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Abstract

Imagining is something we use everyday in our lives, and in a wide variety of ways. In
spite of the amount of works devoted to its study from both psychology and philosophy, there
are only a few formal systems capable of modeling it; besides, almost all of those systems
are static, in the sense that their models are initially predefined, and they fail to capture
the dynamic process behind the creation of new imaginary scenarios. In this work, we review
some influential theories of imagination and use their insights to distill an algorithm describing
such process. Then, we use this algorithm to define a dynamic logical system built upon on
a single-agent epistemic logic that provides the necessary tools to capture how the agent
voluntarily creates new imaginary worlds; in other words, our system allows the model to be
expanded dynamically at any time as a result of the agent performing an act of imagination.
Furthermore, we provide an axiomatization and prove that the system is sound and complete.

Keywords: imagination logic, hybrid logic, dynamic logic, dynamic imagination, imaginary worlds.

1 Introduction and Motivation

Imagining is something we use everyday in our lives, and in a wide variety of ways: when planning
our next move in a chess game, when picturing how we could decorate our new room, or even
when listening to a story-teller, our mind creates, develops and evaluates imaginary worlds aimed
to guide our actions, update our beliefs, or simply entertain us. Imagination has received a great
deal of attention by philosophers, cognitive scientists and psychologists (as it can be seen in works
like [23], [11], [19], or [13], among others). Its interest within the studies of the mind is beyond
any doubt, and its relation to other mechanisms of the mind, such as emotions, behavior, desires
and beliefs, makes imagination particularly interesting in many different areas.

Many authors distinguish between different mental attitudes related to imagination. For in-
stance, [12] or [20] distinguish “imagination” and “pretense” by requiring to the latter attitude
behavior and action, whereas other works like [2] draw a distinction between “imagine”, “suppose”
and “conceive”, which are seen as three different ways to refer to our ability to think about scenarios
and objects that may or may not exist.

The main goal of the present paper is to define a dynamic formal system that allows to represent,
through the execution of an algorithm and the expansion of their formal models, how an agent
creates new imaginary scenarios (i.e.; a new, or a set of new imaginary worlds) as a result of
executing a voluntary act of imagination. There are two important clarifications that should be
kept in mind throughout the rest of the present paper, and which help understand both the way
we use certain terms, and the overall aim of our work:

1. When we talk about an “imaginary scenario”, or an “imaginary world” we refer to any mental
representation of a state of affairs1 that is not actual and, moreover, about which the relevant
agent is aware of it not being actual. Therefore, representations of state of affairs used in
supposition, or pretense, for instance, are also taken into account in our work, and we refer
to them as imaginary worlds as well.

1As we will introduce later, we use a possible-worlds semantics to formally represent such states of affairs.
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2. Our main goal lies in providing a formal logical system that models how imaginary scenarios
are created, but we do not consider, in our study, what happens when such worlds have been
created, or why the agent is creating them, or what outcomes follow from the agent enter-
taining them2. Therefore, we do not restrict ourselves to any particular kind of imagination
act, like supposition, conception or pretense. As each and every one of these mental actions
involve creating and elaborating representations of state of affairs that are not actual, we
consider them all indistinctly. Therefore, we will be talking about “imagination” in a broad
sense that includes all those more fine-grained kinds of imagination acts.

This paper is outlined as follows. We review some influential theories of imagination, existing
logical systems and identify the structure of an algorithmic account of imagination acts in Section
2. In Section 3, we define the syntax, formal models, algorithm and semantics for the Logic of
Imaginary Scenarios; furthermore, we provide an example that shows how out system works. Once
the formal details are set, we provide an axiomatization for the logic and prove that it is sound
and complete in Section 4. Last but not least, we provide a discussion in Section 5, and we we
conclude and point towards some lines of future work in Section 6.

2 Distilling the Dynamics of Imagination

Our approach to a formal treatment of the dynamics of imagination is based, mainly, on the account
given by Peter Langland-Hassan in [14] about the processes involved in what he calls Guiding
Chosen (GC) imaginings. The quasi-formal treatment of Langland-Hassan’s work towards the
processes of imagination makes it a good starting point for our interest in drawing bridges between
the dynamics of imagination and formal systems. In addition, we also draw a structural comparison
with other procedural theories of imaginary scenarios, such as Shaun Nichols and Stepehen Stich’s
cognitive theory of pretense [20], or Timothy Williamson’s work on voluntary and involuntary
modes of imagination [25].

Our main focus, with regards to imagination, is on voluntary imagination acts; in a nutshell,
this kind of imagination acts are those that are willingly and consciously initiated by the agent
via deciding to imagine such-and-such. Conversely, involuntary acts of imagination would be those
in which an imagining spontaneously pops up into the mind of the agent without her intention of
initiating it. Both our interest and the theories we review in the following paragraphs focus on
this kind of imaginings.

Langland-Hassan’s account involves the use of three distinct processes: the initial involvement
of top-down intentions that initiate an imagining, the use of lateral constraints in the development
of such imagining, and the cyclical involvement of top-down intentions that are used to add new
premises during the imagining. The so-called top-down intentions are voluntary, conscious actions
of the agent regarding what to imagine that define the content of the newly-created imagining.
As soon as the initial content is set up, a set of lateral constrains encoding the algorithms, norms
and rules specifying how the imagined scenario would likely unfold are used to elaborate on the
details of what else would be the case, given the initial conditions. The author refers to the
deviance objection to name those cases in which something that would not naturally follow from
the scenario is still added into the imagining; in those cases, Langland-Hassan identifies in this a
voluntary addition of new content that is clamped into the imagining. These additions are seen
by the author as new top-down intentions that begin the cycle anew, and thus repeat the process
of clamping some new conditions to the imagining, and then letting the lateral constrains unfold
whatever would follow from them.

The previous theory follows up from the work from Nichols and Stich in [20], and aims to cover
some of its caveats. Structurally speaking, Nichols and Stich’s theory is quite similar. The authors
identify a first, voluntary addition of an initial premise into what they call the Possible-World Box
as a way of setting up the initial conditions of a new imagining. After that, the Updater mechanism
is responsible of pulling the agent’s beliefs into the scenario to complement whatever has not been
specified by the initial premise, as well as inferring what else would follow from that initial setting.
Finally, the authors call for a Script Elaborator mechanism as being responsible for coming up with
new premises that would not naturally follow from the imagining and adding them there.

Furthermore, Williamson’s recent work on the two modes of imagination in [25] shares a certain
structural similarity with these two theories as well. The author also identifies what he calls a

2In relation to [22], we can say that our interest lies in constructive imagining.
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voluntary mode of imagination in which the agent chooses and sets the initial conditions of an
imagining, followed by an involuntary mode3 in which the agent’s knowledge and beliefs about
the real world unfold what else would be the case there, given those initial conditions. Because
Williamson’s work is focused on these two mechanisms, he does not provide an account of those
new voluntary additions that the former theories identified.

When focusing on the procedural account of imagination acts given by these authors, it can
be seen how, even though they use different names and may have some minor differences, they
all identify a similar structure4 regarding how imaginary scenarios are created via a voluntary
initiation, elaborated via a reality-oriented development, and new details added there via an atypical
development. We summarize this structural similarity in Table 1, and we distill this shared structure
to guide our dynamic formalization of imaginary scenarios throughout the rest of this work.

Langland-Hassan Nichols / Stich Williamson

Voluntary initiation Top-down intentions Premises into PWB Voluntary imagination

Reality-oriented dev. Lateral constraints UpDater Involuntary imagination

Atypical development Cyclical top-down intention Script Elaborator -

Table 1: A common underlying structure for the theories of imagination.

When considering formal systems, few authors have ventured into the uncharted seas of logic
and imagination. David Lewis, in [15] defines a logic to account for counterfactual reasoning by
using a system of spheres and a modal operator that moves the evaluation point to counterfactual
worlds. Later, in [21], Niiniluoto formalizes imagination as a propositional attitude and discusses
some of its properties. Costa-Leite, in [10], goes one step beyond and formalizes the distinction
between “imagination”, “conception” and “possibility” through following the intuitions of Descartes
and Hume. Wansing brings beliefs into the picture in [24] and uses neighborhood semantics and
STIT mechanics to account for agentive imagination. Through various works like [4], [5] and [6],
Berto formalizes conceivability in both a paraconsistent and a classical setting, and introduces the
mechanics of “aboutness”, which determines what is relevant for the agent to import conceiving an
alternative world.

Even though these works highlight very interesting features of imagination, they all represent
imagination in static, pre-determined scenarios, like snapshots of a specific moment. Although
Wansing’s approach goes one step beyond and takes into account the agentive character of imagi-
nation, it still works in predefined, tree-like structures: the agent can be seen as “choosing” what
to imagine, indeed, but these choices are already contained in the initial model of the situation.

Our approach amends this and captures something that has been overlooked in previous works:
imagination is, in essence, dynamic. When we imagine, we create and unfold worlds that are not
real, but which nevertheless are governed by a certain set of rules or mechanisms, as identified by
the previously mentioned theories of imagination. Even though in [9] we define a formal system for
the dynamics of imagination acts, our approach there focuses on dissecting a fine-grained account
of what happens within an imagination act; in the present work, nevertheless, we consider an
imagination act as a whole and represent it through a single step.

2.1 Distilling an Algorithm for Imagination
The main goal of the present work is to represent, using a dynamic formal system aided by an
algorithm, how an agent creates new imaginary scenarios as a result of executing a voluntary act
of imagination. Particularly, in this work we are not concerned with what results from an act of
imagination (meaning its possible outcomes, or how such outcomes affect other mental attitudes
such as beliefs), but rather with how this act of imagination is performed.

3Note that Williamson’s theory distinguishes two modes involved in a voluntary act of imagination, in the sense
we pointed out by the beginning of this section, and which is set and unfolded in two different phases. His use of the
word “involuntary”, nevertheless, still refers to a mechanism that belongs to an act of imagination that is willingly
initiated by the agent.

4As we argue in [8], an alternative interpretation of the former theories could potentially lead to a different set
of dynamic mechanisms. However, in the present work we choose to stick to the original interpretation of those
theories.
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In this first section, we discuss and sketch the intuitive mechanics of what we call the Imagina-
tion Algorithm5. This algorithm will then be captured in a formal way when defining the Logic of
Imaginary Scenarios, and it will be the process governing how such imaginary scenarios are created
and developed.

2.1.1 Creating a New Imaginary Scenario

When an agent decides to perform an act of imagination, the overall algorithm governing such
decision must start by finding a spot within the mind6 of the agent in where to create the imaginary
scenario she is going to entertain.

The content of this new imaginary scenario must be defined, at the beginning, only by the initial
premise used to create it. The reason why we require this to be the case follows from what Nichols
and Stich define in their cognitive theory of pretense, as introduced in Section 2: the initial premise
defining how an imaginary scenario should be has preference over anything else and, therefore, it
is “clamped” into such scenario. This is done in order to be able to imagine anything7 that may
differ from our knowledge or beliefs: if we could not clamp the initial premise characterizing an
imaginary scenario, then any premise contradicting our beliefs would be instantly overridden when
merged with them.

Figure 1 represents what we require of this first mechanism: when executing an act of imag-
ination, the first thing we must do is to create a new imaginary scenario in which we can clamp
the initial premise ϕ that characterizes it.

ϕ
Clamp initial premise: ϕ
(Create new scenario)

Figure 1: Creating a new imaginary scenario clamps the initial premise.

2.1.2 Importing Knowledge and Beliefs

Once the new imaginary scenario has been created, and the initial premise has been clamped in
it, it is time to elaborate on the details of the scenario that were not determined by this initial
premise. As we have seen when reviewing the theories of imagination in Section 2, the way
imaginings develop follow the same reasoning mechanisms used for our beliefs. This phenomenon
accounts for what is known as “reality-oriented development”. When integrating this mechanism
into the overall algorithm, we must look into the agent’s knowledge and beliefs while taking into
account, nevertheless, that the initial premise should still be considered clamped, and so it must
have priority over what the agent knows or believes in the real world; otherwise, we would risk
losing up, precisely, what makes the imaginary scenario different from reality. In order to do so, the
agent should consider her knowledge and beliefs about the real world and, if they do not contradict
the premise clamped into the imaginary scenario, then import them into it.

Figure 2 represents the way this mechanism works. Note how we draw this mechanism upon
the previous Figure 1, in order to show how both mechanisms work together. In Figure 2, the circle
on the left side contains what the agent knows and believes about the real world (in this case, ¬ϕ

5The term “algorithm” may sound controversial, when referring to acts of imagination. The formation of imag-
inary scenarios is, arguably, one of the most creative actions an agent can engage in and, as such, aiming to fully
capture this process using an algorithm can seem reductive. Our algorithm does not aim to comprehensibly cap-
ture all that imagination can potentially offer, but rather to capture how an act of imagination can be formally
represented in a possible worlds model through the addition of new worlds that follow, when determining what
their content should be, a certain set of algorithmic rules Our use of the term “algorithm” should be interpreted as
directly related and dependent on the logical language and the formal models behind.

6Similarly to [20] (in page 121), we want to stress the fact that we use expressions like “finding a spot”, or “place
within the mind” without implying, nor defending the existence of any kind of separate, specific physical place
within the agent’s mind.

7The phenomenon known as imaginative resistance states that there are certain things that we simply cannot
imagine. Although we do not consider these cases here for the sake of simplicity, we refer to [18] for more on this
topic.
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and ψ, and possibly something else; note how, for the sake of simplicity, we omit the content of
this world in Figure 1); note how, when importing the agent’s knowledge and beliefs, as ¬ϕ would
contradict ϕ (which is the initial premise that was clamped into the imaginary scenario, and so it
has preference), it is not imported.

¬ϕ,ψ,

. . .

ϕ, ψ,

. . .Clamp initial premise: ϕ
(Create new scenario)

Import knowledge and beliefs
(Reality-oriented dev.)

Figure 2: Import facts about the real world.

2.1.3 Adding New Premises

The last mechanism involved in an act of imagination is very similar to the first one; in fact, and
as Langland-Hassan suggests in his theory (see Section 2), this voluntary addition of new premises
into the imagining can be seen as a cyclical process that begins anew the whole cycle. We follow
Langland-Hassan in this mechanism, and thus treat this addition of new premises as a sort of new
imagining-initiating mechanism.

However, this addition of new premise differs from the initial creation of the imaginary scenario
in an important way; namely, the initial premise used to characterize a new imaginary scenario
was clamped on a blank, brand-new imagining, whereas the new premise that must be added
in this process should be clamped into an imagining which has been already characterized in a
previous step, and also elaborated through importing the agent’s knowledge and beliefs. The
main difference, in this case, is that the agent’s knowledge and beliefs will be imported from the
imaginary world where the agent adds a new premise, instead of going back to the real world.
As the agent is elaborating on the details of an imagining that can already differ from the real
world in some ways, her knowledge and beliefs must refer now to that imagining. Besides, note
how, in this case, a new premise may be in conflict with some previous premise used to define the
imaginary scenario. Nevertheless, and following Nichols and Stich’s theory, as soon as the process
of importing knowledge and beliefs is over, the initial premises lose their “privileged status” of
being clamped, and so they can be overriden when new premises come into play.

Figure 3 includes this last mechanism upon the previous Figure 2, and thus represents the
whole Imagination Algorithm. Concerning this last mechanism, note how the process of importing
the agent’s knowledge and beliefs is now based upon the previous imaginary world, rather than
the real world that was used before.

2.1.4 Wrapping Up the Imagination Algorithm

The previous sections provide insights about the different mechanisms that take part in an execution
of the Imagination Algorithm. Figure 3, specifically, represents the whole cycle of executing the
Imagination Algorithm. In fact, it represents more than that, as the addition of a new premise
into an already existing imaginary scenario begins the process anew, and so corresponds to a new
call to the algorithm.

Therefore, and by taking into account how we understand the voluntary additions discussed in
the previous section, we intuitively define an execution of the Imagination Algorithm as follows:

1. The execution requires an initial premise ϕ characterizing the initial scenario, and a world
of reference upon which the agent bases her imagining.

2. The algorithm creates a new imaginary world and clamps ϕ into it.
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¬ϕ,ψ,

. . .

ϕ, ψ,

. . .Clamp initial premise: ϕ
(Create new scenario)

Import knowledge and beliefs
(Reality-oriented development)

Add new premise: γ
(Voluntary addition)

γ, ϕ,

ψ, . . .

Import knowledge
and beliefs
(Reality-oriented
development)

Figure 3: The full Imagination Algorithm.

3. The algorithm goes over what the agent knows or beliefs in the world of reference, and, if it
does not contradict ϕ, imports it into the imaginary world.

4. The imaginary world is related to the world of reference through an act of imagination
executed by the agent, with initial premise ϕ.

Note how, by introducing the notion of “world of reference”, we already account for both those acts
of imagination used to create a new imaginary world (and thus the ones that take the real world
as the world of reference), but also for those acts of imagination used to add new premises into an
already existing imaginary world (in which case, the world of reference is not the real world, but
also an imaginary one).

Figure 4 highlights, using the same example as the one depicted in Figure 3, the two different
acts of imagination that take place in there: the one used to create a new imaginary world from
scratch by using an initial premise ϕ (and importing the agent’s knowledge and beliefs from the
real world), and the one used to add a new premise γ into an imaginary world that already
exists (importing knowledge and beliefs from that imaginary world, in this case). For the sake of
readability, we omit the labels explaining the relations.

3 The Logic of Imaginary Scenarios

In this section, we introduce all the formal details needed to define the Logic of Imaginary Scenarios,
including a formal definition of the Imagination Algorithm, which defines how new imaginary worlds
are created and elaborated in the formal models of our logic, and according to the insights gained
from the previously reviewed theories of imagination.

3.1 Syntax
As imagination is related to other mental attitudes, we want to define our system upon a logic
already able to handle, at least, some of those mental attitudes; however, we also want to build
our proposal step by step, and without being overwhelmed by technical difficulties inherited from
the background system used. Therefore, we build our proposal upon a single-agent epistemic logic
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¬ϕ,ψ,

. . .

ϕ, ψ,

. . .
ϕ

γ

γ, ϕ,

ψ, . . .

Call to the algorithm with ϕ

Call to the algorithm with γ

Figure 4: Two different executions of the Imagination Algorithm.

(see [17] for a comprehensive guide on epistemic and doxastic logics). Furthermore, we also add
some features of hybrid logic (introduced in [7], for instance) into our initial mix.

It is worth noting that, while presenting the language and semantics of our logic, there will be
some elements which we will need to mention before introducing: this is because the language, the
models and the dynamic part of our proposal (handled by the Imagination Algorithm) are closely
related between them. However, we will try to give an intuitive understanding of each notion
before formally defining it.

The language of the Logic of Imaginary Scenarios is formed by a countably infinite set of
atomic propositions, called ATOM, and represented by the lowercase letters p, q, r . . . p1, p2 . . .;
besides, there is a countably infinite set of nominals (taken from hybrid logic), represented by the
lowercase letters i, j, k . . . i1, i2 . . . and called NOM.

We use the standard propositional connectives ¬,∧,∨,→ (standing for “negation”, “conjunc-
tion”, “disjunction” and “material implication”, respectively); besides, we include the unary “knowl-
edge” operator K, taken from epistemic logic, and the unary “at” operator @ taken from hybrid
logic. Furthermore, we also introduce two new operators: a dynamic unary operator Img(δ) called
“dynamic imagination” and an unary modal operator 〈I(δ)〉 called “static imagination”; both op-
erators are signed with a formula δ of a special kind —which we introduce in the following lines.

We use bracket symbols (, [, ), ] as usual, and usually omit them when the context is clear.
Now, the well-formed formulas of the language are defined recursively:

i | p | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | Kϕ | @iϕ | Img(δ) | 〈I(δ)〉ϕ

where i ∈ NOM, p ∈ ATOM, {ϕ,ψ} ⊆ FORM and δ ∈ FORM∗. We recursively define the subset
of formulas FORM∗ ⊂ FORM as follows:

p | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ

where p ∈ ATOM and ϕ either in ATOM or in FORM∗. That is: FORM∗ is the propositional
fragment of FORM. From now on, we use variables δ, γ, . . . to refer to elements of FORM∗, in
order to distinguish them from formulas belonging to FORM.

We also introduce two symbols >,⊥ to refer to truth and falsity, respectively, and we define
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them as follows (for p ∈ ATOM):
> := p ∨ ¬p
⊥ := p ∧ ¬p

The intuitive, informal reading of Img(δ) would be “the agent creates an imaginary scenario
using premise δ”, whereas 〈I(δ)〉ϕ stands for “in an imaginary scenario initiated by premise δ, it is
the case that ϕ”.

Following the intuitions of the theories previously reviewed in Section 2, the dynamic operator
Img(δ) is responsible for calling the Imagination Algorithm: in particular, it captures the fact
that the agent decides to initiate an imaginary scenario characterized by an initial premise δ. We
provide the formal definition of such algorithm in Section 3.3. Regarding the static operator 〈I(δ)〉,
note how it corresponds to a sort of static evaluation of an act of imagination that has already been
performed: in this sense, this operator does not aim to represent any of the mechanisms involved
when performing an act of imagination, but rather to evaluate an imaginary scenario, once it has
already been created.

It is worth noting that, although at this stage we build our proposal upon an existing logic,
we want to keep this underlying system as simple as possible: as a consequence, we do not have
an explicit representation of beliefs in our logic. Therefore, we define a derived operator M to
represent a weak form of belief, and we interpret it as being complementary to knowledge:

Mϕ := ¬K¬ϕ

Intuitively, if the agent does not know ¬ϕ, then it is because she considers that ϕ could be the
case as well: therefore, we could say that the agent believes ϕ (understanding this notion of
“believing” as considering it possible to be the case, as far as the agent knows). Although this is a
rather simplified account of beliefs, it will allow us to concentrate, at this stage, on capturing the
dynamics of imagination acts.

3.2 The Models for Imaginary Scenarios
Similarly to what we do with the language of our logic, we build our models upon a standard model
of single-agent epistemic logic, plus the elements introduced by hybrid logic. We take this model
as basic, and we add a new accessibility relation upon it in order to account for imagination acts.

It is worth stressing the fact that, unlike most logic systems that represent static scenarios,
our models are intended to represent the change involved in performing an act of imagination;
therefore, they are dynamic by definition.

Typically, our models will be initially defined as being single-agent epistemic models, without
any act of imagination represented in them yet. The interest of our proposal is, precisely, to allow
for these acts of imagination to “happen” within our model, thus expanding it as a consequence.
Therefore, we require every element of the relation RImg (introduced in the following lines, and
representing an act of imagination) to be created by explicitly following our Imagination Algo-
rithm (formally defined in Section 3.3), thus ensuring that both the accessibility relation, and the
imaginary worlds created by the algorithm, fulfill the conditions imposed by the way the algorithm
behaves.

Definition 3.1. A Model for Imaginary Scenarios is a structureM = 〈W,RK , RImg, V,N〉 formed
by the following elements (aside from RImg, they are all taken from single-agent epistemic logic
and hybrid logic):

• W is a non-empty set of elements called possible-worlds or states of affairs. We use the
lowercase letters w, v, u, . . . w1, w2, . . . to refer to elements ofW . Among these possible worlds,
we distinguish a special subset of “empty worlds” W ∅ ⊆W , which are required to fulfill certain
conditions stated after this definition, and which we require to have an infinite number of
them.

• RK ⊆W ×W is a binary relation over elements of W called the indistinguishability relation,
and which we require to be reflexive, transitive and symmetric (due to restrictions typically
imposed to knowledge: see [17], for instance). Intuitively, this relation establishes which
possible worlds the agent thinks that can be the actual case, as far as she knows. We use
pairs of the form (w, v), (v, u), . . . to refer to elements of RK .
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• RImg ⊆ W ×W × FORM∗ is a ternary relation called the imagination relation. Intuitively,
an element (w, v, δ) captures how, by performing an act of imagination “with content δ, and
by taking w as the world of reference (in terms of being the possible world the agent considers
to represent the actual case), an imaginary world v is created. We use triplets of the form
(w, v, δ), (u, z, γ), . . . to refer to elements of RImg.

• V : ATOM → P(W ) is a function from atomic formulas of the language to subsets of the
power set of W , called the valuation function. Intuitively, it keeps track of which atomic
formulas are true at which subset of possible worlds.

• N : NOM→W is an exhaustive function setting, for each element of NOM, a unique possible
world in W . Intuitively, this function sets which nominal is used to "name" each world.

Among the set W of possible worlds, we have a subset W ∅ of empty worlds, which are those
possible worlds that do not appear in neither RK , RImg nor V ; that is, those worlds {w ∈
W ∅ | (w, v) 6∈ RK and (v, w) 6∈ RK and (w, v, δ) 6∈ RImg and (v, w, δ) 6∈ RImg and w 6∈ V (p)}, for
any world v ∈ W , any formula δ ∈ FORM∗ and any atom p ∈ ATOM. Intuitively, empty worlds
already exist in the model, but they do not represent any particular state of affairs, nor they are
accessible through any accessibility relation. They do, however, have a certain nominal associated,
even if they are not relevant at this point. As we will see in Section 3.3, these empty worlds will
be used to represent new imaginary worlds after the agent performs an act of imagination.

By the way imaginary worlds are created by the Imagination Algorithm, a Model for Imaginary
Scenarios represents different “clusters” of possible worlds; later on, after providing a formal defi-
nition of the algorithm in Section 3.3, we present a detailed example that shows how the system
works.

3.3 The Imagination Algorithm
From now on, we use the term ImgAlg as a way of referring to the formal Imagination Algorithm
defined within the Logic of Imaginary Scenarios. We have said that an execution of the algorithm
requires an initial premise, and a world of reference: we will refer to the initial premise as δ (a
formula in FORM∗), and to the world of reference as wR. Therefore, a call to the algorithm is
expressed as follows:

ImgAlg(δ, wR)

We already know, at an intuitive level, what the role of δ is. When translating its role into the
formal approach, δ is a formula that must hold (i.e.; it must be “clamped”) at the imaginary
world created by the corresponding imagination act. In other words, δ must be used to determine
the atomic valuation of the worlds that will be created by the execution of ImgAlg(δ, wR), as it
is precisely the atomic valuation of the resulting world which will determine whether δ holds in
there8.

There is still one further notion that we need to introduce. During an execution of the ImgAlg
upon the model for imaginary scenariosM, the model gets expanded: this is, precisely, what we
want to capture by understanding an act of imagination as an action that creates new imaginary
worlds. Therefore, during the process of executing the ImgAlg upon a model M at the world
of reference wR, we end up having more possible worlds and more accessibility relations than
we had just before executing the algorithm. In order to refer to the new model we introduce
one further concept: the expanded model of M, to which we refer to as M+. Thus, from now
on, we may refer to either the whole expanded model M+, or to any of its elements as follows:

8Note that we restrict δ to belong to the propositional fragment of the language, and so we do not allow δ to
include any kind of modal or hybrid expression. Regarding the restriction on modal operators, it is due to a lack
of expressive power of our language. If we wanted to allow our agent to imagine that her knowledge is somehow
different, our algorithm would need to create not just a new imaginary scenario, but rather a whole relational
structure formed by different imaginary worlds aimed to represent how the agent imagines her knowledge would be.
However, if we wanted to do so, we would need to be able to quantify over nominals, and we want to keep our initial
setting simple: adding quantification involves a series of technical difficulties which we will leave for an extended
version of the present system. Regarding the restriction imposed on hybrid operators, it is due to philosophical
reasons. It does not seem to make sense for an agent to imagine something about a specific, already made and
defined world. The agent must indeed take one world as the “world of reference” for her imaginings, but she cannot
imagine that that specific world changes; rather, she must create a new imaginary world which, although being
based on that one, will still be different.
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M+ = 〈W,R+
K , R

+
Img, V

+, N〉. We provide the formal definition of each of these expanded elements
in the following paragraphs.

Now, the following steps define how the ImgAlg works, with respect to a Model for Imaginary
ScenariosM, a formula δ ∈ FORM∗ and a possible world of reference wR ∈W :

1. The algorithm ImgAlg starts by being called with arguments δ and wR. If formula δ is
contradictory, the execution of the ImgAlg ends at this point9.

2. In order to handle the formula in an efficient way, we compute the Disjunctive Normal Form10

(DNF from now on) of δ, to which we refer as DNF(δ) := δ1 ∨ . . . ∨ δn.

3. The ImgAlg must “create” a new imaginary world11 for each possible alternative satisfying
formula δ. Therefore, and recalling that DNF(δ) = δ1 ∨ . . . ∨ δn, the ImgAlg must locate n
empty worlds in W ∅, to which we will refer as w1, . . . , wn.

4. Once the new possible imaginary worlds have been selected, the ImgAlg must create new
imaginary relations expressing that, when imagining formula δ at the world of reference wR,
the agent can access the new imaginary worlds w1, . . . , wn. This defines the expanded set of
imaginary relations as follows:

R+
Img = RImg ∪

( ⋃
i=1...n

{(wR, wi, δ)}
)

5. As any of the new imaginary possible worlds satisfies what the agent is imagining (specifically,
δ), they should all be epistemic alternatives to the other imaginary worlds considered in this
execution of the ImgAlg; in other words, the agent must consider them all as a possible way
of representing an imaginary world satisfying δ. This defines the expanded set of epistemic
indistinguishability relations as follows:

R+
K = RK ∪

( ⋃
i=1...n
j=1...n

{(wi, wj)}
)

As a consequence, W ∅ is updated as W ∅+ = W ∅ − {w1, . . . , wn}.

6. Let k1, . . . , kn the nominals corresponding to w1, . . . , wn with function N .

7. Last but not least, the ImgAlg must expand the valuation function to account for the atomic
propositions holding at the new imaginary possible worlds. In order to do so, the algorithm
must account for both the literals that appear in each δi, and also for the atoms that are true
in the world of reference wR and which should be imported to the new imaginary worlds,
provided they do not appear in δ; this is so because any atom appearing in δ has preference
over the atoms of the world of reference (the agent “clamps” the initial premise into the
imaginary worlds). Therefore, the definition of the expanded valuation function involves two
different phases:

(a) Firstly, the ImgAlg must set the new valuation functions according to the atoms p
appearing in δi, for each new imaginary possible world wi:

V +
1 (p) = V (p) ∪

(⋃
i

{wi | p ∈ PL(δi)}
)

Where PL(δi) stand for the set of all the positive literals appearing in δi.
9As ImgAlg is executed on a model M, in case δ is contradictory the algorithm does not expand M in any way;

therefore, we can consider that, in that case, the algorithm returns M+ = M.
10For a more comprehensive explanation of how the DNF of a formula can be computed, see [16]. For the present

case, it suffices to say that every formula of propositional logic can be expressed in its equivalent DNF formula by
following a simple algorithm.

11Note that, although we may informally keep referring to the creation of new imaginary worlds, a model M is
specified in such a way that it already contains a countably infinite number of possible worlds W , among which we
have a subset of countably infinite empty worlds W ∅ (see Section 3.2); therefore, the ImgAlg does not actually “add”
new possible worlds to the setW , but it just selects a specific number of empty possible worlds belonging toW ∅ that
are not “used” in modelM by not being accessible nor having their atomic valuation specified, and uses them to define
a new imaginary world that will then be plugged into the relevant part of the model through the corresponding
accessibility relations. Recall that those empty worlds are already associated with their corresponding nominal
through function N , so the ImgAlg does not have to modify neither the set of nominals NOM, nor the function N
associating them to the imaginary worlds.

10



(b) Then, it must import all the atoms that are true at the world of reference wR, provided
they do not appear in δi, for each new imaginary possible world wi:

V +(p) = V +
1 (p) ∪

(⋃
i

{wi | wR ∈ V1(p) and p /∈ NL(δi)}
)

Where NL(δi) stand for the set of all the negative literals appearing in δi.

8. The ImgAlg has finished its execution: a new set of imaginary possible worlds satisfying δ has
been defined, these worlds are now accessible through the imagination relation R+

Img from
the world of reference wR, and they are epistemically indistinguishable by the agent in the
corresponding imaginary scenario.

The Imagination Algorithm has been formally defined as the ImgAlg, and it can now be executed
to expand a model M into a model M+, which includes a set of new imaginary possible worlds
that were not accessible before, and that result from the agent performing an act of imagination
with an initial premise δ. In brief, what the ImgAlg does is to select a subset of empty worlds
{w1, . . . , wn} ⊂W ∅, which were not accessible before, nor had any atomic valuation specified, and
makes them accessible through adding new relations in R+

Img and R+
K as required; besides, the

ImgAlg adds these new worlds to the valuation function V as corresponds. Note that, once these
worlds w1, . . . , wn have been added to the accessibility relations and the valuation function, they
will not longer belong to the subset of empty worlds W ∅, as they would now be a “visible” part of
the expanded model.

As it can be seen in the previous specification of the ImgAlg, the only restriction we put on
the content of the act of imagination is that it can be expressed in the propositional fragment of
our logic (that is, we require it to belong to FORM∗), and we do not allow our agent to imagine
contradictory premises. Aside from that, ImgAlg provides the required mechanisms to allow the
agent to imagine whatever she wants to, and expands the model in consequence by adding new
imaginary possible worlds.

An Example of an Act of Imagination

In the present section, we provide a brief example of how an execution of the ImgAlg works, given
an initial Model for Imaginary Scenarios M. Before any execution of the ImgAlg (or, in other
words, before performing any act of imagination), a Model for Imaginary Scenarios looks like a
standard, single-agent epistemic model (in particular, the imagination relation RImg is empty, as
no act of imagination is represented in there yet), like the one in Figure 5.

w

v

p,¬q, r

¬p, q, r

Figure 5: The initial modelM, before performing any act of imagination.

Now, our agent decides to perform an act of imagination with an initial premise δ = (¬p∨¬r)→
((q∧¬r)∨¬q). Note that, although one of the existing possible worlds already satisfies this formula
(specifically world v, by making p false in it), performing such act of imagination will create possibly
many different possible worlds in which the formula (¬p∨¬r)→ ((q∧¬r)∨¬q) holds, even if they
are not already considered as epistemically possible by the agent.

In the following lines we briefly go over what the ImgAlg does when computing the expanded
modelM+, which is the expanded version ofM in which there are some new imaginary possible
worlds that are now accessible through relation RImg, and which satisfy the initial premise δ used
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by the agent to imagine those worlds. The final model can be seen in Figure 6, and this model is
computed as follows:

1. To begin with, the ImgAlg checks whether δ = (¬p∨¬r)→ ((q ∧¬r)∨¬q) is contradictory;
as it is not, the execution keeps moving forward.

2. The DNF of δ is (p ∧ r) ∨ (q ∧ ¬r) ∨ ¬q; as there are 3 different clauses in this DNF,
the ImgAlg will look for 3 empty worlds {w1, w2, w3} ⊂ W ∅, which will represent the new
imaginary worlds created as a result of the current act of imagination.

3. The ImgAlg must make these new worlds w1, w2 and w3 accessible from the world of reference
w, through imagining δ = (¬p ∨ ¬r)→ ((q ∧ ¬r) ∨ ¬q) and by expanding relation RImg into
R+
Img by adding those new relations.

4. Now, as each new imaginary world w1, w2 and w3 accounts for a different worlds where δ
holds, we consider them to be epistemically indistinguishable by the agent, in terms that each
one of them satisfies what the agent wants to imagine. In order to do so, we must expand
relation RK into R+

K by adding the required relations to make the relations between worlds
w1, w2 and w3 reflexive, symmetric and transitive, as required in this relation.

5. The ImgAlg must determine the atomic propositions holding at each new imaginary world.
This is done in two different steps:

(a) Firstly, the algorithm must check each clause δi in DNF(δ) and determine the value of
the atoms appearing in δi, for each corresponding new imaginary world wi. That is,
in this example the algorithm must check (p ∧ r) for world w1, then (q ∧ ¬r) for world
w2, and finally ¬q for world w3. This determines which atomic propositions must be
clamped at each new world.

(b) Then, the ImgAlgmust check those atomic propositions holding at the world of reference
w and, for each new imaginary world wi, import those ones that do not appear in the
corresponding clause δi, as those would have priority over the new imported ones. In the
current example, the algorithm must import p for world w2 and also p for world w3. Note
how negative atoms are implicitly “imported”, when required, by being automatically
false in the imaginary worlds where their positive version has not been clamped before.

7. The ImgAlg has finished its execution. Figure 6 shows the expanded modelM+ that results
from executing an act of imagination with an initial premise δ = (¬p∨¬r)→ ((q∧¬r)∨¬q)
at a world of reference wR = w in a Model for Imaginary Scenarios M. For the sake of
clarity, we highlight the clamped formulas in bold font, and we also represent the negated
atomic formulas.

w

v

p,¬q, r

¬p, q, r

w1

w2 w3

ppp,¬q,rrr

p,qqq,¬r¬r¬r p,¬q¬q¬q, r

δ

δ

δ

Figure 6: The expanded modelM+ after an act of imagination.

3.4 Semantics
We evaluate a formula ϕ of the Logic of Imaginary Scenarios at a world w ∈ W of a modelM as
follows:
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Definition 3.2. We use symbol �, which we call local consequence, and we write M, w � ϕ to
express that ϕ is true at w in model M; conversely, we write M, w 2 ϕ to express that ϕ is not
true at w in modelM. Furthermore, we write � ϕ to express that ϕ is true at every world of every
model; i.e., ϕ is a validity. Besides, we write Γ � ϕ (for Γ being a set of formulas) if, for every
modelM and world w such thatM, w � Γ (that is: every formula in Γ is true at world w ofM),
it is the case thatM, w � ϕ. In other words: any model satisfying the set of formulas Γ would also
satisfy formula ϕ. In this case, we say that ϕ is a semantic consequence of Γ.

We defineM, w � ϕ by induction on the formation of the formula ϕ as follows (where “iff” stands
for “if and only if”):

1. M, w � i iff N(i) = w and, for every v ∈W , ifM, v � i, then v = w

2. M, w � p iff w ∈ V (p)

3. M, w � ¬ϕ iffM, w 2 ϕ

4. M, w � ϕ ∧ ψ iffM, w � ϕ andM, w � ψ

5. M, w � ϕ ∨ ψ iffM, w � ϕ orM, w � ψ

6. M, w � ϕ→ ψ iffM, w � ¬ϕ orM, w � ψ

7. M, w � Kϕ iff for every world v ∈W such that (w, v) ∈ RK , it is the case thatM, v � ϕ

8. M, w � @iϕ iff there exists a world v ∈W such that N(i) = v andM, v � ϕ

9. M, w � Img(δ) iff δ is not contradictory, DNF(δ) := (δ1 ∨ . . . ∨ δm), ImgAlg(δ, w) has been
executed and there are w1, . . . , wm ∈W different from w and such that, for l = 1, . . . ,m and
r = 1, . . . ,m, the following holds:

• (w,wl, δ) ∈ RImg
• (wl, wr) ∈ RK
• wl ∈ V (p) for all p ∈ PL(δl)

• if w ∈ V (p) then wl ∈ V (p) for all p /∈ NL(δl)

10. M, w � 〈I(δ)〉ϕ iffM, w � Img(δ) and there is some v ∈ W such that (w, v, δ) ∈ RImg and
M, v � ϕ

It is worth devoting a few lines to clarifying how the dynamic operator Img(δ) works. As
we have already explained, this operator has the particularity of representing a voluntary action,
performed by the agent, to imagine something (δ, specifically). The aim of this operator, therefore,
is to validate the call of the ImgAlg with parameters δ and w (being w the world where the formula is
evaluated and, thus, the world the agent takes as the reference to carry out such act of imagination).
Providing satisfiability conditions for this operator, then, is intended to state the execution of a
procedure that expands the model into its expanded version.

4 Soundness and Completeness

In the previous sections we have defined the language, semantics and the algorithm responsible
for taking care of the way acts of imagination behave, when based on a single-agent epistemic
setting. In this section, we provide a calculus for the Logic of Imaginary Scenarios, and we prove
its soundness and completeness. Before digging deeper into the calculus, we define the notions of
consequence following the standard approach:

4.1 Rules and Axioms
The following list contains the minimum set of rules and axioms needed for the calculus. Rules
and axioms referring exclusively to the K operator are the usual ones and capture the properties of
the relation RK being reflexive, transitive and symmetric. Similarly, rules and axioms concerning
the @ operator are the usual in hybrid logic (see [7], for example). There are two rules and three
axioms specifically added for our system.
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Rules

1. Modus Ponens: If ` ϕ and ` ϕ→ ψ, then ` ψ.

2. Hybrid and Epistemic Rules

(a) Gen@: If ` ϕ, then ` @iϕ.

(b) GenK : If ` ϕ, then ` Kϕ.
(c) Name: If ` @iϕ and i does not occur in ϕ, then ` ϕ.
(d) PasteM : If ` (@iMj ∧@jϕ)→ ψ and j 6= i does not occur in ϕ and ψ, then
` @iMϕ→ ψ

3. Imagination Rules

(a) PasteImg : If δ ∈ FORM∗, with DNF(δ) = δ1 ∨ . . . ∨ δm and k1, . . . , km nominals
different from i and not in δ or ψ:
` (

∧
l=1...m

@i〈I(δ)〉kl) ∧ (
∧

l=1...m

(
∧

p∈PL(δl)

@klp)) ∧ (
∧

l=1...m

(
∧

p/∈NL(δl)

(@ip → @klp))) → ψ

implies ` @iImg(δ)→ ψ

(b) PasteI : If δ ∈ FORM∗, with DNF(δ) = δ1∨ . . .∨δm and k1, . . . , km nominals different
from i and not in δ, ϕ or ψ:
` (

∧
l=1...m

@i〈I(δ)〉kl) ∧ (@k1ϕ ∨ . . . ∨@kmϕ)→ ψ implies ` @i〈I(δ)〉ϕ→ ψ

Axioms

1. Classical Tautologies

2. Epistemic Axioms

(a) KK : ` K(ϕ→ ψ)→ (Kϕ→ Kψ)

(b) Reflexivity: ` Kϕ→ ϕ

(c) Transitivity: ` Kϕ→ KKϕ

(d) Symmetry: ` ϕ→ KMϕ

3. Hybrid Axioms

(a) K@: @i(ϕ→ ψ)→ (@iϕ→ @iψ)

(b) Selfdual: ` @iϕ↔ ¬@i¬ϕ
(c) Ref : ` @ii

(d) Agree: ` @i@jϕ↔ @jϕ

(e) Intro: ` i→ (ϕ↔ @iϕ)

(f) Back: `M@iϕ→ @iϕ

4. Imagination Axioms. If δ ∈ FORM∗:

(a) Imaginary Possibilities: ` 〈I(δ)〉i ∧ 〈I(δ)〉j → @iMj

(b) Imagination Bridge: ` 〈I(δ)〉i ∧@iϕ→ 〈I(δ)〉ϕ
(c) Voluntary Imagination ` 〈I(δ)〉ϕ→ Img(δ)

We introduce the usual concepts and definitions regarding deductions, and we end up by proving
that the axioms of our system are sound.

Definition 4.1. A deduction of ϕ is a finite sequence ε1, · · · , εn of well-formed formulas such that,
for every 1 ≤ i ≤ n − 1, either εi is an axiom or it is obtained from a previous formula in the
sequence using the calculus rules, and εn := ϕ.

If Γ ∪ {ϕ} is a set of well-formed formulas of the language, a deduction of ϕ from Γ, written
Γ ` ϕ, is a deduction γ1 ∧ · · · ∧ γn → ϕ, where, for every 1 ≤ i ≤ n, γi ∈ Γ.

We write ` ϕ whenever we have ∅ ` ϕ, and we will say that ϕ is a theorem of the calculus.
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Theorem 4.2 (Soundness). Let ϕ and Γ be (a set of) well-formed formulas of the language. The
following statement holds:

Γ ` ϕ⇒ Γ � ϕ

Proof. Correctness of epistemic rules is proved as usual in epistemic logic; similarly, soundness of
hybrid rules and axioms is proved as usual in hybrid logic, the same for rule Modus Ponens, which
comes from classical logic. Therefore, in the following lines we only provide a sketch of the proofs
for rules 3a and 3b, and axioms 4a, 4b and 4c.

1. Rule PasteImg (3a). Take an arbitrary model M, an arbitrary world w ∈ W , and suppose
that δ is not contradictory, with DNF(δ) := (δ1 ∨ . . .∨ δm) andM, w � (

∧
l=1...m

@i〈I(δ)〉kl)∧

(
∧

l=1...m

(
∧

p∈PL(δl)

@klp))∧ (
∧

l=1...m

(
∧

p/∈NL(δl)

(@ip→ @klp)))→ ψ for k1, . . . , km nominals differ-

ent from i and not in δ or ψ. Now, suppose thatM, w � @iImg(δ). ThenM, v � Img(δ) for
v = N(i). By the definition of satisfiability and the fact that ImgAlg(δ, v) has been executed
we can prove thatM, w � ψ.

2. Rule PasteI (3b ). Take an arbitrary modelM, an arbitrary world w ∈W , and suppose that
δ is not contradictory, with DNF(δ) := (δ1∨. . .∨δm) andM, w � (

∧
l=1...m

@i〈I(δ)〉kl)∧(@k1ϕ∨

. . . ∨@kmϕ)→ ψ, for k1, . . . , km nominals different from i and not in δ or ψ. Suppose, also,
thatM, w � @i〈I(δ)〉ϕ. ThenM, u � 〈I(δ)〉ϕ for u = N(i). This means thatM, u � Img(δ)
and we know that ImgAlg(δ, u) has been executed. By using the definition of satisfiability
we obtainM, u � (

∧
l=1...m

@i〈I(δ)〉jl) andM, u � (@k1ϕ∨ . . .∨@kmϕ). And, thus, we obtain

M, w � ψ, as we wanted to prove.

3. Axiom Imaginary Possibilities (4a). Take an arbitrary modelM, an arbitrary world w ∈W ,
and supposeM, w � 〈I(δ)〉i andM, w � 〈I(δ)〉j. By the definition of interpretation we have
that M, w � Img(δ) and there is v = N(i) and u = N(j) such that (w, v, δ) ∈ RImg and
(w, u, δ) ∈ RImg, and v and u have been created by execution of ImgAlg(δ, w), and thus
(v, u) ∈ RK , wich means thatM, w � @iMj.

4. Axiom Imagination Bridge (4b). Take an arbitrary model M, an arbitrary world w ∈ W ,
and supposeM, w � 〈I(δ)〉i ∧@iϕ. Then,M, w � 〈I(δ)〉i andM, w � @iϕ. Now, there is a
world v such that N(i) = v such that (w, v, δ) ∈ RImg andM, v � ϕ. Thus,M, w � 〈I(δ)〉ϕ.

5. Axiom Voluntary Imagination (4c). Take an arbitrary modelM, an arbitrary world w ∈W ,
and supposeM, w � 〈I(δ)〉ϕ. By definition of interpretation,M, w � Img(δ).

In order to prove certain properties regarding the completeness of our system, we also need
certain theorems of the calculus. Particularly, in the next pages we will be using the following
theorems, which are taken from [1]. The proofs for these theorems also follow the ones in that
work. The demonstrations are the usual ones in the propositional, epistemic and hybrid logics and
we will omit them here.

Theorem 4.3. The following holds.

1. Deduction theorem: If Γ ∪ {ϕ} ` ψ, then Γ ` ϕ→ ψ.

2. ` @ij → @ji

3. ` @ij → (@iϕ↔ @jϕ)

4. ` @ij → (@jk → @ik)

5. ` @iMj ∧@jϕ→ @iMϕ
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4.2 Maximal consistency and saturation
In order to prove completeness of the logic, we first need to provide certain well-known definitions
and theorems.

Definition 4.4. Let Γ be a set of well-formed formulas:

• Γ is contradictory if and only if Γ ` ⊥.

• Γ is consistent if and only if Γis not contradictory.

• Γ is a maximal consistent set if and only if Γ is consistent, and whenever ϕ is a formula
such that ϕ /∈ Γ, then Γ ∪ {ϕ} is contradictory.

Theorem 4.5 (Consistency). Let Γ be a set of well-formed formulas. The following holds:

• If Γ is consistent and ∆ ⊆ Γ, then ∆ is consistent.

• If Γ is contradictory and Γ ⊆ ∆, then ∆ is contradictory.

• Γ is consistent if and only if every finite subset of Γ is consistent.

Theorem 4.6 (Maximal Consistency). Let Γ be a maximally consistent set of formulas, and
let ϕ,ψ be formulas. The following holds:

• Γ ` ϕ if and only if ϕ ∈ Γ.

• If ` ϕ, then ϕ ∈ Γ.

• ¬ϕ ∈ Γ if and only if ϕ /∈ Γ.

• ϕ ∧ ψ ∈ Γ if and only if ϕ ∈ Γ and ψ ∈ Γ.

• Either ϕ ∈ Γ or ¬ϕ ∈ Γ, but not both.

The following definition contains new concepts that will be fundamental in the completeness
proof.

Definition 4.7 (Saturation). Let Γ be a set of well-formed formulas:

1. Γ is named if and only if at least one of its elements is a nominal i ∈ NOM.

2. Γ is M -saturated if and only if for all expressions @iMϕ ∈ Γ there is a nominal k ∈ NOM
such that @kMj ∈ Γ and @kϕ ∈ Γ.

3. Γ is Img-saturated if and only if for all expressions @iImg(δ) ∈ Γ (DNF(δ) = δ1 ∨ . . . ∨ δn)
there are new nominals k1, . . . , kn ∈ NOM such that for all l = 1, . . . , n and r = 1, . . . , n:
@i〈I(δ)〉kl ∈ Γ, @klp ∈ Γ for p ∈ PL(δl), and @klp ∈ Γ if @ip ∈ Γ for p /∈ NL(δl).

4. Γ is I-saturated if and only if for all expressions @i〈I(δ)〉ϕ ∈ Γ then @iImg(δ) ∈ Γ and there
is a nominal k ∈ NOM such that @i〈I(δ)〉k ∈ Γ and @kϕ ∈ Γ.

We say that Γ is fully-saturated when it is M -, Img- and I-saturated.

4.3 Completeness
Theorem 4.8 (Completeness). Let ϕ and Γ be (a set of) well-formed formulas of the language.
The following claim holds:

Γ � ϕ⇒ Γ ` ϕ

Proof. The proof follows the well known Henkin-style proof of completeness It is a collorary of the
Henkin Theorem (4.9).

Theorem 4.9 (Henkin Theorem). Let Γ be a set of well-formed formulas of the language. If Γ
is consistent, then Γ has a model.

Proof. The proof is standard, and it is a corollary of the Lindenbaum Lemma (4.10) and the Truth
Lemma (4.19)
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Theorem 4.10 (Lindenbaum Lemma). If Γ is any consistent set of formulas, there is an
extension to a maximal consistent set Γ∗ which is named, M -saturated, Img-saturated and I-
saturated.

Proof. The first thing to do is to construct the set Γ∗.

Definition 4.11. Let {kn}n∈ω be an enumeration of a countably infinite set of new nominals and
{ϕn}n∈ω be an enumeration of all the well-formed formulas of the extended language. We require
the enumeration of formulas to be sorted in such a way that every appearance of a formula @iImg(δ)
must appear just before any appearance of any other formulas of the form @i〈I(δ)〉ψ (for the same i
and δ); moreover, we also require that every formula @iImg(δ) must appear after any other formula
of the kind @iϕ, for ϕ not of the form 〈I(γ)〉ψ (for any γ ∈ FORM∗ and ψ ∈ FORM).

We shall define by induction a family {Γn}n∈ω of sets:

• Γ0 = Γ ∪ {i0}, with i0 the first new nominal.

• Now assume that Γn has been defined; to define Γn+1 we distinguish five cases:

1. If Γn ∪ {ϕn} is inconsistent, then Γn+1 = Γn.

2. If Γn ∪ {ϕn} is consistent and ϕn is not of the form @iMψ, @iImg(δ) or @i〈I(δ)〉ψ,
then Γn+1 = Γn ∪ {ϕn}.

3. If Γn ∪ {ϕn} is consistent and ϕn := @iMψ, then Γn+1 = Γn ∪ {ϕn,@iMk,@kψ}, with
k the first new nominal not in Γn nor ϕn.

4. If Γn ∪ {ϕn} is consistent and ϕn := @iImg(δ) (with δ 6≡ ⊥, and being DNF(δ) =
δ1 ∨ . . . ∨ δm), then Γn+1 = Γn ∪ {ϕn} ∪ (

⋃
l=1...m

{@i〈I(δ)〉kl}) ∪ (
⋃

l=1...m
r=1...m

{@klMkr}) ∪

(
⋃

l=1...m

{@klp | p ∈ PL(δl)})) ∪ (
⋃

l=1...m

{@ip → @klp | p /∈ NL(δl)}), with k1, . . . , km

being the first new nominals not in Γn nor in ϕn.

5. If Γn ∪ {ϕn} is consistent and ϕn := @i〈I(δ)〉ψ (and δ 6≡ ⊥), then @iImg(δ) ∈ Γr for r ≤
n (because, due to the ordering restriction we impose on the enumeration of formulas, it
must appear before ϕn, in step r) and Γn+1 = Γn ∪ {ϕn} ∪ {@k1ψ∨ . . .∨@kmψ}, where
k1, . . . , km are the new nominals added in step r as a result of adding ϕr := @iImg(δ).

• Let Γ∗ = ∪
n∈ω

Γn

Now we will prove tha Γ∗ is a maximal consistent set, named, M -saturated, Img-saturated and
I-saturated. We will proof this in three steps:

1. For every n ∈ ω, Γn is consistent. The proof is by induction

• Γ0 = Γ ∪ {i0} is consistent, because if we suppose that Γ ∪ {i0} is inconsistent, then
so Γ ∪ {i0} ` ⊥. By using the deduction theorem and the Name rule we obtain a
contradiction.

• Assume Γn is consistent. Γn+1 has to be of one of the following forms:

(i) Γn+1 = Γn. In this case it is consistent by the induction hypothesis.

(ii) Γn+1 = Γn ∪ {ϕn}. In this case it is consistent by construction.

(iii) Γn+1 = Γn ∪ {ϕn,@iMk,@kψ}, where ϕn := @iMψ and k the first new nom-
inal not in Γn nor ϕn. We also know that Γn ∪ {ϕn} is consistent. Γn+1 must be
consistent, because if we suppose that it is inconsistent, by using the deduction theorem
and PasteM rule (2d) we obtain a contradiction.

(iv) Γn+1 = Γn ∪ {ϕn} ∪ (
⋃

l=1...m

{@i〈I(δ)〉kl})∪ (
⋃

l=1...m
r=1...m

{@klMkr})∪ (
⋃

l=1...m

{@klp | p ∈

PL(δl)})) ∪ (
⋃

l=1...m

{@ip→ @klp | p /∈ NL(δl)}) (with DNF(δ) = δ1 ∨ . . . ∨ δm), where

ϕn := @iImg(δ) and k1, . . . , km are the first new nominals not in Γn nor in ϕn. We also
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know that Γn∪{ϕn} is consistent. Γn+1 must be consistent, because if we suppose that
it is inconsistent, by using the deduction theorem and rule 3a we obtain a contradiction.

(v) Γn+1 = Γn ∪ {ϕn,@k1ψ∨. . .∨@kmψ}, where ϕn := @i〈I(δ)〉ψ, δ is not contradictory,
and k1, . . . , km are the new nominals added in step r (with @iImg(δ) ∈ Γr for r ≤ n).
We have added the k1, ..., km and the corresponding formulas in step r, and, in particular⋃
l=1...m

{@i〈I(δ)〉kl} ⊂ Γn. Γn+1 is consistent because if we suppose that it is inconsistent,

by using the deduction theorem and rule number 3b we will obtain a contradiction.

2. Γ∗ is consistent. The proof follows the standard approach: by supposing that it is inconsis-
tent, there will be an inconsistent subset of Γ∗, which is a contradition by the way Γ∗ has
been built.

3. Γ∗ is named, M -saturated, Img-saturated and I-saturated by construction.

Now, in order to obtain the Truth Lemma (4.19), we need to build a canonical model for ∆, a
maximal consistent set of formulas which is named, M -saturated, Img-saturated and I-saturated.
We start by defining an equivalence relation over the set of nominals NOM as follows:

Definition 4.12. Let ∆ be a maximal consistent, named and fully-saturated set. We define, for
all i, j ∈ NOM, a binary relation ∼∆ as follows:

i ∼∆ j if and only if @ij ∈ ∆

Proposition 4.13. The relation ∼∆ is an equivalence relation over NOM.

Proof. The proof is a consequence of ∆ being a maximal consistent set, axiom 3c and theorem
4.3.

We now define the equivalence class [i] = {j ∈ NOM | i ∼∆ j}. We use this equivalence class
to define two different accessibility relations as follows:

Definition 4.14. Let ∆ be a maximal consistent, named and fully-saturated set, and let [i] be the
equivalence class of i ∈ NOM. We define an epistemic indistinguishability relation R∆

K as:

R∆
K = {〈[i], [j]〉 | @iMj ∈ ∆}

Proposition 4.15. R∆
K is well-defined.

Proof. We have to prove two different properties:

1. On the one hand, if i ∼∆ i′ and 〈[i], [j]〉 ∈ R∆
K , then also 〈[i′], [j]〉 ∈ R∆

K . This is a consequence
of ∆ being maximally consistent set and the definition of R∆

K .

2. On the other hand, if j ∼∆ j′ and 〈[i], [j]〉 ∈ R∆
K , then also 〈[i], [j′]〉 ∈ R∆

K . This is a
consequence of ∆ being a maximally consistent set, the definition of R∆

K and theorem 4.3.

Definition 4.16. Let ∆ be a maximal consistent, named and fully-saturated set, let [i], [j] be the
equivalence classes of i, j ∈ NOM (respectively), and let δ ∈ FORM∗. We define an imagination
relation as follows:

R∆
Img = {〈[i], [j], δ〉 | @i〈I(δ)〉j ∈ ∆}

for δ ∈ FORM∗, δ not being contradictory (that is: δ 6≡ ⊥), and for i, j ∈ NOM.

Proposition 4.17. R∆
Img is well defined.

Proof. Similarly, we must prove that R∆
Img is well-defined. In this case, it is consequence of ∆

being a maximally consistent set, the definition of R∆
Img, theorem 4.3 and axiom 4b.
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Definition 4.18. Let ∆ be a maximal consistent, named and fully-saturated set. We define the
canonical model of ∆, called M∆ = 〈W∆, R

∆
K , R

∆
Img, V∆, N∆〉 as follows (where [i], [j] are the

equivalence classes of nominals {i, j} ⊆ NOM, where δ ∈ FORM∗ and p ∈ ATOM):

• W∆ = {[i] | i is a nominal}

• R∆
K = {[i], [j] | @iMj ∈ ∆}

• R∆
Img = {〈[i], [j], δ〉 | @i〈I(δ) ∈ ∆}

• V∆(p) = {[i] ∈W∆ | @ip ∈ ∆}

• N∆(i) = {[i]}

M∆ is well-defined and then we can enunciate and prove the Truh Lemma.

Lemma 4.19. [Truth Lemma] For any maximal consistent, named and fully-saturated set ∆,
the following statement holds (where [i] is the equivalence class of i ∈ NOM and ϕ is a well-formed
formula of the language):

M∆, [i] � ϕ if and only if @iϕ ∈ ∆

Proof. We will prove this lemma by induction on the structure of ϕ. Since the proofs for the
inductive cases ϕ := j, ϕ := p ∈ ATOM, ϕ := ¬ψ and ϕ := ψ1 ∧ ψ2 are trivial, we will skip them
and only sketch the remaining cases.

1. ϕ := Mψ: We want to prove thatM∆, [i] �Mψ iff @iMψ ∈ ∆.

• SupposeM∆, [i] �Mψ. Then there is a world [j] such that 〈[i], [j]〉 ∈ R∆
K andM∆, [j] �

ψ. Then, @jψ ∈ ∆ by the induction hypothesis. By the definition of R∆
K , we also have

that @iMj ∈ ∆. Then, by theorem 4.3 it follows that ∆ ` @iMψ which, being ∆ a
maximal consistent set, implies that @iMψ ∈ ∆.

• Suppose now that @iMψ ∈ ∆. Then, by M -saturation, we have that @iMj ∈ ∆ and
@jψ ∈ ∆, for some world-nominal j. By definition of R∆

K this means that 〈[i], [j]〉 ∈ R∆
K

and, by the induction hypothesis, we know thatM∆, [j] � ψ. Therefore, it follows that
M∆, [i] �Mψ.

2. ϕ := Img(δ): We want to prove thatM∆, [i] � Img(δ) iff @iImg(δ) ∈ ∆.

• Suppose that M∆, [i] � Img(δ). Then, ImgAlg(δ, [i]) has been executed and, being
δ ∈ FORM∗ with DNF(δ) = δ1 ∨ . . . ∨ δm, there are [k1], . . . , [km] worlds such that
([i], [kl], δ) ∈ R∆

Img, for l = 1 . . .m. And then, by the definition of the canonical model:
∆ ` (

∧
l=1...m

@i〈I(δ)〉kl). By Axiom 4c we obtain that ∆ ` Img(δ), and @iImg(δ) ∈ ∆.

• Suppose @iImg(δ) ∈ ∆ (DNF(δ) = δ1 ∨ . . . ∨ δn). Since ∆ is Img-saturated, there
are new nominals k1, . . . , kn ∈ NOM such that for all l = 1, . . . , n and r = 1, . . . , n:
@i〈I(δ)〉kl ∈ ∆, @klp ∈ ∆ for p ∈ PL(δl), and @klp ∈ ∆ if @ip ∈ ∆ for p /∈ NL(δl). By
using the definition of the canonical model we get thatM∆, [i] � Img(δ).

3. ϕ := 〈I(δ)〉ϕ: We want to prove thatM∆, [i] � 〈I(δ)〉ϕ iff @i〈I(δ)〉ϕ ∈ ∆.

• L Suppose M∆, [i] � 〈I(δ)〉ϕ. By definition, there is some [j] such that 〈[i], [j], δ〉 ∈
R∆
Img, M∆, [i] � 〈I(δ)〉j and M∆, [j] � ϕ. Since ∆ is maximal consistent, ∆ `

@i〈I(δ)〉j ∧@jϕ and, by axiom 4b, we get that ∆ ` @i〈I(δ)〉ϕ, and so @i〈I(δ)〉ϕ ∈ ∆.

• Suppose now that @i〈I(δ)〉ϕ ∈ ∆. By the definition of I-saturated, @iImg(δ) ∈ ∆ and
there is some j ∈ NOM such that @i〈I(δ)〉j ∈ ∆ and @jϕ ∈ ∆. Then 〈[i], [j], δ〉 ∈ R∆

Img.
By the induction hypothesis on ϕ,M∆, [j] � ϕ, and then we get thatM∆, [i] � 〈I(δ)〉ϕ.
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5 Discussion

Although our approach is on the right track, it still has certain shortcomings that we would
want to amend in a future version. One of the main ones is related to the way the agent imports
information not directly specified by the initial premise. As seen in the theories reviewed in Section
2, an important feature of imagination is that most of the information developed in an imaginary
scenario is based on reality-oriented rules and facts which, in turn, are believed or known to be
true by the agent.

The first shortcoming, with respect to this, is that our formal system misses a way to account
for the notion of “reality-oriented rules”. We may argue that, once the initial premise is clamped
into the new imaginary worlds, the ImgAlg looks into the world of reference and imports “reality-
oriented facts”, being the atomic formulas that describe the state of affairs represented by the
world of reference. Nevertheless, importing specific facts into the imaginary scenario is not the
same as using rules to infer what else would be the case in there. Even though we provide an
alternative interpretation of the dynamic mechanisms for imagination acts in [9], that alternative
approach neither takes into account the epistemic side of the picture, nor it is proved to be sound
and complete.

The second shortcoming of our formal system is directly inherited from the fact that the single-
agent epistemic logic we took to build our logic upon cannot, at least for now, represent beliefs in an
explicit way. Even though we can interpret operatorM as a weak form of belief, this interpretation
lacks the kind of “preference ordering” which is often attributed to our beliefs, making some of them
more plausible than others. Nevertheless, this is the stance we have taken in our proposal regarding
the way we use the single-agent epistemic logic, and in order to bypass the lack of an explicit belief
operator. By performing an act of imagination at a possible world w, the agent considers, in the
resulting imaginary worlds, that her beliefs are those facts represented in world w. This, however,
usually forces our agent to imagine more than she is supposed to, as she could end up importing
atomic propositions that may not be known by her, but which are seen as known in the imaginary
worlds; needless to say, this may do the trick as a first approach, but it is not as accurate as we
would like it to be.

Therefore, the solution needed to overcome the issue regarding the mirroring effect would need
two major changes in our logic:

1. Expand the system with a new operator B able to explicitly account for “believe” as a modal
attitude with some preferred or believed worlds by the agent.

2. Update the third step of the ImgAlg: instead of going over the atomic propositions that are
true at the world of reference, the algorithm would need to check, for each atomic proposition
in the model, which ones are actually believed by the agent, and import only those.

There are many alternative ways to represent an agent’s beliefs (see [17]), but there are two
approaches that are specially interesting for us: either to add a new binary relation to our current
setting (as suggested in Chapter 7 of [17]), or to use the so-called plausibility models (also in
Chapter 7 of [17], or in [3]). Things are seldom as simple as they sound, however, and adding an
explicit representation for beliefs in our system is not an exception. Let’s briefly consider how our
logic would behave if we added plausibility models to it.

Consider a brief example, as depicted in Figure 7. At the left side of the figure we have a
plausibility model representing an agent who believes that w is the actual state of affairs, but who
nevertheless also considers a different state of affairs v to be possible. As it can be seen in the
figure, executing an act of imagination with initial content q at either w or v results, in the end,
in the same imaginary world, as the agent always imports her beliefs from world w.

Therefore, we can see how, when using plausibility models or, in fact, any explicit representation
for beliefs in our logical system, the world of reference would no longer matter, as the atomic
formulas believed by the agent would always be those atoms holding at the same possible world,
no matter what12.

12It can also be the case, in plausibility models, that we have not just a single top-world, but rather a set of
various top-worlds, which the agent believes to be the case, but over which she has no preference. We will not
unfold the technical details of how this case should work, but the ImgAlg would probably need to duplicate the same
structure of top-worlds in the imagining to represent the fact that the agent’s plausibility order over certain facts is
not determined.
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Figure 7: The imported atoms come from the same world as before.

After considering this simple example, we ask ourselves: what would be the role of the world of
reference, then, if our Logic of Imaginary Scenarios could account for an explicit representation of
beliefs? Moreover, and if the agent’s beliefs were always taken from the same real possible world,
would the belief structure represented by the real possible worlds even matter, in our system? If
the imported atomic formulas were always taken from the same real possible world, why would we
even consider any real possible world different from the top-world?

Taking this into account, we argue that, although adding an explicit representation for beliefs
is worth considering, our current approach to the Logic of Imaginary Scenarios, in which we have
chosen to account for a weak form of beliefs, is, after all, an approach that gives us more flexibility,
in terms of exploring the different acts of imagination the agent could perform. This is not to
say that we could not include explicit beliefs as part of our system, but we have just shown that,
in such cases, we would also need to come up with a way of avoiding a kind of “non-top-world-
trivialization” or, in other words, of avoiding that the presence of possible worlds that are not
among the agent’s explicit beliefs becomes trivial.

A concern that stems from this, however, is that there are cases in which the agent may end up
importing more than she should —particularly, atomic formulas that are not known by the agent
would still be imported by the way the ImgAlg works. Nevertheless, this concern could be alleviated
if we reinterpret our reading of imagination acts as “the agent imagines δ while considering that
the actual state of affairs is represented by the world of reference w”. By allowing this reading,
we implicitly require to our agent to commit to one of her believed worlds before imagining, but,
at the same time, it provides enough flexibility as for the agent to explore how different believed
worlds would accommodate a similar imaginary scenario.

6 Conclusions and Future Work

The main goal of the present work was to define a dynamic formal system to capture, through the
execution of an algorithm that expands their formal models, how an agent creates new imaginary
scenarios as a result of executing a voluntary act of imagination. The Logic of Imaginary Scenarios
does that and models a single-agent setting able to handle the basics of epistemic logic, while
adding the required structure to account for imagination acts. In particular, our system captures
the so-called voluntary mode of the kind of imagination acts studied in the former theories by
clamping the initial content δ of the imagining as one of the arguments of the ImgAlg; furthermore,
the involuntary mode is then captured by the way the algorithm imports atomic formulas left
unspecified by δ, while giving priority to the initial content. The way the algorithm expands the
formal models allows this logic to be truly dynamic, in the sense that it allows the agent represented
in it to imagine any δ that fits the required form and expand the formal model accordingly. In
this sense, the Logic of Imaginary Scenarios is on the right track, and provides a valuable step
forward with respect to other existing formal systems which fail to capture the dynamic aspect of
this mental attitude. Furthermore, our logic is sound and complete with respect to the relevant
class of models, which provides a solid dynamic formal system for imaginary scenarios to build
upon and further expand with even more nuanced features.

As we already hinted in Section 5, a natural line of future work is to expand our system in
order to account for a more detailed representation for beliefs; as we have seen, though, this is not
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devoid of challenges that will affect both the models and the Imagination Algorithm. Furthermore,
it would be interesting to lift up the restriction on imagining only propositional formulas, thus
allowing the agent to imagine something about her beliefs, for instance, or to allow for nested
imagination acts. Both lines of future work would likely require quantification over nominals in
order to deal not only with the content of specific worlds, but also with their relational structure.
Additionally, considering paraconsistency and paracompleteness would allow to consider whether
to import every known and believed facts into a new imaginary scenario, or only those that are
somehow relevant with the initial content defining the imagining; still in this line, considering
Berto’s work on aboutness in [5] could prove particularly useful.
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