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Abstract: Let G = (V, E) be a graph and f : V −→ {0, 1, 2} be a function. Given a vertex u with
f (u) = 0, if all neighbors of u have zero weights, then u is called undefended with respect to f .
Furthermore, if every vertex u with f (u) = 0 has a neighbor v with f (v) > 0 and the function
f ′ : V −→ {0, 1, 2} with f ′(u) = 1, f ′(v) = f (v) − 1, f ′(w) = f (w) if w ∈ V \ {u, v} has no
undefended vertex, then f is called a weak Roman dominating function. Also, the function f is
a perfect Roman dominating function if every vertex u with f (u) = 0 is adjacent to exactly one
vertex v for which f (v) = 2. Let the weight of f be w( f ) = ∑v∈V f (v). The weak (resp., perfect)
Roman domination number, denoted by γr(G) (resp., γ

p
R(G)), is the minimum weight of the weak

(resp., perfect) Roman dominating function in G. In this paper, we characterize those trees where
the perfect Roman domination number strongly equals the weak Roman domination number, in the
sense that each weak Roman dominating function of minimum weight is, at the same time, perfect
Roman dominating.

Keywords: Perfect Roman dominating function; Roman dominating number; weak Roman
dominating function

MSC: 05C69

1. Introduction

In this paper, we study finite, undirected, simple graphs. Let G be a graph characterized by the
vertex set V = V(G) and the edge set E = E(G). The order of the graph is the number of vertices in the
graph and here it is n = n(G). Denote by N(v) = NG(v) = {u ∈ V | uv ∈ E} the open neighborhood of
v ∈ V. The cardinality of the open neighborhood of a vertex is referred to as the degree of that vertex.
For a given tree, vertices with degree one are called leaves and those adjacent to leaves are called support
vertices. If a support vertex is adjacent to only one leaf, then it is called a weak support vertex. Otherwise,
it becomes a strong support vertex. Here, the set of all support vertices of a given tree T is denoted by
S(T). All leaves of T is denoted by L(T). Set `(T) = |L(T)| and s(T) = |S(T)|. Denote by L(x) the set
of all leaves that are neighbors of the support vertex x. Set `x = |L(x)|. When a tree T has a root, let Tv

be the sub-rooted tree rooted at v for any vertex v. More definitions and notations can be found in
e.g., [1].

Inspired by the work entitled “Defend the Roman Empire!” by Ian Stewart [2], recently
Cockayne et al. [3] introduced the Roman dominating function in graphs. For a graph function
f : V(G)→ {0, 1, 2}, the vertex set can be partitioned as (V0, V1, V2), where Vi = {v ∈ V(G) : f (v) = i}
(i = 0, 1, 2). The functions f : V(G) → {0, 1, 2} and the ordered partitions (V0, V1, V2) form a
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one-to-one correspondence. For this reason, it is handy to set f = (V0, V1, V2). If every vertex u with
f (u) = 0 has at least one neighbor v with f (v) = 2, then the function f : V(G)→ {0, 1, 2} is referred
to as a Roman dominating function (RDF). The weight of an RDF f is w( f ) = f (V(G)) = ∑u∈V(G) f (u).
We denote by γR(G) the minimum weight of an RDF of G. It is called the the Roman domination number
of G. For some further results on Roman dominating function in graphs, we recommend the reader
to consult the papers [4–7]. RDFs are useful in the study of generalized k-core percolation [8], where
V2 = α-removable, V0 = β-removable, and V1 = non-removable vertices.

Henning, Klostermeyer and MacGillivray [9] introduced the concept of perfect Roman domination
in graphs. An RDF f = (V0, V1, V2) is referred to as a perfect Roman dominating function (PRDF) when
each vertex u with f (u) = 0 has only one neighbor v such that f (v) = 2 [9]. The minimum weight of
an RDF is represented by γP

R(G) and is called the perfect Roman domination number. In other words,

γP
R(G) = min{w( f ) | f is a PRDF in G}.

Note that for any graph G, γP
R(G) is valid. This is because (∅, V(G), ∅) is a PRDF for G. Note

also that every graph G of order n satisfies γP
R(G) ≤ n, as one can define a perfect Roman dominating

function f by letting f (u) = 1 for any vertex u of G. A PRDF of G with minimum weight is also called
a γP

R(G)-function (see Figure 1). For some recent results on perfect Roman domination number of
graphs we refer the readers to the papers [10,11].
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Figure 1. γP
R(T)-function of a tree T.

For graph G = (V, E) and function f : V −→ {0, 1, 2}, a vertex u with f (u) = 0 is undefended
with respect to f if all its neighbors have only zero weight. Henning and Hedetinemi [12] defined
the weak Roman dominating function as follows. The function f is a weak Roman dominating function
(WRDF) if each vertex u with f (u) = 0 is adjacent to a vertex v with f (v) > 0 such that the function
f ′ : V −→ {0, 1, 2} defined by f ′(u) = 1, f ′(v) = f (v)− 1 and f ′(w) = f (w) if w ∈ V \ {u, v}, has
no undefended vertex. Let the weight of f be w( f ) = ∑v∈V f (v). The weak Roman domination number,
denoted by γr(G), is the minimum weight of a WRDF in G, that is:

γr(G) = min{w( f ) | f is a WRDF in G}.

It was shown by Henning and Hedetinemi [12] that the problem of computing γr(G) is NP-hard.
This is true even when the graph in consideration is bipartite or chordal. Hence, finding the weak
Roman domination number for some special classes of graphs as well as finding some good bounds for
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this invariant is of great importance. For some recent results on the weak Roman domination number
of graphs we refer the interested reader to the papers [4,13].

Note that γr(G) ≤ γP
R(G) for every graph G. Clearly, if G is a graph with γr(G) = γP

R(G), then
every γP

R(G)-function is a γr(G)-function. However, not every γr(G)-function is an γP
R(G)-function

(see Figure 2), even when γr(G) = γP
R(G). For example, consider the path P3. We say that γP

R(G) and
γr(G) are strongly equal, denoted by γr(G) ≡ γP

R(G), if every γr(G)-function is an γP
R(G)-function.

In this paper, we provide a constructive characterization of trees T such that γr(T) ≡ γP
R(T). Other

interesting examples of characterizations for strong equalities have been discussed in [4,6,7,14,15].
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Figure 2. γr(T)-function over a tree T, which is not a perfect Roman dominating function (PRDF).

2. Constructive Characterization of Strong Equality

We start with the following essential lemmas.

Lemma 1. Let T be a tree with γr(T) ≡ γP
R(T). Then T has no weak support vertex with degree two.

Proof. Let T be a tree with γr(T) ≡ γP
R(T) and u be a weak support vertex of it with leaf neighbor

v. Let f be a γr(T)-function and N(u)− {v} = {w}. If f (w) = 2, then, clearly f (u) + f (v) = 1 and
so the function g with g(u) = 1, g(v) = 0 and for w ∈ V \ {u, v}, g(w) = f (w) is a γr(T)-function,
which is not a PRDF. This leads to a contradiction. Thus, we may assume that f (w) 6= 2. We first
assume that f (w) = 1. Then, it is true that f (u) = 1, f (v) = 0 or f (v) = 1, f (u) = 0. Hence, f is not
a PRDF, which leads to a contradiction. Now, assume that f (w) = 0. Then, 1 ≤ f (u) + f (v) ≤ 2. If
f (u) + f (v) = 1, then f (u) = 1, f (v) = 0 or f (v) = 1, f (u) = 0. Accordingly, f is not a PRDF, which is
a contradiction. Thus, f (u) + f (v) = 2. Therefore, function f ′ by f ′(w) = f ′(v) = 1 and f ′(u) = 0 and
for x 6∈ {w, v, u}, f ′(x) = f (x) is a γr(T)-function, which is not a PRDF. This leads to a contradiction.
Hence, T has no weak support vertex with degree two.

Lemma 2. Fix a tree T. Assume that γr(T) ≡ γP
R(T) and u is a strong support vertex with `u = 2. If f is a

γr(T)-function, then f (u) = 2. Also, if deg(u) = 3 then any non-leaf neighbor of it has weight 0.
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Proof. Let L(u) = {x, y}. We first assume that f (u) = 1. Since f is a PRDF, we deduce that f (x) =
f (y) = 1. Then by re-assigning to the vertex u the value 2 and to the vertices x, y the value 0, we get a
new WRDF with weight less than γr(T), which is a contradiction. Next, assume that f (u) = 0, then
f (x) = f (y) = 1. If for any vertex v ∈ N(u) we have f (v) 6= 0, then by re-assigning to the vertex
u the value 1 and to the vertex x the value 0, we get a new γr(T)-function that is not a PRDF. This
is a contradiction. Hence, we can assume that w ∈ N(u) and f (w) = 0. Since f is a γP

R(T)-function,
there exists a vertex z 6= u such that z ∈ N(w) and f (z) = 2. Thus, by re-assigning to the vertex u
the value 2 and to the vertices x, y the value 0, we obtain a new γr(T)-function that is not a PRDF.
This is a contradiction. Hence f (u) = 2. Assume that deg(u) = 3 and N(u) = {x, y, w}. If f (w) 6= 0,
then by re-assigning to the vertices u and x the value 1, the γr(T)-function is not a PRDF. This is a
contradiction. Therefore, f (w) = 0.

In the case of γ
p
R(T) ≡ γr(T), a family of trees can be defined as follows:

Let F be the tree depicted in Figure 3 and T be the collection of trees T that can be obtained from a
sequence T1, T2, . . . , Tk = T(k ≥ 1) of trees, where T1 is a star K1,t with t ≥ 3, and Ti+1 can be obtained
recursively from T′ = Ti by one of the following six operations O1,O2, . . . ,O6 defined below and
illustrated in Figure 4.

• Operation O1 : Add a star K1,t, (t ≥ 3) and link its central vertex v to a vertex u of T′ such that
γr(T′ − u) > γr(T′).

• Operation O2 : Add a new vertex v to T′ and link it to a strong support vertex u of T′ with at
least three leaf neighbors.

• Operation O3 : Add a new vertex v to T′ and link it to a strong support vertex u of T′ with
deg(u) = 3.

• OperationO4 : Add a star K1,3, and link a leaf v to a leaf u of T′ that is adjacent to a strong support
vertex of T′.

• Operation O5 : Add a star K1,3 and join a leaf to vertex u of T′ such that every γr(T′)-function of
T′ assigns to the vertex u the value 0.

• Operation O6 : Add a tree F (as depicted in Figure 3) and join its support vertex v with degree
two to a vertex u of T′ such that deg(u) ≥ 2 and every γr(T′)-function of T′ assigns to the vertex
u the value 2.

Figure 3. The tree F.
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...u v u v
O1 : O2 :

u v u v
O3 : O4 :

u v u v
O5 : O6 :

w

T′ T′

T′ T′

T′ T′

Figure 4. The operations O1,O2, . . . ,O6.

Next, we will show that for every tree in the family T (see Figure 5 for an example of a tree in this
family), we have γ

p
R(T) ≡ γr(T).

O1 O2 O4

O6

O3

Figure 5. An example of a tree T in the family T , obtained from tree K1,4 by Operations O1,O2,O4,O3

and O6.

Lemma 3. Suppose that T is a tree in the family T , then γ
p
R(T) ≡ γr(T).

Proof. We proceed by induction on the order n ≥ 4 of a tree T ∈ T . If n = 4, then T = K1,3 and clearly
γ

p
R(T) ≡ γr(T). Suppose that n ≥ 5 and that for every tree in T of order n′, where 5 ≤ n′ ≤ n, we

have γ
p
R(T) ≡ γr(T). Assume that T ∈ T has order n. Thus, T can be obtained from a sequence of

trees T1, . . . , Tk, where k ≥ 1 and where T1 = K1,3 and T = Tk. For each i ≤ k− 1, the tree Ti can be
constructed by Ti−1 via one of the operations O1,O2, . . . ,O6.

Set T′ = Tk−1. We know that T′ ∈ T has less than n vertices. Applying the inductive hypothesis
to T′, we know that γ

p
R(T

′) ≡ γr(T′). Suppose that f is a γr-function of T, where the sum of the values
assigned to all leaves under f is the minimum. We restrict the function f to the tree T′ and denote it by
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f ′. For any vertex w ∈ V(T′), the equality f ′(w) = f (w) holds. Six different situations are considered
in the sequel.

Case 1. T is derived by T′ through Operation O1.
Assume T is obtained from T′ by adding a star K1,3, with central vertex v and leaves x, y, z,

and adding the edge uv such that γr(T′ − u) > γr(T′). Then u can not get the value 0 under any
γr(T′)-function. Hence every PRDF on T′ can be extended to a PRDF on T by assigning the weight
2 to v and the weight 0 to the three neighbors of v. Hence, by the statement above, and inductive
hypothesis, we obtain

γr(T) ≤ γP
R(T) ≤ γP

R(T
′) + 2 = γr(T′) + 2. (1)

Conversely, the vertex v is a strong support vertex of T and so we can see that f (v) = 2 and f (x) =
f (y) = f (z) = 0. If f (u) = 0, then f |T′−u is a WRDF on T′ − u and so

γr(T′) < γr(T′ − u) ≤ w( f |T′−u) = w( f )− 2 = γr(T)− 2. (2)

Now assume that f (u) 6= 0, then f |T′ is a WRDF on tree T′ and so

γr(T′) ≤ w( f |T′) = w( f )− 2 = γr(T)− 2. (3)

Therefore, we must have equalities throughout the inequality chain (1). In particular, γr(T) =
γP

R(T).
Now, assume that γr(T) 6≡ γP

R(T). Then there is a γr(T)-function g such that g is not a
PRDF. Since v is a strong support vertex, hence g(v) = 2. If g(u) 6= 0, then the function g|T′ is a
γr(T′)-function that is not a PRDF. This is a contradiction. Hence, g(u) = 0. Thus, the function g|T′−u
is a WRDF on tree T′ − u and so γr(T′) < γr(T′ − u) = w(g|T′−u) = w(g)− 2 = γr(T)− 2 = γr(T′).
This is a contradiction. Therefore, γr(T) ≡ γP

R(T).
Case 2. T is derived by T′ through Operation O2.
Assume that f ′ is a γP

R(T
′)-function. We have f ′(u) = 2 and therefore f ′ is extended to a PRDF

on T by giving the weight 0 to v. Hence, by inductive hypothesis, we obtain

γr(T) ≤ γP
R(T) ≤ γP

R(T
′) = γr(T′). (4)

Conversely, the vertex u is a strong support vertex of T and so we can see that f (u) = 2 and f (v) = 0.
Hence, f ′ is a WRDF on T′ and so γr(T′) ≤ w( f ′) = w( f ) = γr(T). Therefore, we must have equalities
throughout the inequality chain (4). In particular, γr(T) = γP

R(T). Assume that γr(T) 6≡ γP
R(T). Thus,

there is a γr(T)-function g such that g is not a PRDF. Since u is a strong support vertex, then g(u) = 2
and g(v) = 0. Hence, the function g|T′ is a γr(T′)-function that is not a PRDF. This is a contradiction.
Therefore, γr(T) ≡ γP

R(T).
Case 3. T is derived by T′ through Operation O3.
Assume that f ′ is a γP

R(T
′)-function and L(u) = {x, y}. Hence, we assume that f ′(u) = 2 and

f (x) = f (y) = 0. Then f ′ can be extended to a PRDF on T by assigning the weight 0 to v. Hence, by
the inductive hypothesis, we obtain

γr(T) ≤ γP
R(T) ≤ γP

R(T
′) = γr(T′). (5)

Conversely, the vertex u is a strong support vertex of T and so we obtain that f (u) = 2 and f (v) = 0.
Hence, f ′ is a WRDF on T′ and so γr(T′) ≤ w( f ′) = w( f ) = γr(T). Therefore, we must have equalities
throughout the inequality chain (5). In particular, γr(T) = γP

R(T). Assume that γr(T) 6≡ γP
R(T). Thus,

there is a γr(T)-function g such that g is not a PRDF. Since u is a strong support vertex, then g(u) = 2
and g(v) = 0. Hence, the function g|T′ is a γr(T′)-function that is not a PRDF. This is a contradiction.
Therefore, γr(T) ≡ γP

R(T).
Case 4. T is derived by T′ through Operation O4.
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Assume T is obtained from T′ by adding a star K1,3, with central vertex x and leaves v, y, z, and
adding the edge uv where u is a leaf that is adjacent to a strong support vertex w of T′. Assume that f ′

is a γr(T′)-function. Note that w is a strong support vertex, we assume that f ′(w) = 2 and f ′(u) = 0.
By the inductive hypothesis, f ′ is a γP

R(T
′)-function. Then, we extend f ′ to a PRDF on T by giving

the weight 2 to x and the weight 0 to the vertices v, y and z. Hence, by the statement above, and the
inductive hypothesis, we obtain

γr(T) ≤ γP
R(T) ≤ γP

R(T
′) + 2 = γr(T′) + 2. (6)

Conversely, the vertex x is a strong support vertex of T. Also, f (x) = 2 and f (v) = f (y) = f (z) = 0
hold. Hence, f ′ is a WRDF on T′ and therefore

γr(T′) ≤ w( f ′) = w( f )− 2 = γr(T)− 2. (7)

Therefore, we must have equalities throughout the inequality chain (6). In particular, γr(T) = γP
R(T).

Assume that γr(T) 6≡ γP
R(T). Then there is a γr(T)-function g such that g is not a PRDF. Since

x is a strong support vertex, we may assume that g(x) = 2 and g(v) = 0. Then the function g|T′ is a
γr(T′)-function on tree T′ that is not a PRDF. This is a contradiction. Therefore, γr(T) ≡ γP

R(T).
Case 5. T is derived by T′ through Operation O5.
If T is constructed from T′ via adding a star K1,3 with central vertex x and leaves v, y, z, and

joining leaf v of the star to vertex u of T′ such that every γr(T′)-function of T′ gives to the vertex u the
value 0. Assume that g′ is a γr(T′)-function. By the hypothesis, g′(u) = 0. On the other hand, g′ is
a γP

R(T
′)-function since γr(T′) ≡ γP

R(T
′). Thus, g′ can be extended to a PRDF on T by assigning the

weight 2 to x and the weight 0 to v, y and z. Hence, by the statement above, and inductive hypothesis,
we obtain

γr(T) ≤ γP
R(T) ≤ γP

R(T
′) + 2 = γr(T′) + 2. (8)

Conversely, the vertex x is a strong support vertex of T and so we can see that f (x) = 2 and f (v) =
f (y) = f (z) = 0. Hence, f ′ is a WRDF on T′ and therefore

γr(T′) ≤ w( f ′) = w( f )− 2 = γr(T)− 2. (9)

Accordingly, we know these equalities across the inequality chain (8). Accordingly, γr(T) = γP
R(T).

Assume that γr(T) 6≡ γP
R(T). Then there is a γr(T)-function g such that g is not a PRDF. Since x

is a strong support vertex, we may assume that g(x) = 2 and g(v) = 0. Then, the function g|T′ is a
γr(T′)-function on tree T′ and so g(u) = 0. Since g is not a PRDF, we deduce that g|T′ is not a PRDF,
which leads to a contradiction. Therefore, γr(T) ≡ γP

R(T).
Case 6. T is derived by T′ through Operation O6.
Suppose that T is derived from T′ via adding a tree F and joining its support vertex v with degree

two to a vertex u of T′ such that deg(u) ≥ 2 and every γr(T′)-function of T′ assigns to the vertex u the
value 2. Let N(v) = {u, x, w}, L(v) = {w}, N(x) = {v, r} and L(r) = {y, z}.

Suppose that g′ is a γP
R(T

′)-function. Then g′(u) = 2. Hence, we extend g′ to a PRDF on T by
assigning the weight 0 to v, x, y, z, the weight 1 to w and the weight 2 to r. Hence, by the statement
above, and the inductive hypothesis, we obtain

γr(T) ≤ γP
R(T) ≤ γP

R(T
′) + 3 = γr(T′) + 3. (10)

Conversely, the vertex r is a strong support vertex of T and so we can assume that f (r) = 2 and
f (x) = f (y) = f (z) = 0. Without loss of generality, we may assume that f (v) = 0 or f (v) = 2. If
f (v) = 0, then f (w) ≥ 1 and also f ′ is a WRDF on T′ and therefore

γr(T′) ≤ w( f ′) ≤ w( f )− 3 = γr(T)− 3.
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Next, suppose that f (v) = 2, then f (w) = 0 and we may assume that f (u) 6= 2. Then the function g′

such that g′(u) = max{ f (u), 1} and for w 6= u, we have g′(w) = f (w), is a WRDF on T′ and so

γr(T′) ≤ w(g′) ≤ w( f )− 3 = γr(T)− 3.

Accordingly, we must have equalities throughout the inequality chain (10). In particular, γr(T) =

γP
R(T).

Now, suppose that γr(T) 6≡ γP
R(T). Then there is a γr(T)-function g such that g is not a PRDF.

Since r is a strong support vertex, we may assume that g(r) = 2 and g(x) = g(y) = g(z) = 0. If
g(v) = 0, then we can assume that g(w) = 1. Then g|T′ is γr(T′)-function that is not a PRDF, which
leads to a contradiction. Hence, we assume that g(v) 6= 0. We may assume that g(v) = 2 and g(w) = 0.
If g(u) 6= 0, then g|T′ is γr(T′)-function with weight γr(T)− 4 = γr(T′)− 1. This is a contradiction.
Hence, we assume that g(u) = 0. Thus, function g′ by g′(u) = 1 and g′(a) = g(a) for a 6= u is
a γr(T′)-function such that g′(u) 6= 2, which is a contradiction. Therefore, γr(T) ≡ γP

R(T). This
completes the proof.

Next we have our main results as follows.

Theorem 1. Let T be a tree. We have γr(T) ≡ γP
R(T) if and only if T is K1 or T ∈ T .

Proof. Suppose T is a tree of order n. Moreover, we have γr(T) ≡ γP
R(T). When n = 1, T = K1 holds.

Without loss of generality, we suppose T is a tree or order n ≥ 2. The induction method will be used in
terms of n in the following. We can safely assume that n ≥ 3 because a path P2 has a γr(P2)-function
which is not a PRDF. In the case of n = 3, T = P3. Furthermore, γr(T) 6≡ γP

R(T). What remains to be
shown is the case of n ≥ 4. Assume that every tree T′ of order 2 ≤ n′ < n having γr(T) ≡ γP

R(T) lies
in F . Suppose that T has n vertices and γr(T) ≡ γP

R(T). Let f be a γr(T)-function. It is also safe to
view T as a tree with a diameter of at least three because any star having at least four vertices is a
member of F . In the case of diam(T) = 3, T becomes a double star Sa,b. We can safely suppose that
a ≤ b. If b = 2, then T = P4 and clearly γr(T) 6≡ γP

R(T), which is a contradiction. Hence, we assume
that b ≥ 3. If a = 2, then T has a γr(P2)-function that is not a PRDF, which is a contradiction. Hence,
we assume that a ≥ 3. Then T ∈ F because it is obtained from a star K1,b by using Operation O1.
Therefore, we assume that diam(T) ≥ 4 and T has a strong support vertex u with `u ≥ 4.

Let v ∈ L(u), T′ = T − v and f be a γP
R(T)-function. Then f (u) = 2 and f |T′ is a PRDF for tree

T′ and so γr(T′) ≤ γP
R(T

′) ≤ γP
R(T) = γr(T). Now, assume that g′ is a γr(T′)-function, then g′ can

be extended to a WRDF on T by assigning the weight 0 to the vertex v, and then γr(T) ≤ γr(T′).
Accordingly, γr(T) = γr(T′). On the other hand, γP

R(T) = γr(T) = γr(T′) ≤ γP
R(T

′) and so γP
R(T) =

γP
R(T

′). Therefore, γr(T′) = γP
R(T

′). If γr(T′) and γP
R(T

′) are not strongly equal, every γr(T′)-function
that is not a PRDF can be extended to a γr(T)-function by giving 0 to v, that is not a PRDF. This is
a contradiction with γr(T) ≡ γP

R(T). Therefore, γr(T′) ≡ γP
R(T

′) and by induction on T′, we have
T′ ∈ F . We conclude that T ∈ F as it is obtained from T′ by using Operation O2. Hence, we assume
that the following fact holds.

Fact 1. If u is a strong support vertex of a tree T, then `u ≤ 3.
We root T at a leaf x0 of a diametral path x0x1 . . . xd from x0 to a leaf xd farthest from x0.

Then Lemma 1 and Fact 1, implies that 3 ≤ deg(xd−1) ≤ 4. Among all γr(T)-functions, let f be
chosen so that the weight assigned to xd−1 is as large as possible. Since γr(T) ≡ γP

R(T), it then follows
that f is a γP

R(T)-function. We consider the following two cases:
Case 1. deg(xd−1) = 4.
Let T′ = T − xd. Clearly f (xd−1) = 2 and f |T′ is a PRDF on T′. Hence, γr(T′) ≤ γP

R(T
′) ≤

w( f |T′) = γP
R(T) = γr(T). Assume that g is a γr(T′)-function. Then we can extend g to a WRDF for T

by assigning 0 to xd, and so γr(T) ≤ γr(T′). Consequently, γr(T) = γr(T′). Hence γP
R(T) = γr(T) =

γr(T′) ≤ γP
R(T

′) and so γP
R(T) = γP

R(T
′). Therefore, γr(T′) = γP

R(T
′). If γr(T′) and γP

R(T
′) are not
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strongly equal, then every γr(T′)-function which is not a PRDF can be extended to a γr(T)-function,
by assigning 0 to xd, that is not a PRDF. This leads to a contradiction with γr(T) ≡ γP

R(T). Therefore
γr(T′) ≡ γP

R(T
′) and by induction on T′, T′ ∈ F must be true. Therefore, T ∈ F must hold as it is

derived from T′ by applying Operation O3.
Case 2. deg(xd−1) = 3.
Then Lemma 2 implies that f (xd−1) = 2. If f (xd−2) 6= 0, then re-assigning to the vertices xd and

xd−1 the weight 1 produces a new γr(T)-function which is not a PRDF. This is a contradiction. Hence,
f (xd−2) = 0. If u 6= xd−1 is a child strong support vertex of xd−2, then we can assume that f (u) = 2
and so f is not a PRDF, which is a contradiction. On the other hand, Lemma 1 implies that xd−2 has
not a weak support vertex as child. Thus every child u 6= xd−1 of xd is a leaf. Since f (xd−2) = 0 holds,
xd−2 is not a strong support vertex. Assume that xd−2 is a weak support vertex. Let L(xd−2) = {x}
and L(xd−1) = {xd, z}. Without loss of generality, we may assume that f (x) = 1. Then re-assigning to
the vertices xd and z the weight 1 and to the vertex xd−1 the weight 0, we obtain a new γr(T)-function
which is not a PRDF. This is a contradiction. Hence, we assume that deg(xd−2) = 2. Thus, Lemma
2 implies that f (xd−1) = 2 and f (xd) = f (z) = f (xd−2) = 0. Since f is also a γP

R(T)-function, then
f (xd−3) 6= 2. Assume that f (xd−3) = 1. Since f is a γP

R(T)-function, every vertex with weight 0 is
adjacent to a vertex with weight 2, and then by giving to the vertex xd−3 the weight 0 and to the vertex
xd−2 the weight 1, we obtain a new γr(T)-function, contradicting Lemma 2. Hence, f (xd−3) = 0 and
so f (xd−4) = 2. Two subcases follow as follows:

Subcase 2.1 deg(xd−3) ≥ 3.
First, we assume that xd−3 is a support vertex. Since f (xd−3) = 0, it is not a strong support vertex

so xd−3 is a weak support vertex. Let L(xd−3) = x′. Without loss of generality, we can assume that
f (x′) = 1 since f (xd−3) = 0. If xd−3 has a child u that is a strong support vertex, then we can assume
that f (u) = 2, contradicting that f is a γP

R(T)-function of T. Thus, xd−3 does not have a strong support
vertex as a child. On the other hand, Lemma 1 implies that xd−3 does not have a weak support vertex as
a child. Hence, every child of xd−3, except x′, plays a role similar as xd−2. Assume that deg(xd−3) ≥ 4
and u is a child of xd−3 other than x′ and xd−2. Let T′ = T − Txd−2 . Since f is a γP

R(T)-function
and f (xd−2) = 0, hence f |T′ is a PRDF on T′, and so γr(T′) ≤ γP

R(T
′) ≤ γP

R(T) − 2 = γr(T) − 2.
Assume that f ′ is a γr(T′)-function. Let N(u) = {xd−3, x} and N(x) = {u, y, z}. Then, we can
assume that f ′(x) = 2 and f ′(y) = f ′(z) = f ′(u) = 0. If f ′(xd−3) 6= 1, then we can extend f ′ to a
WRDF on T by assigning the weight 2 to xd−1 and the weight 0 to the three neighbors of it. Hence,
γr(T) ≤ γr(T′) + 2. Next, assume that f ′(xd−3) = 1. Since f ′(u) = 0, for every w ∈ N(xd−3) \ {u}
such that f ′(w) = 0, there exists at least one vertex w′ ∈ N(w) \ {xd−3} such that f ′(w′) 6= 0. Hence,
we can extend f ′ to a WRDF on T by assigning the weight 2 to xd−1 and the weight 0 to the three
neighbors of it. Hence, γr(T) ≤ γr(T′) + 2. Consequently, in both cases, γr(T′) = γr(T)− 2. Therefore,
γP

R(T
′) ≤ γP

R(T)− 2 = γr(T)− 2 = γr(T′) ≤ γP
R(T

′) and so γr(T′) = γP
R(T

′). If γr(T′) and γP
R(T

′)

are not strongly equal, then every γr(T′)-function which is not a PRDF is extended to a γr(T)-function
by giving the weight 2 to xd−1 and the weight 0 to the three neighbors of it, that is not a PRDF. This
leads to a contradiction with γr(T) ≡ γP

R(T). Therefore, γr(T′) ≡ γP
R(T

′) and by induction on T′, we
have T′ ∈ F . We conclude that T ∈ F , as it is obtained from T′ by using Operation O5.

Thus, we can assume that deg(xd−3) = 3. If deg(xd−4) = 2, then clearly f (xd−5) = 0 and so by
re-assigning to the vertices xd−3 and xd−5 the value 1 and to the vertex xd−4 the value 0 we get a new
γr(T)-function which is not a PRDF. This is a contradiction. Hence, we can assume that deg(xd−4) ≥ 3.
Let T′ = T − Txd−3 . Since f is a γP

R(T)-function and f (xd−3) = 0, then f |T′ is a PRDF on T′ and so
γr(T′) ≤ γP

R(T
′) ≤ γP

R(T) − 3 = γr(T) − 3. Assume that f ′ is a γr(T′)-function. If f ′(xd−4) 6= 1,
then we can extend f ′ to a WRDF on T by assigning the weight 2 to xd−1, the weight 1 to x′ and
the weight 0 to the remaining vertices of T, which is a WRDF of T of weight γr(T′) + 3, and so
γr(T) ≤ γr(T′) + 3. Next, assume that f ′(xd−4) = 1. If for every vertex u ∈ N(xd−4) with f ′(u) = 0,
there exists at least one vertex w ∈ N(u) with f ′(w) > 0, then we can extend f ′ to a WRDF on T by
assigning the weight 2 to xd−1, the weight 1 to x′ and the weight 0 to the remaining vertices of T,
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which is a WRDF of T of weight γr(T′) + 3, and so γr(T) ≤ γr(T′) + 3. We assume that there exists
a vertex u ∈ N(xd−4) with f ′(u) = 0 such that for every w ∈ N(u), we have f ′(w) = 0. Then for
every vertex y ∈ N(xd−4)− {u}, we get f ′(y) 6= 0, since f ′ is a γr(T′)-function. Hence, there exists
a vertex y ∈ N(xd−4) such that f ′(y) 6= 0, since deg(xd−4) ≥ 3. Then by re-assigning to the vertices
xd−4 and y the value 1, we get a new γr(T)-function g′. Consequently, γr(T′) = γr(T)− 3. Hence,
γP

R(T
′) ≤ γP

R(T)− 3 = γr(T)− 3 = γr(T′) ≤ γP
R(T

′) and so γr(T′) = γP
R(T

′).
Now assume that g′ is a γr(T′)-function. We first assume that g′(xd−4) = 0. Then we can extend

g′ to a γr(T)-function by assigning the weight 2 to xd−1, the weight 1 to x′ and the weight 0 to the
remaining vertices of T. This is a contradiction since every γr(T)-function assigns to the vertex xd−4
the value 2. Next, assume that g′(xd−4) = 1. If for every vertex u ∈ N(xd−4) with g′(u) = 0, there
exists at least one vertex w ∈ N(u) with g′(w) > 0, then we can extend g′ to a γr(T)-function by
assigning the weight 2 to xd−1, the weight 1 to x′ and the weight 0 to the remaining vertices of T. This
is a contradiction since every γr(T)-function assigns to the vertex xd−4 the value 2. Hence, we can
assume that every γr(T′)-function assigns to the vertex xd−4 the value 2.

Also, if γr(T′) and γP
R(T

′) are not strongly equal, then every γr(T′)-function which is not a PRDF,
can be extended to a γr(T)-function by assigning the weight 2 to xd−1, the weight 1 to x′ and the
weight 0 to the remaining vertices of T, that is not a PRDF on tree T, which leads to a contradiction
with γr(T) ≡ γP

R(T). Therefore, γr(T′) ≡ γP
R(T

′) and so by induction on T′, we have T′ ∈ F . We
conclude that T ∈ F since it is obtained from T′ by using Operation O6.

Now, assume that xd−3 is not a strong support vertex. Then, we observe that every child of
xd−3 plays a similar role as xd−2. Let T′ = T − Txd−2 . Since f is a γP

R(T)-function and f (xd−2) = 0,
then f |T′ is a PRDF on T′ and so γr(T′) ≤ γP

R(T
′) ≤ γP

R(T) − 2 = γr(T) − 2. Assume that f ′ is
a γr(T′)-function. Let N(u) = {xd−3, x} and N(x) = {u, y, z}. Then, clearly we can assume that
f ′(x) = 2 and f ′(y) = f ′(z) = f ′(u) = 0. If f ′(xd−3) 6= 1, then we can extend f ′ to a WRDF on
T by assigning the weight 2 to xd−1 and the weight 0 to the three neighbors of it. Hence γr(T) ≡
γr(T′) + 2. Next, assume that f ′(xd−3) = 1. Since f ′(u) = 0, for every w ∈ N(xd−3) − {u} such
that f (w) = 0, there exists at least one vertex w′ ∈ N(w) − {xd−3} such that f ′(w′) 6= 0. Hence,
we can extend f ′ to a WRDF on T by assigning the weight 2 to xd−1 and the weight 0 to the three
neighbors of it. Hence, γr(T) ≤ γr(T′) + 2. Consequently, in both cases, γr(T′) = γr(T)− 2. Therefore,
γP

R(T
′) ≤ γP

R(T)− 2 = γr(T)− 2 = γr(T′) ≤ γP
R(T

′) and so γr(T′) = γP
R(T

′). Assume that g′ is an
arbitrary γr(T′)-function. Then we can assume that g′(u) = 0. Hence, as before, it can be extended
to a γr(T)-function g by assigning the weight 2 to xd−1 and the weight 0 to the three neighbors of it.
Since γr(T) ≡ γP

R(T), we deduce that g is a γP
R(T)-function and so g′ is γP

R(T
′)-function. Therefore,

γr(T′) ≡ γP
R(T

′) and via induction on T′, T′ ∈ F holds. Therefore, T ∈ F as it is derived via T′ by
applying Operation O5.

Subcase 2.2 deg(xd−3) = 2.
If deg(xd−4) = 2, then by re-assigning to the vertex xd−4 the value 0, to the vertex xd−3 the value

1 and to the vertex xd−5 the value max{ f (xd−5), 1}, we arrive at a new WRDF g with weight at most
γr(T) such that g(xd−3) 6= 0. This is a contradiction. Thus, we may assume that g(xd−4) ≥ 3.

First, we assume that xd−4 is a support vertex. Let T′ = T − Txd−2 . Since f (xd−2) = 0, hence
f |T′ is a PRDF for T′ and so γr(T′) ≤ γP

R(T
′) ≤ γP

R(T)− 2 = γr(T)− 2. Now, assume that g′ be a
γr(T′)-function. Since xd−4 in tree T′ is a strong support vertex, we can assume that g′(xd−4) = 2.
Then, we can extend g′ to a WRDF on T by assigning the weight 2 to xd−1 and the weight 0 to the
three neighbors of it. Hence, γr(T) ≤ γr(T′) + 2. Consequently, in both cases, γr(T′) = γr(T)− 2.
Therefore, γP

R(T
′) ≤ γP

R(T)− 2 = γr(T)− 2 = γr(T′) ≤ γP
R(T

′) and so γr(T′) = γP
R(T

′). Assume that
g′ is an arbitrary γr(T′)-function. Then, we can assume that g′(xd−4) = 2 and g′(xd−3) = 0. Hence, as
before, it can be extended to a γr(T)-function g by assigning the weight 2 to xd−1 and the weight 0
to the three neighbors of it. Since γr(T) ≡ γP

R(T), we deduce that g is a γP
R(T)-function and so g′ is

γP
R(T

′)-function. Therefore, γr(T′) ≡ γP
R(T

′) and via induction on T′, T′ ∈ F holds true. Similarly, it
is easy to see that T ∈ F holds. This can be seen as it is derived by T′ applying Operation O4.
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Next, suppose xd−4 is not a support vertex. By Lemma 1, the vertex xd−2 does not have a
weak support vertex as a child. Also, by Lemma 2, the vertex xd−2 does not have a strong support
vertex as a child with degree three. We assume that xd−4 has as a child, a strong support vertex
v with `v = deg(v) − 1 ≥ 3. Let T′ = T − Tv. Then, clearly f (v) = 2 and f |T′ is a PRDF for
T′. So γr(T′) ≤ γP

R(T
′) ≤ γP

R(T) − 2 = γr(T) − 2. Assume that g′ is a γr(T′)-function. g′ can be
extended to a WRDF on T by giving the weight 2 to v and the weight 0 to the all leaves neighbors
of it. Hence, γr(T) ≤ γr(T′) + 2. Consequently, in both cases, γr(T′) = γr(T)− 2. Hence, γP

R(T
′) ≤

γP
R(T) − 2 = γr(T) − 2 = γr(T′) ≤ γP

R(T
′) and so γr(T′) = γP

R(T
′). Now, assume that g′ is an

arbitrary γr(T′)-function. It can then be extended to a γr(T)-function g by assigning the weight 2
to v and the weight 0 to the all leaves neighbors of it. Since γr(T) ≡ γP

R(T), we deduce that g is a
γP

R(T)-function and so g′ is a γP
R(T

′)-function. Therefore, γr(T′) ≡ γP
R(T

′). Using induction on T′,
T′ ∈ F holds true. Similarly, T ∈ F . This is because T′ and the Operation O1.

Next, we suppose that for any child support vertex v of xd−4, we have `v < deg(v) − 1.
Let N(xd−1) = {xd, y, xd−2}. Assume that y0 is a leaf vertex of a tree Txd−4 , other than xd and y,
and at maximum distance from xd−4. Let y0y1 . . . ytxd−4 be the shortest path from y0 to xd−4. Clearly,
t ≤ 3. As noted earlier, t 6∈ {0, 1}. We proceed depending on t.

We first suppose that t = 2. Then Lemma 1 implies that deg(y1) ≥ 3 and so y1 is a strong
support vertex. Without loss of generality, we may assume that f (y1) = 2 and so f (y2) 6= 0, since
f is a γP

R(T)-function and f (xd−4) = 2. Hence, deg(y2) ≥ 3. If y2 is not a support vertex, then by
Lemma 1 any child u of y2 is a strong support vertex and so we can assume that f (u) = 2. Then
by re-assigning to the vertex y2 the value 0, we get a new WRDF with weight less than γr(T). This
is a contradiction. Assume that y2 is a weak support vertex. Let L(y2) = {y′2}. Without loss of
generality, we may assume that f (y2) = 1 and f (y′2) = 0. Then by re-assigning to the vertex y2

the value 0 and to the vertex y′2 the value 1, we produce a new γr(T)-function which is not a PRDF.
This is a contradiction. Thus, we may assume that y2 is a strong support vertex. If `y2 = 2 and
L(y2) = {y′2, y′′2 }, then we can assume that f (y2) = 2 and f (y′2) = f (y′′2 ) = 0. Then by re-assigning
to the vertex y2 the value 0 and to the vertices y′2 and y′′2 the value 1, we get a new γr(T)-function
which is not a PRDF. This is a contradiction. Hence, we may assume that `y2 ≥ 3 and so f (y2) = 2.
Then, Lemma 2 implies that deg(y1) ≥ 4. Let T′ = T− Ty1 . Then, clearly f (y1) = 2 and f |T′ is a PRDF
for T′ and so γr(T′) ≤ γP

R(T
′) ≤ γP

R(T)− 2 = γr(T)− 2. Assume that g′ is a γr(T′)-function. Then,
we can extend g′ to a WRDF on T by assigning the weight 2 to y1 and the weight 0 to the all leaves
neighbors of it. Hence, γr(T) ≤ γr(T′) + 2. Consequently, in both cases, γr(T′) = γr(T)− 2. Therefore,
γP

R(T
′) ≤ γP

R(T)− 2 = γr(T)− 2 = γr(T′) ≤ γP
R(T

′) and so γr(T′) = γP
R(T

′). Now, assume that g′ is
an arbitrary γr(T′)-function. Then it can be extended to a γr(T)-function g by assigning the weight
2 to y1 and the weight 0 to all leaves neighbors of it. Since γr(T) ≡ γP

R(T), we deduce that g is a
γP

R(T)-function and so g′ is a γP
R(T

′)-function. Therefore, γr(T′) ≡ γP
R(T

′). Using induction on T′,
T′ ∈ F must be true. Therefore, we have T ∈ F . This is due to T′ and the Operation O1.

Suppose that t = 3. Since y0 plays the same role as xd, we may assume that deg(y2) = deg(y3) = 2
and y1 is a strong support vertex of degree three. Let T′ = T − Txd−2 and L(y1) = {y0, y′0}. Then
f |T′ is a PRDF for T′ and so γr(T′) ≤ γP

R(T
′) ≤ γP

R(T)− 2 = γr(T)− 2. Now, assume that g′ is a
γr(T′)-function. If g′(xd−3) 6= 1, g′ can be generalized to a WRDF on T by giving the weight 2 to
xd and the weight 0 to all neighbors of it. Hence, γr(T) ≤ γr(T′) + 2. Assume that g′(xd−3) = 1.
Then, we can assume that g(y1) = 2, g′(y0) = g′(y′0) = g′(y2) = 0 and g′(xd−4) 6= 2. If g′(xd−4) = 1,
then we can extend g′ to a γr(T)-function g by re-assigning to the vertex xd−4 the value 2 and
to xd−3 the value 0 and by assigning the weight 2 to xd−1 and the weight 0 to all neighbors of
it, and so γr(T) ≤ γr(T′) + 2. Assume that g′(xd−4) = 0. Then we can assume that g′(y3) = 1.
We can extend g′ to a γr(T)-function g by re-assigning to the vertex xd−4 the value 2 and to the
vertices xd−3 and y3 the value 0 and by assigning the weight 2 to xd−1 and the weight 0 to all
neighbors of it, and so γr(T) ≤ γr(T′) + 2. Consequently, in all cases, γr(T′) ≤ γr(T)− 2. Hence,
γP

R(T
′) ≤ γP

R(T)− 2 = γr(T)− 2 = γr(T′) ≤ γP
R(T

′) and so γr(T′) = γP
R(T

′). Now, assume that g′ be
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an arbitrary γr(T′)-function. Then, as before, it can be extended to a γr(T)-function g by re-assigning to
the vertex xd−4 the value 2 and to the vertices xd−3 and y3 the value 0 and by assigning the weight 2 to
xd−1 and the weight 0 to all neighbors of it. Since γr(T) ≡ γP

R(T), we deduce that g is a γP
R(T)-function

and so g′ is a γP
R(T

′)-function. Therefore, γr(T′) ≡ γP
R(T

′). Via induction on T′, T′ ∈ F holds true.
Consequently, it can be seen that T ∈ F . This is again due to T′ as well as the Operation O5. The proof
is then completed as desired.

3. Conclusions

Ian Stewart’s work “Defend the Roman Empire!” [2] initially introduced the notion of Roman
dominating functions. In recent years, many variations of Roman domination have been proposed due
to different conditions on Roman domination, e.g., weak Roman domination [12] and perfect Roman
domination [9]. Among the problems of Roman domination, the strong equality results have attracted
great attention. In this paper, we studied the class of trees in which the perfect Roman domination
number is strongly equal to the weak Roman domination number. This strongly equality means that
each weak Roman dominating function of minimum weight is equivalent to a function that is deemed
as perfect Roman dominating. We formulated some interesting conditions which we hope can be
useful in stimulating relevant research.
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