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Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) are implicated in

the progression and outcome of a variety of pathological states, from cancer to infection.

Our previous work has identified three antimicrobial peptides differentially expressed

by PMN-MDSCs compared to conventional neutrophils isolated from dogs, mice, and

human patients with cancer. We therefore hypothesized that PMN-MDSCs in dogs with

cancer possess antimicrobial activity. In the current work, we observed that exposure

of PMN-MDSCs to Gram-negative bacteria (Escherichia coli) increased the expression

of reactive oxygen species by the PMN-MDSCs, indicating that they are capable of

initiating an anti-microbial response. Electron microscopy revealed that the PMN-MDSCs

phagocytosed Gram-negative and Gram-positive (Staphylococcus aureus) bacterial

species. Lysis of bacteria within some of the PMN-MDSCs suggested bactericidal

activity, which was confirmed by the recovery of significantly lower numbers of bacteria of

both species following exposure to PMN-MDSCs isolated from tumor-bearing dogs. Our

data therefore indicate that PMN-MDSCs isolated from dogs with cancer, in common

with PMNs, have phagocytic and bactericidal activity. This nexus of immunosuppressive

and antimicrobial activity reveals a hitherto unrecognized function of MDSCs.

Keywords: MDSC, PMN-MDSC, G-MDSC, canine, cancer, bactericidal, phagocytosis, reactive oxygen species

INTRODUCTION

Myeloid-derived suppressor cells (MDSCs) are a subset of immunosuppressive myeloid cells
that expand under chronic inflammatory conditions. In cancer, MDSCs release reactive oxygen
species (ROS) and cytokines such as IL-10, resulting in the suppression of cytotoxic T cells and
attenuation of their antineoplastic activity (1, 2). In infections, the immunosuppressive activity of
MDSCs may be beneficial or harmful to the host, depending on the context and bacterial targets.
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In models of pneumonia and Leishmania major infection, for
example, increased frequencies of MDSCs are associated with
improved survival by preventing excessive inflammation (3–5).
In contrast, increased frequencies of MDSCs in Staphylococcus
aureus biofilm infections in a murine model are associated
with enhanced T cell suppression and increased bacterial load,
reducing survival (6, 7). Recent work has demonstrated the
role of the microbiome in driving the expansion of MDSC
populations in the context of cancer. A murine model of
pancreatic cancer demonstrated an increased bacterial load
in the neoplastic pancreas; ablation of the bacterial load
by treating wild-type mice with an oral antibiotic regimen
attenuated MDSC frequency and improved T cell activation
and outcome (8). Such studies therefore suggest a relationship
between the ability of MDSCs to respond to microbes and their
immunosuppressive activities.

Dogs with naturally occurring cancer are gaining traction
as a model to study a variety of biological processes in
tumor development. Our work has demonstrated that the
polymorphonuclear subset of MDSCs (PMN-MDSCs, also
known as granulocytic (G)-MDSCs) isolated from dogs are
functionally and phenotypically representative of human PMN-
MDSCs, further supporting the dog as a model species. Murine
PMN-MDSCs are defined as CD11b+Ly6G+Ly6Clo peripheral
blood mononuclear cells (PBMCs), while human PMN-
MDSCs are traditionally defined as CD11b+CD14−CD15+

or CD11b+CD14−CD66b+ PBMCs, with Ly6G, CD15 and
CD66b acting as neutrophil (or polymorphonuclear cell; PMN)
markers (2). In dogs, we used a parallel marker approach using
CADO48A as our canine-specific PMN marker. We found that
CD11b+CD14−CADO48A+ PBMCs suppressed T cell function
and therefore represented the canine equivalent of PMN-MDSCs
(9). Our cross-species transcriptomic analysis revealed that
three of the five commonly upregulated genes in PMN-MDSCs
isolated from dogs, humans, and mice encode antimicrobial
peptides (9). Furthermore, these cells synthesize a number of
products attributed to conventional PMN killing of bacteria
(2), prompting us to hypothesize that PMN-MDSCs may serve
a bactericidal role in certain contexts, including cancer. We
show for the first time that PMN-MDSCs isolated from canine
cancer patients are able to phagocytose and kill bacteria. Our
findings suggest a novel duality of function of MDSCs, raising
the possibility that their immunosuppressive function can be
modulated by interactions with microbes, which may enhance
cancer progression.

MATERIALS AND METHODS

Isolation of Canine Cells
This study was approved by the Institutional Animal Care
and Use Committee, and the Privately Owned Animal Protocol
Committee (Protocol #500), of the School of Veterinary
Medicine, University of Pennsylvania (Penn Vet). Written
informed consent was obtained from all owners of dogs sampled
in this study. These dogs were patients at the Matthew J Ryan
Hospital of Penn Vet. Samples collected at the Flint Animal
Cancer Center at Colorado State University were approved

under the Clinical Review Board Protocol CS2019-208: Flint
Animal Cancer Center Biobanking and Sample Collection. The
signalments and clinical diagnoses of the dogs sampled for this
study are listed in Supplemental Table 1.

Peripheral blood was aseptically collected from healthy and
tumor-bearing dogs, stored at room temperature in the dark, and
processed within 24 h. Briefly, blood was diluted 1:1 in sterile
Dulbecco’s phosphate buffered saline (DPBS) and layered gently
over Histopaque-1077 (Sigma-Aldrich, St. Louis, MO, USA).
Samples were centrifuged for 30min at 400 g with acceleration
and deceleration set to zero. The PBMC layer was removed using
a transfer pipet and transferred to a fresh tube. The remaining
serum and Histopaque layer was aspirated and discarded, leaving
the red blood cell (RBC) layer. PMNs were isolated from the RBC
layer after incubation with 10 times the volume of 1X RBC Lysis
Buffer (Multi-Species; Thermo Fisher Scientific, San Diego, CA,
USA) for 5min at room temperature. PBMCs were incubated
with RBC Lysis Buffer for 1min to remove contaminating RBCs.
PBMCs and PMNs were then washed with 10% v/v fetal bovine
serum (FBS; Hyclone, Logan, UT, USA) in DPBS twice, prior
to counting.

PBMCs from healthy control dogs were stained with PE-
conjugated anti-dog-CD5 monoclonal antibody (1:200, clone
YKIX322.3; Bio-Rad, Hercules, CA, USA). PBMCs from healthy
dogs and PBMCs and PMNs from tumor-bearing dogs were
stained with PE-Cy7-conjugated anti-dog PMN leukocyte
antigen (1:1,600, clone CADO48A; University of Washington,
Pullman, WA, USA, https://secure.vetmed.wsu.edu/moab/shop/
item.aspx?itemid=246). All staining was performed for 30min in
the dark at 4◦C. In our previous publication, we utilized a larger
panel to identify canine PMN-MDSCs in amanner that paralleled
the panel used to identify human PMN-MDSCs (2, 9). For this
study, a simplified, single antigen panel was deployed for FACSTM

to conserve reagents and minimize the preparation time of cells
prior to setting up bacterial killing assays, following preliminary
experiments that demonstrated equivalence of gated cells in the
full and abbreviated panels (Supplemental Figure 1). Cells were
then washed and resuspended in DPBS containing 2% v/v FBS
and 2mM ethylenediaminetetraacetic acid, and incubated with
4′,6-diamidino-2-phenylindole (DAPI; BioLegend, San Diego,
CA, USA) at room temperature in the dark for 10min, prior to
sorting on a BD FACSAria II and analysis on FlowJo R© software,
version 10.3 (Tree Star, Ashland, OR, USA). PMN-MDSCs were
sorted from PBMCs of tumor-bearing dogs, identified as live
hypodense CADO48A+ granulocytes, while PMNs were sorted
from the lysed RBC fraction, identified as live hyperdense
CADO48A+ granulocytes (healthy control dog: H-PMN, tumor-
bearing [cancer] dog: C-PMN). T cells were identified as live
CD5+ lymphocytes.

Reactive Oxygen Species Assay
To measure ROS using a modification of a published protocol
(10), 5× 105 cell aliquots of PBMCs and PMNs isolated from four
healthy control dogs and six tumor-bearing dogs were loaded
with dihydrorhodamine-123 (DHR, Sigma-Aldrich, St. Louis,
MO, USA; final concentration = 40µM) and incubated with
or without stimulation at 37◦C in a final volume of 200 µl. To

Frontiers in Immunology | www.frontiersin.org 2 October 2019 | Volume 10 | Article 2371

https://secure.vetmed.wsu.edu/moab/shop/item.aspx?itemid=246
https://secure.vetmed.wsu.edu/moab/shop/item.aspx?itemid=246
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Hlavaty et al. Bacterial Killing Activity of PMN-MDSCs

induce production of ROS, samples were incubated for 30min
with a 20:1 ratio of E. coli to cells. To inhibit ROS production,
diphenyleneiodonium (DPI, Sigma-Aldrich) was added to a
final concentration of 19.1µM. After incubation, samples were
immediately placed on ice and washed in 1mL of cold PBS.
PBMCs were subsequently resuspended in 100 µL of cold PBS,
stained with 0.5 µg anti-CADO48A [conjugated with either APC
(Bio-Rad) or PE-Cy7 (Bio-Rad)], incubated on ice in the dark
for 30min, then washed with 1mL of cold PBS. Stained PMNs
and PBMCs were resuspended in 350 µL of staining medium
(PBS; 0.1%BSA; 0.1%NaN3) for analysis via flow cytometry
on a FACSCaliburTM and analyzed using FlowJo R© software,
version 10.6.

Bacterial Killing Assay
Our bacterial killing assay was modified from a published
protocol (11). Single colonies of E. coli (strain MG1655) and
S. aureus (RN6607; strain 502A) were grown as an overnight
culture, diluted the next morning 1:10 in sterile Luria-Bertani
(LB) broth, and grown at 250 rotations per minute (rpm) to an
optical density at 600 nm of 1.0, before placing on ice. Prior to
incubation with canine cells (E. coli: eleven healthy control dogs,
six tumor-bearing dogs; S. aureus: eight healthy control dogs,
five tumor-bearing dogs), bacteria were diluted 1:10 in DPBS
and grown for 30min at 80 rpm at 37◦C, before resuspension
in Roswell-Park Memorial Institute (RPMI)-1640 medium (Life
Technologies, Carlsbad, CA, USA) containing 10mM HEPES.
Canine cells (2 × 105 cells in 50 µL) were incubated for 15min
alone at room temperature in a round bottom 96-well plate, after
which the bacteria were added at a ratio of bacteria: cells of 10:1.
The plate was centrifuged at 500 g for 5min, before incubation
at 37◦C for 40min at 80 rpm. Serial dilutions of each condition
were prepared in 0.1% Triton-X in sterile water in order to release
any viable, internalized bacteria by lysis, before the preparation
of LB plates that were incubated overnight to count resulting
colony-forming units (CFUs) the next day. Co-culture CFUs were
normalized to CFUs for bacteria alone.

Electron Microscopy
Canine cells were isolated from one tumor-bearing dog and
one healthy control dog, and incubated with E. coli or S.
aureus as described above. After centrifugation at 500 g for
10min, the cells were resuspended in 1mL of fixative buffer
(2.5% glutaraldehyde, 2.0% paraformaldehyde in 0.1M sodium
cacodylate buffer, pH 7.4) for 30min at room temperature. After
storage at 4◦C for up to 16 h, the cells were washed with 0.1M
sodium cacodylate at pH 7 and post-fixed in 2.0% osmium
tetroxide for 1 h at room temperature, before another wash
in buffer and then distilled water. After dehydration through
a graded ethanol series, the cells were embedded in Embed-
812 (Electron Microscopy Sciences, Fort Washington, PA). Thin
sections were stained with uranyl acetate and lead citrate,
before examination with a JEOL 1010 electron microscope fitted
with a Hamamatsu digital camera and AMT Advantage image
capture software.

Approximately 100 images of each cell type were collected in
a grid-like and unbiased manner for quantification. All images

for quantification were collected at a magnification of 15,000×.
The images were scrambled using random.org, before review
of all images in a blinded manner to assess the number of
bacteria internalized, and endoplasmic reticulum (ER) dilation
score. At least half of the cross-sectional profile of a bacterium
had to be internalized by the canine cell to be counted as
internal. Endoplasmic reticulum dilation score was determined
as previously published (12): dilated ER not observed in the
cytoplasm (score 0), dilated ER present in up to one third of
the cytoplasm (score 1), one third to two thirds of the cytoplasm
(score 2), or more than two thirds of the cytoplasm (score 3).

Statistics
Linear mixed effects models were used to evaluate differences in
normalized percentage DHR positivity and normalized median
fluorescence intensity (MFI) between conditions, cell types
and their interactions, in which subject dog identification was
included as a random effect. Both DHR percentage and MFI
were skewed, prompting log transformation prior to analysis.
Poisson regression and ordinal logistic regression were used to
compare bacterial count or dilated ER score between cell types.
For E. coli and S. aureus killing assays, linearmixed effects models
were adopted to compare cell types and bacteria; experimental
date and dog were considered as random effects. Raw frequency
was log-transformed prior to analysis. Fisher’s Least Significant
Difference was adopted for all post-hoc comparisons.Frequencies
are displayed as mean ± standard deviation (SD) or median
[inter-quartile range (IQR)], as appropriate. All analyses were
carried out in R, version 3.5.1 (R Foundation for Statistical
Computing; Vienna, Austria).

RESULTS

Bacteria Elicit the Synthesis of Reactive
Oxygen Species by PMN-MDSCs
Given that PMN-MDSC suppressive activity is attributed
partially to their production of ROS (1), and ROS mediate
bacterial killing (13), we first set out to ask whether exposure
of PMN-MDSCs to bacteria increased cellular ROS synthesis.
We loaded canine cells with DHR and measured its oxidation
by ROS, which results in a green fluorescent product that can
be detected by flow cytometry (Figure 1A). Exposure of both
C-PMNs (p = 0.0012) and PMN-MDSCs (p = 0.0062) to E.
coli increased the percentage of DHR+ CADO48A+ cells when
compared to canine cells alone, indicating an increase in ROS
production. This phenomenon was extinguished when NADPH
oxidase was inhibited with DPI (C-PMN: p = 0.122, PMN-
MDSC: p = 0.33; Figure 1B). Comparison of the MFI for each
condition yielded similar observations. E. coli once again elicited
an increased DHR MFI (C-PMN: p = 0.00012, PMN-MDSC:
p = 0.0086), which was inhibited by DPI (C-PMN: p = 0.13,
PMN-MDSC: p = 0.74; Figure 1C). PMN-MDSCs therefore
produce ROS in an NADPH-dependent manner in direct
response to bacteria.
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FIGURE 1 | Exposure of PMNs and PMN-MDSCs from tumor-bearing dogs to E. coli leads to production of reactive oxygen species. (A) Exemplar of flow cytometric

data for C-PMNs and PMN-MDSCs isolated from the same tumor-bearing dog. Numbers indicate frequency of total cells that fall within each gate. (B,C) Summary of

all experiments displaying results as a measure of (B) proportion of CADO48A+ cells that are DHR+ and (C) MFI of CADO48A+ cells on the DHR channel. DPI was

used to inhibit NADPH oxidase production of ROS. Percentage or MFI of DHR+ cells following exposure to E. coli is normalized to the percentage or MFI of DHR+

cells under the unstimulated condition. An asterisk denotes p < 0.01 and is based on a least square means analysis, comparing each condition to the normalized

unstimulated condition (y = 1). Each dot represents a different dog. Box-and-whisker plots display the 25th and 75th percentile with median indicated by the center

line, while the whiskers indicate the lowest and the highest data points still within 1.5 times the interquartile range of the respective lower and upper quartiles. C,

cancer; PMN, polymorphonuclear cell; ROS, reactive oxygen species; MFI, mean fluorescence intensity; DPI, diphenyleneiodonium; DHR, dihydrorhodamine-123; EC,

E. coli.

PMN-MDSCs Phagocytose E. coli and S.

aureus
ROS production was enhanced in PMN-MDSCs exposed
to bacteria in an NADPH-oxidase-dependent manner. This
phenomenon is known to accompany phagocytosis (13),

prompting us to ask whether PMN-MDSCs are phagocytic.

While T cells did not phagocytose E. coli (a negative control

in these assays; data not shown), PMN-MDSCs showed
clear evidence of phagocytosis, in common with C-PMNs
(Figures 2A,B). Identity of the PMN-MDSCs was verified by
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FIGURE 2 | PMN-MDSCs phagocytose bacteria. (A,B) EM images of (A) C-PMN and (B) PMN-MDSC isolated from tumor-bearing dogs. Blue asterisks indicate

dilated endoplasmic reticulum, yellow asterisks indicate phagolysosomes, and red asterisks indicate E. coli. Scale bar = 1µm. (C) Bar graph depicting the proportion

of total cells of each cell type analyzed by EM that had the respective range of bacteria internalized. C, cancer; PMN, polymorphonuclear cell; EM, electron microscopy.

analysis of dilated ER (Supplemental Figure 2A) (9, 12). Both
populations had a similar range of internalized E. coli present
in the cytoplasm per cell (C-PMNs: 0–16, PMN-MDSCs: 0–19;
Figure 2C, Supplemental Figure 2B), although median [IQR]
numbers of bacteria per cell were marginally lower in PMN-
MDSCs (1 [5]) compared to C-PMNs (3 [5]; p = 0.0044).
PMN-MDSCs also showed evidence of phagocytosis of S. aureus
(Supplemental Figure 3). PMN-MDSCs are therefore able to
phagocytose both Gram-negative and Gram-positive bacteria.

PMN-MDSCs Exhibit Bactericidal Activity
Having confirmed that PMN-MDSCs are able to phagocytose
E. coli, we next asked whether PMN-MDSCs kill bacteria. The
growth of bacteria exposed to PMN-MDSCs was significantly
lower, when normalized to bacteria alone, than a negative control
population of T cells (PMN-MDSCs: 0.445 ± 0.278, T cells:
0.971 ± 0.340, p = 2.6 × 10−8; Figure 3A). Similarly, PMNs
isolated from both healthy control dogs (0.282 ± 0.172; p < 2
× 10−16) and tumor-bearing dogs (0.268 ± 0.156; p = 1.5 ×

10−13) inhibited bacterial growth. PMN-MDSCs (0.430± 0.291)

also showed enhanced bactericidal activity against S. aureus
compared to T cells (0.934 ± 0.128, p = 1.5 × 10−7; Figure 3B).
Similar results were observed for PMNs isolated from healthy
control (0.260 ± 0.231, p = 6.7 × 10−12) and tumor-bearing
(0.376 ± 0.332, p = 9.0 × 10−9) dogs. PMN-MDSCs isolated
from tumor-bearing dogs are therefore able to kill both Gram-
negative and Gram-positive bacteria.

DISCUSSION

PMN-MDSCs promote an immunosuppressive
microenvironment, which may be beneficial or harmful to
the host depending on circumstances (14). In the context of
cancer, they play an important role in suppressing T cell activity
and promoting tumor development (1, 2). However, many
questions about PMN-MDSC function remain unanswered,
including the possibility that they serve roles other than
suppression in certain contexts. Capitalizing on our former
studies of canine MDSCs and previous work suggesting that
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FIGURE 3 | PMN-MDSCs exhibit bactericidal activity. Summary data from bacterial killing assays co-incubating (A) E. coli or (B) S. aureus with T cells and PMNs

isolated from healthy dogs, and PMNs and PMN-MDSCs isolated from tumor-bearing dogs. Bacterial growth with canine cells was normalized to growth of bacteria

alone. A linear mixed effects approach was used for statistical analyses, with the statistically significant comparisons indicated by a solid black line. Each dot

represents a different dog. Boxes indicate 25th and 75th percentile with median graphed in the center, while whiskers indicate the lowest and highest data points

within 1.5 times the interquartile range of the upper and lower limits. Outlier results are indicated with an asterisk. H, healthy; C, cancer; PMN, polymorphonuclear cell.

MDSCs may be phagocytic in certain contexts (4, 9), we set out
to address whether PMN-MDSCs isolated from tumor-bearing
dogs have bacterial killing activity.

Since production of ROS as part of the oxidative burst has
been linked to killing of bacteria by PMNs (13), and PMN-
MDSCs utilize ROS as one of the mechanisms of suppression, we
first asked whether exposure to bacteria elicited ROS production
in canine PMN-MDSCs. We found that exposure to E. coli
increased the concentration of ROS in PMN-MDSCs in an
NADPH oxidase-dependent manner, suggesting that E. coli
interactions with PMN-MDSCs stimulate downstream signaling
pathways that culminate in ROS production.

We next wished to understand whether PMN-MDSCs
from tumor-bearing dogs are able to phagocytose bacteria.
This aspect of PMN-MDSC function has not been studied
as extensively as it has in PMNs; however, a number of
studies in a variety of contexts have found these cells to
be capable of phagocytic activity. PMN-MDSCs isolated from
tumor-bearing mice were able to phagocytose latex beads (15),
while PMN-MDSCs isolated from infected mice phagocytosed
Gram-negative bacteria, although not as proficiently as PMNs
(16). Similarly, PMN-MDSCs isolated from human cord blood

phagocytosed both Gram-positive and Gram-negative bacteria
(4). However, to the best of our knowledge the phagocytosis
of living Gram-positive and Gram-negative bacteria by PMN-
MDSCs has not been investigated in the context of cancer.
Confirming by electron microscopy that PMN-MDSCs isolated
from dogs with cancer are able to phagocytose both E. coli
and S. aureus, we extended these observations by demonstrating
that PMN-MDSCs have a direct bactericidal function. This
phenomenon was consistent with our observation of bacterial

debris in phagolysosomes within some of the PMN-MDSCs we

imaged. Interestingly, the median number of bacteria per cell
was higher in C-PMNs than in PMN-MDSCs, but the difference
was marginal and of questionable biological significance. While
these results may indicate that PMN-MDSCs are intrinsically less
phagocytic than PMNs, several variables—such as random plane
of section, the limitations of static images, the limited number
of dogs used for imaging, and our interrogation of only two
bacterial species—precluded reliable quantitative comparisons
of phagocytic efficiency in our experiments. Further work will
be required to address the comparative phagocytic ability of
PMN-MDSCs and PMNs.

In summary, our findings highlight a novel bacterial killing
function of PMN-MDSCs isolated from tumor-bearing dogs.
This adds another function to PMN-MDSCs’ repertoire of
activities and raises intriguing questions about how PMN-
MDSCs might be involved in establishing a pre-neoplastic
niche in tumors associated with certain bacteria (17–19). For
example, we speculate that PMN-MDSCs function in regions
of bacterial colonization or infection in order to target the
bacteria, yet in doing so promote an immune suppressive
microenvironment that drives aggressive expansion of neoplastic
cells (20–22). We hypothesize that PMN-MDSCs promote
a suppressive microenvironment early in certain bacterial
infections, contributing to the development of a pre-neoplastic
niche and tumor development. The nexus of suppressive
and bactericidal MDSC function may therefore represent an
important focus of future research into oncogenesis.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

Frontiers in Immunology | www.frontiersin.org 6 October 2019 | Volume 10 | Article 2371

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Hlavaty et al. Bacterial Killing Activity of PMN-MDSCs

ETHICS STATEMENT

The animal study was reviewed and approved by University of
Pennsylvania’s Institutional Animal Care andUse Committee, the
Privately Owned Animal Protocol Committee (Protocol #500) at
the School of Veterinary Medicine, University of Pennsylvania,
and the Clinical Review Board Protocol CS2019-208: Flint
Animal Cancer Center Biobanking and Sample Collection at
the Flint Animal Cancer Center at Colorado State University.
Written informed consent was obtained from the owners for the
participation of their animals in this study.

AUTHOR CONTRIBUTIONS

SH and OG conceived and planned the experiments. SH
processed samples for EM, collected and analyzed EM images,
performed bacterial killing assays, and wrote the first draft of
the manuscript. Y-MC performed statistical analyses and created
summary figures. RO performed the oxidative burst assays under
the guidance of JP. DT provided samples from tumor-bearing
dogs. PP and MG provided bacterial strains and advice on
bacterial assays. OG funded the project, supervised SH, and
edited all drafts of the manuscript. All authors read and approved
the final draft of the manuscript.

FUNDING

SH was supported by the Howard Hughes Medical
Institute-Burroughs Wellcome Fund Medical Research

Fellowship. RO and JP were funded by UPenn’s Center for
Undergraduate Research Funds, with a Team Grant for
Interdisciplinary Activities (TGIA). Work in the Garden
Immune Regulation Laboratory was funded in part by
an International Canine Health Award to OG from The
Kennel Club (U.K.).

ACKNOWLEDGMENTS

The authors would like to thank the entire Garden Immune
Regulation Laboratory for all their assistance with this project,
especially Brandon Lawson, who scrambled the EM images
for analysis. Thank you as well to Penn Vet’s Veterinary
Clinical Investigations Center, the Penn Vet Medical Oncology
Service, and Lynelle Lopez at Colorado State University’s
Flint Animal Cancer Center for assistance with collecting
blood samples. We would also like to thank Dr. Dieter
Schifferli for sharing his expertise in bacterial killing assays.
We are also grateful to the Electron Microscopy Resource
Laboratory at the Perelman School of Medicine, University
of Pennsylvania for processing cells for EM, as well as
assisting with imaging.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fimmu.
2019.02371/full#supplementary-material

REFERENCES

1. Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The nature of myeloid-derived

suppressor cells in the tumor microenvironment. Trends Immunol. (2016)

37:208–20. doi: 10.1016/j.it.2016.01.004

2. Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten

TF, et al. Recommendations for myeloid-derived suppressor cell

nomenclature and characterization standards. Nat Commun. (2016)

7:12150. doi: 10.1038/ncomms12150

3. Pereira WF, Ribeiro-Gomes FL, Guillermo LV, Vellozo NS, Montalvao F,

Dosreis GA, et al. Myeloid-derived suppressor cells help protective immunity

to Leishmania major infection despite suppressed T cell responses. J Leukoc

Biol. (2011) 90:1191–7. doi: 10.1189/jlb.1110608

4. Leiber A, Schwarz J, Kostlin N, Spring B, Fehrenbach B, Katava

N, et al. Neonatal myeloid derived suppressor cells show reduced

apoptosis and immunosuppressive activity upon infection with

Escherichia coli. Eur J Immunol. (2017) 47:1009–21. doi: 10.1002/eji.2016

46621

5. Poe SL, Arora M, Oriss TB, Yarlagadda M, Isse K, Khare A, et al. STAT1-

regulated lung MDSC-like cells produce IL-10 and efferocytose apoptotic

neutrophils with relevance in resolution of bacterial pneumonia. Mucosal

Immunol. (2013) 6:189–99. doi: 10.1038/mi.2012.62

6. Heim CE, Vidlak D, Scherr TD, Kozel JA, Holzapfel M,

Muirhead DE, et al. Myeloid-derived suppressor cells contribute to

Staphylococcus aureus orthopedic biofilm infection. J Immunol. (2014)

192:3778–92. doi: 10.4049/jimmunol.1303408

7. Tebartz C, Horst SA, Sparwasser T, Huehn J, Beineke A, Peters G, et al.

A major role for myeloid-derived suppressor cells and a minor role for

regulatory T cells in immunosuppression during Staphylococcus aureus

infection. J Immunol. (2015) 194:1100–11. doi: 10.4049/jimmunol.1400196

8. Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, Kurz E, Mishra A, et

al. The pancreatic cancer microbiome promotes oncogenesis by induction

of innate and adaptive immune suppression. Cancer Discov. (2018) 8:403–

16. doi: 10.1158/2159-8290.CD-17-1134

9. Goulart MR, Hlavaty SI, Chang Y-M, Polton G, Stell A, Perry J, et al.

Phenotypic and transcriptomic characterization of canine myeloid-derived

suppressor cells. Sci Rep. (2019) 9:3574. doi: 10.1038/s41598-019-40285-3

10. Chen Y, Junger WG. Measurement of oxidative burst in neutrophils.Methods

Mol Biol. (2012) 844:115–24. doi: 10.1007/978-1-61779-527-5_8

11. Lu T, Porter AR, Kennedy AD, Kobayashi SD, DeLeo FR. Phagocytosis and

killing of Staphylococcus aureus by human neutrophils. J Innate Immun.

(2014) 6:639–49. doi: 10.1159/000360478

12. Condamine T, Kumar V, Ramachandran IR, Youn JI, Celis E, Finnberg N, et

al. ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R-

mediated apoptosis. J Clin Invest. (2014) 124:2626–39. doi: 10.1172/JCI74056

13. Segal AW.How neutrophils kill microbes.Annu Rev Immunol. (2005) 23:197–

223. doi: 10.1146/annurev.immunol.23.021704.115653

14. Pawelec G, Verschoor CP, Ostrand-Rosenberg S. Myeloid-derived

suppressor cells: not only in tumor immunity. Front Immunol. (2019)

10:1099. doi: 10.3389/fimmu.2019.01099

15. Youn JI, Collazo M, Shalova IN, Biswas SK, Gabrilovich DI. Characterization

of the nature of granulocytic myeloid-derived suppressor cells in tumor-

bearing mice. J Leukoc Biol. (2012) 91:167–81. doi: 10.1189/jlb.0311177

16. Periasamy S, Avram D, McCabe A, MacNamara KC, Sellati TJ, Harton

JA. An immature myeloid/myeloid-suppressor cell response associated with

necrotizing inflammation mediates lethal pulmonary tularemia. PLoS Pathog.

(2016) 12:e1005517. doi: 10.1371/journal.ppat.1005517

17. Irrazabal T, Belcheva A, Girardin SE, Martin A, Philpott DJ. The multifaceted

role of the intestinal microbiota in colon cancer. Mol Cell. (2014) 54:309–

20. doi: 10.1016/j.molcel.2014.03.039

Frontiers in Immunology | www.frontiersin.org 7 October 2019 | Volume 10 | Article 2371

https://www.frontiersin.org/articles/10.3389/fimmu.2019.02371/full#supplementary-material
https://doi.org/10.1016/j.it.2016.01.004
https://doi.org/10.1038/ncomms12150
https://doi.org/10.1189/jlb.1110608
https://doi.org/10.1002/eji.201646621
https://doi.org/10.1038/mi.2012.62
https://doi.org/10.4049/jimmunol.1303408
https://doi.org/10.4049/jimmunol.1400196
https://doi.org/10.1158/2159-8290.CD-17-1134
https://doi.org/10.1038/s41598-019-40285-3
https://doi.org/10.1007/978-1-61779-527-5_8
https://doi.org/10.1159/000360478
https://doi.org/10.1172/JCI74056
https://doi.org/10.1146/annurev.immunol.23.021704.115653
https://doi.org/10.3389/fimmu.2019.01099
https://doi.org/10.1189/jlb.0311177
https://doi.org/10.1371/journal.ppat.1005517
https://doi.org/10.1016/j.molcel.2014.03.039
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Hlavaty et al. Bacterial Killing Activity of PMN-MDSCs

18. Wang F, Meng W, Wang B, Qiao L. Helicobacter pylori-induced

gastric inflammation and gastric cancer. Cancer Lett. (2014) 345:196–

202. doi: 10.1016/j.canlet.2013.08.016

19. Zhou Z, Chen J, Yao H, Hu H. Fusobacterium and colorectal cancer. Front

Oncol. (2018) 8:371. doi: 10.3389/fonc.2018.00371

20. Lu LC, Chang CJ, Hsu CH. Targeting myeloid-derived suppressor cells in the

treatment of hepatocellular carcinoma: current state and future perspectives.

J Hepatocell Carcinoma. (2019) 6:71–84. doi: 10.2147/JHC.S159693

21. Groth C, Hu X, Weber R, Fleming V, Altevogt P, Utikal J, et

al. Immunosuppression mediated by myeloid-derived suppressor

cells (MDSCs) during tumour progression. Br J Cancer. (2019)

120:16–25. doi: 10.1038/s41416-018-0333-1

22. Ma J, Xu H, Wang S. Immunosuppressive role of myeloid-

derived suppressorcells and therapeutic targeting inlung cancer.

J Immunol Res. (2018) 2018:6319649. doi: 10.1155/2018/63

19649

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Hlavaty, Chang, Orth, Goulian, Planet, Thamm, Punt and

Garden. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Immunology | www.frontiersin.org 8 October 2019 | Volume 10 | Article 2371

https://doi.org/10.1016/j.canlet.2013.08.016
https://doi.org/10.3389/fonc.2018.00371
https://doi.org/10.2147/JHC.S159693
https://doi.org/10.1038/s41416-018-0333-1
https://doi.org/10.1155/2018/6319649~
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

	Bacterial Killing Activity of Polymorphonuclear Myeloid-Derived Suppressor Cells Isolated From Tumor-Bearing Dogs
	Introduction
	Materials and Methods
	Isolation of Canine Cells
	Reactive Oxygen Species Assay
	Bacterial Killing Assay
	Electron Microscopy
	Statistics

	Results
	Bacteria Elicit the Synthesis of Reactive Oxygen Species by PMN-MDSCs
	PMN-MDSCs Phagocytose E. coli and S. aureus
	PMN-MDSCs Exhibit Bactericidal Activity

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


