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Abstract. Chagas disease affects millions of people, and it is a major cause of death in 15 

Latin America. Prevention and development of an effective treatment for this infection 16 

can be favored by a more thorough understanding of T. cruzi interaction with the 17 

microbiome of vectors and hosts. Next-generation sequencing technology vastly 18 

broadened the knowledge about intestinal bacteria composition, showing that 19 

microbiota within each host (triatomines and mammals) is composed by high diversity 20 

of species, although few dominant phyla. This fact may represent an ecological balance 21 

that was acquired during the evolutionary process of the microbiome-host complex, and 22 

that serves to perpetuate this system. In this context, commensal microbiota is also 23 

essential to protect hosts, conferring them resistance to pathogens colonization. 24 

However, in some situations, the microbiota is not able to prevent infection but only 25 

modulate it. Here we will review the role of the microbiota on the parasite-vector-host 26 

triad with a focus on the kinetoplastida of medical importance Trypanosoma cruzi. 27 

Novel strategies to control Chagas disease based on intestinal microbiome will also be 28 

discussed. 29 
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 36 

1. Introduction 37 

 38 

The intestinal ecosystem is an environment in which biological and biochemical 39 

interactions occur at various hierarchical levels, connecting microbial communities and 40 

their hosts. [1, 2] Studies of fecal samples revealed that the microbiota from a wholesome 41 

intestine is an intricated ecological community composed of trillions of 42 
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microorganisms, from viruses to unicellular eukaryotes.[3] However, in this article, we 43 

will use the term microbiota to refer only to the population of bacteria of an organism. 44 

The intestinal microbiota is highly dynamic, it varies over time and is modulated 45 

by environmental conditions (use of antibiotics, lifestyle, diet and hygiene preferences, 46 

metabolic dysfunction, immunodeficiency and hyper immunity).[4]The application of 47 

new high-performance methodologies for analysis of bacterial species, such as the new 48 

generation sequencing (NGS) of 16S rRNA, revolutionized the knowledge about the 49 

intestinal microbiome. [5] It is now known that about 1000 bacterial species inhabit the 50 

human adult intestine; however, the predominant genera are Lactobacillus, 51 

Bifidobacterium, Bacteroides, Eubacterium, Clostridium, Ruminococcus, 52 

Peptostreptococcus, and Peptococcus.[ 5] Despite the large number of distinct species, 53 

they belong to a relatively small number of phyla, especially  Bacteroidetes and 54 

Firmicutes. [6] 55 

In healthy hosts, the presence of this microbiota contributes to the prevention of 56 

pathogen colonization.[7] Additionally, it has an important impact on various aspects of 57 

the hosts physiology and metabolism; such as, protection of intestinal epithelium, 58 

digestion of host nutrients, production of vitamins and hormones, and regulation of 59 

immune responses, modulating the expression of immunological mediators and the 60 

recruitment of certain cell populations.[ 8, 9] 61 

Changes in microbiota composition usually have a direct effect on parasitic 62 

infection, in part because parasites and bacteria metabolize substrates interactively and 63 

secrete products that affect each other, interfering with the survival and physiology of 64 

both. [10 ]Likewise, the microbial community constitution is an extremely important 65 

factor for host immune responses: imbalance between the microbiota and the immune 66 
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system may alter the host's homeostasis and lead to greater disease susceptibility, and 67 

therefore dictate the success of the intestinal pathogens. 68 

Published data demonstrate that the intestinal microbiota usually has a deep 69 

influence on the parasite-host relationship.[11] It is well known that intestinal microbiota 70 

composition is determinant for some parasites pathogenicity, as described for 71 

Entamoeba histolytica,[12] Trichuris muris,[13] Schistosoma mansoni,[14] Eimeria 72 

falciformis,[ 15] Eimeria ovinoidalis, [16] Ascaris lumbricoides,[ 17] and Giardia lamblia. 73 

[18] 74 

On the other hand, this microbiota can reduce the damages of other infectious 75 

agents, such as Cryptococcus neoformans,[19]  Strongyloides venezuelensis, [20] and 76 

almost all enteropathogenic bacteria (Clostridium difficile, Clostridium perfringens, 77 

Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium, Shigella xexneri 78 

and Vibrio cholerae). [21, 22, 23] In few reported cases - Raillietina cesticillus,[24 ]Isopora 79 

suis,[25 ]and Trichuris trichiura [17]- the microbiota composition appear not to influence 80 

the outcome of the disease. 81 

T. cruzi is the etiological agent of Chagas disease, the most important parasitic 82 

disease in the Americas, affecting approximately 6 to 8 million people and causing 83 

around 12,000 deaths per year. [26]Little is known about the modulation of T. cruzi 84 

infections by the intestinal microbiota, in insects or vertebrate hosts. Approximately 85 

30% of infected individuals will develop cardiac, digestive or neurological changes 86 

during the chronic phase. Chagas disease pathogenesis has not been fully elucidated, 87 

and different theories try to explain it, such as parasite persistence and 88 

autoimmunity.[27]This fact contributes to the difficulty in developing an effective 89 

treatment. In this review, we will summarize the current knowledge on microbiome of 90 
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T. cruzi invertebrate and vertebrate hosts, highlighting new approaches and research 91 

gaps in this field (Figure 1).  92 

 93 

Figure 1. Multi-effects of the intestinal microbiota on the vector-parasite-host 94 

triad. In healthy, non-infected, vectors and hosts, the resident microbiota will play an 95 

important role in the maintenance of homeostasis (eubiosis). During T. cruzi infection, 96 

the parasite and bacteria metabolize substrates interactively and secrete products that 97 

affect each other and interfere in the survival and physiology of the host (dysbiosis).   98 

 99 

2. Gut microbiota in parasite-vector interface 100 

Hemiptera insects began to inhabit our planet about 400 million years ago, being 101 

favored by the emergence of vascular plants, whose phloem served as their food source. 102 

Throughout the evolutionary process, adaptations of the oral apparatus of these 103 

arthropods allowed the acquisition of new feeding habits, such as hematophagy. [28, 
104 

29]Triatomines (Hemiptera: Reduviidae), popularly known as kissing bugs, are life-long 105 

obligatorily hematophagous arthropods which feed on various animals, mainly 106 

mammals. During hematophagy, several microorganisms can reach triatomines 107 

alimentary tract and begin its colonization. 108 
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In recent years, triatomines microbiota has been evaluated by NGS, showing that 109 

the ecological diversity of its microbiome is low but dynamic, changing according to 110 

genera and gender, development stages origin, and blood sources.[30, 31, 32] The 111 

assessment of T. brasiliensis and T. pseudomaculata microbiome by denaturing gradient 112 

gel bands sequencing revealed their microbiota was mostly composed by Proteo- and 113 

Actinobacteria; being Serratia the predominant genus. [33]Analyzes of the 16S rRNA 114 

gene of the intestinal microbiota of Triatoma maculata and Rhodnius pallescens 115 

captured in the same locality of Colombia, showed the distinct composition of bacteria 116 

community. In R. pallescens, Williamsia and Kocuria (orders Corynebacteriales and 117 

Actinomycetales, respectively) were the most prevalent genera, while in T. maculate, 118 

Dietzia, Aeromonas and Pelomonas (orders Actinomycetales, Aeromonadales and 119 

Burkholderiales, respectively) were predominant.[30]Another study confirmed that 70% 120 

of Triatoma diminiata microbiome was composed by bacteria from orders Bacillales, 121 

Actinomycetales, Enterobacteriales and Burkholderiales. However, the predominating 122 

bacteria in bugs fed on dogs was Burkholderiales, in those fed on humans was 123 

Bacillales, and for those fed on porcupine was Enterobacteriales. [31]Interestingly, 124 

Rodríguez-Ruano et al., [34] showed that the microbiome composition is particularly 125 

determined by host species, receiving less influence of locality and environment.  126 

Following a blood meal, kissing bugs can also ingest the protozoa T. cruzi. Once 127 

inside the insect gut, T. cruzi have to invade surrounding tissues of the vector and 128 

transform to epimastigote forms and later, in infective metacyclic forms, which are 129 

eliminated with excreta and can achieve the host bloodstream through the bite site. 130 

During this journey, T. cruzi and the resident microbiota maintain an intimate 131 

interaction looking for a balance for the establishment of both.  132 
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Independently of gut microbiota composition, most of T. cruzi is destructed in 133 

the first hours of vector infection. [35]After that, parasite-microbiota interaction is 134 

essential to control T. cruzi amount. In vitro experiments showed that bacterial clusters 135 

can adhere to T. cruzi surface through D-mannose recognizing fimbriae and lead to 136 

parasite lysis. [35]Furthermore, a control of parasite replication is also orchestrated by 137 

the local bacteria.[36]Thus, to provide continuity to its life cycle in the digestive tract of 138 

triatomines and increase their chances of reaching a new host, T. cruzi needs to 139 

overcome the microbiota trypanolytic activity. The interaction between parasite and 140 

microbiota could vary among different vectors. As an example, T. cruzi Dm28c strain 141 

when stimulated induce antibacterial activities in Rhodnius prolixus, resulting in fewer 142 

bacteria and higher parasitemia. However, the T. cruzi Y strain is not able to produce 143 

the same effects, being inefficient in the establishment of the infection in the vector.[37] 144 

Vectors infected with T. cruzi synthesize antimicrobial peptides, such as 145 

defensins and prolixicin, to control the expansion of the new invader, in a strain-146 

dependent manner. [38]These bioactive molecules may also affect the resident 147 

microbiota richness,[34]and consequently, benefit or impair parasite survival. For 148 

example, the use of a selective inhibitor of NF-κb in R. prolixus modulated the gene 149 

expression of defensins, increasing the microbiota and reducing T. cruzi population. 150 

[39]Furthermore, the knockdown of the antimicrobial product from Triatoma infestans 151 

midgut (TiAP) increased by 600 times the amount of gut bacteria and, consequently, 152 

reduced the number of T. cruzi epimastigotes.[40]So, TiAP controls microbiota growth, 153 

contributing to T. cruzi establishment in the vector. Similarly, a Kazal-type inhibitor 154 

from the midgut of R. prolixus (RpTI) is involved in microbiota regulation and its 155 

silencing with RNA interference technology resulted in higher bacterial loads.[41]In 156 

contrast, Díaz et al.[42]reported that triatomines challenged with T. cruzi have their 157 
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microbiome altered in a species-specific manner; harboring a more diverse bacterial 158 

community than the negative controls. The significance of this increase in diversity 159 

must be better investigated. 160 

 161 

3. Gastrointestinal microbiota in the parasite-mammal interface 162 

Novel bioluminescence imaging systems have evidenced the persistence of T. 163 

cruzi infection in the GIT (gastrointestinal tract) during the acute and chronic Chagas 164 

disease.[43, 44]The persistence of T. cruzi in the gut could contribute to the development 165 

of GIT disorders, notably megacolon and/or megaesophagus, resulting in altered 166 

peristaltic movements, dysphagia and pain. It is believed that the chronic 167 

gastrointestinal symptoms of Chagas disease are a consequence of the destruction of the 168 

myenteric neurons by the parasite. [45 ]Furthermore, continuous migration of T. cruzi 169 

from the GIT to other organs such as the heart has been suggested, indicating that the 170 

intermittent traffic of parasites can be involved in chronic Chagas cardiomyopathy.[ 44, 
171 

46 ] 172 

In the gut, T. cruzi may interact with thousands of commensal bacteria, but little 173 

is known about this ecological relationship. Apparently, an indirect contact should occur 174 

between parasite-bacteria, since T. cruzi is preferentially found in the muscularis 175 

externae of GIT.[ 47 ]The impact of this protozoa on microbiota profile and metabolome 176 

were characterized in an immunocompetent murine model, [48 ]in which T. cruzi 177 

disrupted fecal microbiome and caused biochemical alterations in a synchronized 178 

manner. For example, variations in linoleic acid metabolism could be observed. 48 
179 

Linoleic acid metabolism has been associated with an important immune-modulating 180 

response, affecting T cell recruitment and cytokines production in the colon, [49 ]which 181 

could favor T. cruzi persistence. 182 
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Researches on germ-free mice infected with T. cruzi have been performed to 183 

characterize immunoregulation and clinical evolution of Chagas disease in this 184 

experimental model. Silva et al., [50]showed that the lack of the natural microbiome 185 

negatively influenced parasitemia intensity, mortality rate, spleen size, and cardiac 186 

damage. However, the same findings were not obtained by Duarte et al.,[51]in whose 187 

study the infection outcome did not alter significantly between control and germ-free 188 

mice, despite a higher production of inflammatory cytokines in the first group.  189 

The role of specific species of bacteria on Chagas disease immunomodulation 190 

was also evaluated in germ-free mice.[ 52 ]Mono-association of T. cruzi with E. coli, E. 191 

faecalis, B. vulgatus or Peptostreptococcus sp produced a Th1 immune response, higher 192 

levels of IgGs and increased survival rate. Interestingly, these tested bacteria are 193 

predominant in the indigenous microbiota, but there is no evidence that this population 194 

group is more resistant to the development of Chagas disease clinical manifestations.[ 53 
195 

]In this respect, characterization of the microbiome in coprolites and colon of a chagasic 196 

pre-Columbian Andean mummy revealed that paleofeces were constituted 197 

predominantly by Firmicutes, with Clostridium spp. and Turicibacter spp. representing 198 

the most abundant bacterial genera. [54] 199 

Since gut microbiome depends on intestinal health, it is expected its impairment 200 

during Chagas disease, regardless of ancestry. Quantitative and qualitative analysis of 201 

the microbiota in chagasic megaesophagus and health esophagus showed a more 202 

elevated bacterial concentration and variability in chagasic patients, with a 203 

predominance of the aerobic gram-positive bacteria Streptococcus sp and the anaerobic 204 

Veillonella. [55]In the proximal jejunum of patients with megacolon, it was observed an 205 

overgrowth of facultative and strict anaerobes microorganisms, which returns to 206 

normality after surgical treatment.[56] 207 
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Dysbiosis in Chagas disease may also be associated with the emergence of 208 

secondary diseases. The proliferation of certain bacteria in the esophageal lumen can 209 

cause pulmonary infections, dysplasia of the esophageal mucosa and 210 

cancer.[55]Individuals with a more advanced stage of esophageal dilation have elevated 211 

concentrations of Staphylococcus sp, Corynebacterium sp, Peptostreptococcus sp and 212 

Veillonella sp, bacteria that are capable of reducing nitrate into nitrites, which have been 213 

associated with the formation of proven esophageal carcinogens nitrosamines. [57, 58] 214 

 215 

4. Novel approaches based on intestinal microbiota to control chagas disease 216 

In triatomines, obligate bacterial symbionts are essential to obtain some nutrients 217 

from the blood-diet, without which several aspects of insect physiology would be 218 

compromised, notably its development. [59, 60]It is noteworthy to note that the 219 

availability of nutrients affects the vector, the T. cruzi population density and the 220 

number of metacyclic tripomastigotes in the rectum. [61] Therefore, bacterial 221 

communities in the insect gut are essential for T. cruzi survival.[62]Interestingly, new 222 

methodologies are being developed to facilitate the characterization of triatomines gut 223 

ecosystem: RADseq-based analysis was used to disclose mixed DNA from vectors 224 

abdomens, enabling the determination of T. cruzi DTUs, microbial diversity, and blood 225 

meal source. [63] 226 

In this sense, it is quite plausible to think about novel strategies of T. cruzi 227 

transmission blocking and vector control based on its microbiota (Figure 2), since the 228 

traditional strategies seem to be ineffective, such as the use of insecticides. [64]Studies 229 

employing antibiotic treatment, specific antibodies or rearing gnotobiotic lines has 230 

brought important information about the role of intestinal bacteria on 231 

parasites.[65]Triatomine engineering aiming antimicrobial peptides reduction results in 232 
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increased bacterial load in the midgut and decreased T. cruzi parasitemia, influencing 233 

vector competence. [40] It is noted that production of genetically-modified vectors that 234 

interferes in microbial colonization is an advantageous strategy because it can be 235 

applied to all species of triatomines and impairs T. cruzi survival. Intestinal microbiota 236 

can also be modified by RNA interference-based technologies to control vectors: E. coli 237 

expressing specific dsRNAs for Rhodnius prolixus heme-binding protein and catalase 238 

affected mortality, molting and oviposition rates.[66]Other examples of promising 239 

alternatives to control vector infection are the use of bacteria with trypanocidal activity, 240 

such as Serratia, a commensal of triatomine guts that deregulates T. cruzi mitochondrial 241 

activity.[67] and the treatment of R. prolixus with physalin B, a natural secsteroid that 242 

promotes an increase in gut bacterial microbiota and significantly decreases the number 243 

of T. cruzi. [68] 244 

In mammals, commensal microbes interact with parasites that cohabitate and 245 

change the progression of the infection. Recent discoveries, [44; 43]show the intestine as 246 

a preferential site of T. cruzi, where local bacteria can act directly on the parasite and 247 

determine its infectivity. Furthermore, infection can also be modulated at distance. In 248 

both cases, the mutualism developed between parasites and microbiota seems to be 249 

associated with subclinical manifestations. [69]Therefore, the administration of 250 

prebiotics and probiotics to replace the resident microbiota can be promising, since the 251 

newly introduced bacteria will compete with the parasites for nutrients and space as 252 

well as stimulate the host’s immune system to react against infection.[70]Identification 253 

of which prebiotics/probiotics can boost protective immune responses can contribute to 254 

the success of future treatments. In this respect, oral and intraperitoneal inoculation of L. 255 

casei in NIH mice resulted in reduction of circulating parasites.[71] 256 
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Associated to this, specific diets may contribute to the growth of the microbiota 257 

species of interest that diminish the virulence and survival of the parasites.[69]High fat 258 

diet and protein deficiency seems to increase parasitemia and leucocyte infiltration in 259 

cardiac tissue. [72, 73] Such aspects become more evident when analyzed in germ-free 260 

mice. Cintra et al. [74]showed that protein deficiency resulted in a more severe Chagas 261 

disease in germ-free mice than the controls. Santos et al. [75]observed that the effect of a 262 

deficient fatty acid diet on a germ-free T. cruzi-infected model resulted in a larger 263 

amount of tripomastogotes per ml of blood and a lower survival rate.  264 

New insights about which mechanisms are involved in parasite-microbiota 265 

interaction are also needed. For example, the role of inflammasome should be better 266 

elucidated, since its activation controls microbial dysbiosis, protecting the organisms 267 

from autoinflammatory responses. However, parasites can reduce inflammasome 268 

activation, promoting dysbiosis.[76] 269 
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 270 

Figure 2. Challenges to consolidate the knowledge about the role of the intestinal 271 

microbiota on the vector-parasite-host triad. Gaps in research need to be fulfilled to 272 

determine the real importance of the intestinal microbiota on T. cruzi infection. Novel 273 

approaches are essential to elucidate crucial issues.  274 

 275 

5. Conclusions 276 

Reports on parasites and microbiota interaction have become extremely common 277 

because of next-generation sequencing technology. However, a bias may have been 278 

created because of the possibility of lack of DNA sequencing from less abundant, but of 279 

pathological importance, bacteria populations. Furthermore, expanding knowledge 280 

about Archae diversity [77]and its interaction with the microbiota can evidence new 281 

aspects of the complex GIT ecosystem. Also, the inclusion of virus, fungi and, 282 

eukaryotes should be considered in the next studies.  283 

Importantly, some results may be valid for certain ecological conditions, but not 284 

to others. So, field-based research can bring to light information that could not be 285 
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obtained in controlled lab-models. Another research line that should be further explored 286 

in order to address how intestinal bacteria are acquired and maintained in hosts and 287 

which combination of bacteria could be required to protect against T. cruzi infection. 288 

[78]Understanding the mechanisms that interfere in infection progression is essential. 289 

Experiments with T. cruzi infected animals treated with antibiotics and recolonized with 290 

specific bacteria can provide important information of how these microorganisms 291 

modulate the infection. Gene exchange among microbiome-parasite-hosts is a 292 

possibility that should be considered in this intimate relationship.  293 
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Highlights 

• Intestinal microbiota has a deep influence on the parasite-host 
relationship 

• In triatomines, gut microbiota can benefit or impair T. cruzi survival  
• In mammals, T. cruzi-associated dysbiosis affects immune responses 
• Novel approaches based on gut microbiota can be proposed to control 

Chagas disease  

 

 

 


