, PM2.5 and PM2.5–10 respectively, as shown in Table E.1 of the
online Appendix E. Predictions were very accurate in capturing both
annual average PM concentrations (Fig. 3) and daily means (Fig. 4).

4. Discussion and conclusions

In this study we have developed a five-stage random forest model to
impute missing satellite AOD data and predict daily PM10, PM2.5 and
PM2.5–10 concentrations at fine spatial resolution nationwide. We were
able to capture ~75% and 80% of the spatial variability of PM10 and
PM2.5 in left-out monitors, with additional 5–10% when small-scale
variables were added to predict residuals of the stage 3 model. Model
fitting was better in the latest years and in northern Italy, where more
monitors are available. Finally, and most importantly, an equally good
performance was achieved in predicting day-to-day variability as well
as spatial contrasts in annual averages of PM, justifying the use of PM
predictions for the analysis of short-term and long-term health effects

nationwide.
Our models have a number of strength points. First, they improved

PM10 predictions compared with our previous mixed-effects model
(Stafoggia et al., 2016), both at 1-km2 level (stage 3) and at the local
level (stage 5). In our previous application, we had used linear mixed
models with random effects by day. These were a flexible approach to
describe temporal patterns, captured by the random intercepts and
slopes, but were not as good in describing the complex inter-relation-
ships among the covariates, and the potential non-linearities in the
association between them and PM. Adding splines in the models did not
help either, because it easily resulted in overfitting the data. Finally, the
mixed model could only provide PM predictions in the subset of ob-
servations with existing satellite retrievals, while smooth imputation
approaches had to be adopted elsewhere (Stafoggia et al., 2016). In the
present application we have been able to solve both these problems by
applying an additional prediction step for AOD (stage 2) and by using a
machine learning method, the RF, explicitly designed for handling
complex relationship among predictors without inducing overfitting. In
addition, the RF method was robust to parameter specification (number
of bootstrap samples, number of predictors used at each split and tree
depth) and was computationally efficient, as it allowed to obtain one
year of daily predictions (~110 million records) for each PM metric in
only a few hours. All this resulted in higher CV-R2 in both stage 3 and
stage 5, with benefits in terms of reduced exposure prediction error for
future epidemiological applications.

Second, we were able to fill in missing satellite data by using AOD
estimates from atmospheric ensemble models. The results of the stage 2
models were highly stable and accurate, with predictions in OOB
samples capturing> 94% of the variability observed in the MAIAC
AOD retrievals. This presented the double advantage of allowing us to
use all PM data (and not just those intersecting with non-missing

Fig. 2. Predicted PM10 (top) and PM2.5 (bottom) concentrations from stage 4 model: annual means, 2013–2015.
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MAIAC AOD) for stage 3 calibration, and to predict PM across the whole
spatiotemporal domain (stage 4), without the need of applying post-hoc
smoothing procedures. Third, we were able to predict not only PM10 but
also PM2.5 and PM2.5–10. This is extremely relevant for future epide-
miological investigations. Most of the literature shows adverse effects of
fine particles (Atkinson et al., 2014; Di et al., 2017; Hoek et al., 2013),
as they more easily penetrate and deposit in the lower respiratory tract,
possibly translocating into the blood stream and causing adverse effects
on the cardiovascular system and in peripheral organs (Brook et al.,
2010; Pope 3rd and Dockery, 2006; Rückerl et al., 2011). However,

studies of coarse particles, while fewer than studies of fine particles
indicate mortality effects and effects on respiratory health (Behbod
et al., 2013; Puett et al., 2009; Stafoggia et al., 2013; Zanobetti and
Schwartz, 2009). More studies are clearly needed to clarify their effects.
Epidemiological research on PM2.5 health effects in Italy is still scarce
because PM2.5 monitors have been installed only recently. The esti-
mates obtained in this study will allow for the first time evaluation of
short-term and long-term health effects of fine and coarse particles in
Italy, both in the main cities and in smaller cities, sub-urban and rural
areas, previously excluded by many epidemiological investigations.
Concerning PM2.5–10, in the last decade the evidence on the potential
role of coarse particles as a risk factor to human health has accumulated
in the epidemiological literature (Brunekreef and Forsberg, 2005; Keet
et al., 2018; WHO, 2013). In particular, coarse particles transported
from desert regions frequently impact air quality of (southern) Italy,
they have different mineral and chemical composition and might affect
health outcomes in a different way (Karanasiou et al., 2012; Perrino
et al., 2009). Our spatiotemporal estimates of PM2.5–10 in sub-urban and
rural areas with lower PM2.5 concentrations, combined with detection
of Saharan dust episodes, will allow investigators to isolate the desert
and non-desert contributions to PM2.5–10 and to evaluate their in-
dependent health effects.

We also acknowledge some limitations in our approach. Model
performance was poorer for PM2.5–10, in southern Italy and during
summer months. Observed data on coarse PM were not from direct
measurements but obtained as difference between PM10 and PM2.5;
therefore they might be affected by two sources of measurement error
as well as by the not optimal cutting edge of both observed PM size
fractions. As a result, stage 1 model fit for PM2.5–10 was sub-optimal,
and this might have worsened the model fit in stage 3. Poorer predic-
tions in southern Italy were expected because of a combination of fewer
monitors and less ability of the available predictors to capture the
specific PM profile in southern Italy, characterized by large contribu-
tions from desert regions, only marginally accounted for in our study. A
lower performance of the calibration model in summer months was also
found in our previous application (Stafoggia et al., 2016) and deserves
further investigation. Another limitation of the study is the hierarchical
structure of the models, where outputs from stage 1 (PM2.5 and PM2.5–10

data estimated from co-located PM10) and stage 2 (MAIAC AOD im-
puted from CAMS) serve as inputs for the calibration model in stage 3.
This approach prevents a correct quantification of the total

Fig. 3. PM10 (left) and PM2.5 (right) average concentrations (μg/m3) at the 591 monitors available in Italy in 2013–2015: comparison between measured (y axis) and
predicted concentrations from stage 3 (red dots) and stage 5 (blue dots) models. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 4. PM2.5 concentrations (μg/m3) in Italy, year 2015: daily averages of
PM2.5 measurements (blue line), stage 3 predictions at the 1-km2 grid cells with
monitors (red line), stage 5 predictions at the monitors (orange line), and stage
4 predictions on the whole Italy domain (green line). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)
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uncertainties of the final PM predictions. On the other hand, the high R2

and the negligible bias of PM predictions estimated in left-out monitors
suggest that, globally, these errors should not be too high and that our
model can be exported to locations without monitoring stations with
good confidence. It should be acknowledged, however, that the gen-
eralization of the calibration model to the entire national domain relies
on the assumption that monitor locations are representative of the
whole territory, conditional on the geographic covariates. This might
not be true, since monitors are oversampled in proximity to traffic
sources, residential areas or industrial sites, making estimates more
uncertain in remote areas where only few measurements exist. While
this might affect the overall layout of our final prediction maps, it is less
of a concern from an epidemiological perspective, as these areas are
likely underpopulated.

In conclusion, we developed a five stage approach where we merged
multiple sources of spatial and temporal data, we predicted satellite
AOD from atmospheric ensemble models, and we took full advantage of
machine learning methods to obtain finely resolved PM predictions
over large spatial and temporal domains. We also applied a local model
(stage 5) with the aim of proving the validity of our approach for future
epidemiological applications with individual data on residential ad-
dresses.

We believe that machine learning methods, in combination with
extensive data collection on multiple parameters, can be valid tools for
predicting ground level air pollutants concentrations at fine spatial and
temporal resolution. While the theory behind machine learning
methods is still under development (Jordan and Mitchell, 2015), and
more research is required to better characterize all the possible sources
of uncertainties inherent to such large estimation processes, we think
that our PM predictions will provide novel evidence on the short-term
and long-term health effects of fine and coarse particles in Italy.
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