
1

Proactive Caching Placement for Arbitrary
Topology with Multi-Hop Forwarding in ICN
Siyang Shan, Student Member, IEEE, Chunyan Feng, Senior Member, IEEE, Tiankui Zhang, Senior

Member, IEEE, and Jonathan Loo, Member, IEEE

Abstract—With the rapid growth of network traffic and the
enhancement of the quality of experiences of users, Information-
Centric Networking (ICN), which is a content-centric network
architecture with named data caching and routing, is proposed
to improve the multimedia content distribution efficiency. In
arbitrary topology, cache nodes and users are randomly dis-
tributed and connected, hence it is challenging to achieve an
optimal caching placement under this situation. In this paper, we
propose a caching placement algorithm for arbitrary topology in
ICN. We formulate an optimization problem of proactive caching
placement for arbitrary topology combined with multi-hop for-
warding, with an objective to optimize the user delay and the load
balancing level of the nodes simultaneously. Since the original
problem is NP-hard, we solve the formulated caching placement
problem in two sub-problems, content replica allocation sub-
problem and content replica placement sub-problem. First, in
the content replica allocation sub-problem, the replica number
of each content is obtained by utilizing the auction theory. Second,
the replica number of each content is used as a constraint for
the content replica placement sub-problem, which is solved by
matching theory. The caching placement algorithm combined
with multi-hop NRR forwarding maximizes the utilization of
cache resources in order to achieve better caching performance.
The numerical results show that significant hop count savings and
load balancing level improvement are attainable via the proposed
algorithm.

Index Terms—ICN, IoT, Caching Placement, Multi-hop For-
warding, Arbitrary Topology.

I. INTRODUCTION

RECENT traffic measurements have clearly shown that IP
video traffic will account for 82 percent of the overall

Internet traffic by 2022, as illustrated in the Cisco VNI
forecasts [1]. However, due to the host-to-host communica-
tion patterns in traditional IP networks, Internet bandwidth
is wasted by repeated transmission of popular contents. In
order to solve the problem of low transmission efficiency of
content distribution in traditional IP network, ICN has been
widely studied [2]. The ubiquitous in-network caching is a key
technology of ICN, which avoids the repeated transmission
of popular contents and improves the transmission efficiency.
In ICN, how to optimize the caching placement and content
forwarding to improve the caching performance under limited
cache space are one of the main research topics in ICN
caching.

S. Shan, C. Feng and T. Zhang are with the School of Information and
Communication Engineering, Beijing University of Posts and Telecommuni-
cations, Beijing, China (email:{syshan, cyfeng, tkzhang}@bupt.edu.cn).

J. Loo is with the School of Computing and Engineering, University of
West London, London W5 5RF, U.K. (e-mail: jonathan.loo@uwl.ac.uk).

N1

N2
N6

N5N3

N4

N7

N8

Content Source

Servers

ICN Router Users

Fig. 1: An example of arbitrary topology

In ICN, the caching placement strategies can be divided into
two categories: the strategies for regular topologies and strate-
gies for arbitrary topology [3]. Regular topologies include
string topology, grid topology and hierarchical tree topology.
In regular topologies, the structures have strong regularity, and
thus the content placement and coordination between cache
nodes can be determined by solving the analytical model
established by prior traffic demand. Most of existing caching
placement strategies are regular topology oriented. Arbitrary
topology is extracted from the Internet infrastructure [3],
and an simple structure of arbitrary topology is presented
in Fig. 1. In contrast to the regular topologies, cache nodes
and users are randomly distributed and connected in arbitrary
topology, which makes explicit collaboration more difficult to
achieve [4].

In regular topologies, the position of edge nodes and source
nodes are fixed, so the parent-child relationship between the
nodes is also fixed. The forwarding path for each edge node
is unique, and the explicit collaboration for each edge node is
among the cache nodes in a unique forwarding path. However,
in arbitrary topology, due to the irregularity of the node
connections and the random positions of the edge nodes and
the source nodes, the parent-child relationship in arbitrary
topology no longer exists. The explicit collaboration for each
edge node is not limited to a unique path, and collaboration
range for an edge node is enlarged and may be extended to the
entire network. Therefore, arbitrary topology is more difficult
to perform explicit collaboration.

For research in ICN, [5]–[11] studied the caching placement
strategies for arbitrary topology. [5], [6] designed caching
placement strategies for arbitrary topology combined with on-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UWL Repository

https://core.ac.uk/display/233029685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

path request forwarding, which considered content popular-
ity and user preferences. The forwarding range of the two
strategies is limited due to the on-path forwarding strategy,
and thus the caching gain of the cached contents is not
fully utilized. [7]–[11] designed caching placement strategies
combined with off-path request forwarding. In [7]–[9], cluster
head nodes made caching placement decisions to place the
contents in nodes inside the cluster, and made forward deci-
sions when receiving content requests. The strategies extended
the forwarding range of a request to the current cluster or
adjacent clusters, and adopted heuristic strategies to solve the
problem, but the forwarding range of content requests was still
confined, which limited the improvement of caching gain. In
[10], caching placement decisions were made through hash
algorithm to place the contents in the cache nodes across the
entire networks. When requesting a content, the position of the
content replica is calculated by the algorithm. In this strategy,
each content has one replica at most, namely single replica
caching, and the caching position of the replica is randomly
selected without taking content popularity into consideration,
which may lead to reduction of caching performances, for
caching more popular content replicas can obviously bring
more benefits to lower user delay than caching more unpop-
ular contents. According to the above research, due to the
limited forwarding range of the content requests, the caching
placement strategies for arbitrary topology are incapable of
achieving global optimization of the caching performance. [11]
determined the content caching locations and forwarding path
by solving the optimization problem about routing cost and
caching cost. But when forwarding, the cache resources can
not be utilized by all users, and one user only requests for one
content, which makes the performance gain of the strategy is
limited in actual systems.

In summary, multi-hop forwarding is not fully realized in the
above researches for arbitrary topology, and we need to study
the optimal caching placement problem for arbitrary topology
that can achieve global performance optimization. Existing
studies indicate that the performance of the caching algorithm
for arbitrary topology can be improved by combining with
Nearest Replica Routing (NRR) request forwarding strat-
egy [12]–[14]. Multi-hop NRR forwarding is the full version of
NRR forwarding strategy, which extends the forwarding range
of user requests to any cache node in the network, so that
the cache resources could be utilized to the maximum extent.
Therefore, in order to decrease cache redundancy, reduce cache
replacement, and maximize the utilization of cache resources,
we propose a proactive caching placement algorithm combined
with multi-hop NRR forwarding for arbitrary topology, to
achieve global optimization of the caching performance under
arbitrary topology. The innovations and contributions of this
work are summarized as follows:

• We proposed a content distribution architecture for ar-
bitrary topology in ICN, where a caching placement
optimization problem combined with the multi-hop NRR
forwarding is formulated, with an objective to optimize
user delay and the load balancing level of the nodes
simultaneously. The objective takes into account the user

delay and load balancing level of the cache nodes, and
makes a trade-off between the two metrics.

• Since the original problem is NP-hard, we solved the for-
mulated caching placement problem in two sub-problems,
content replica allocation sub-problem and content replica
placement sub-problem. First, we reformulated the orig-
inal problem into a content replica allocation problem
by approximating the optimization objective, from which,
the replica number of each content is obtained by utilizing
the auction theory to solve the content replica allocation
sub-problem. Second, the replica number of each content
is taken as a constraint for the content replica placement
sub-problem, which is solved by matching theory. And
finally, the forwarding routes for each user are determined
from the result of the content replica placement problem.

• We evaluated the performance of the proposed algorithm
by comparing it with several classical caching algorithms
in the case of combining with NRR forwarding algorithm
by simulation. The results showed that the proposed
algorithm is significantly better than other algorithms, and
can effectively reduce the average hop count for content
acquisition and improve the load balancing level.

The rest of this paper is arranged as follows: Section II
introduces related works in this field. Section III gives the
mathematical model of our cache network. Section III-D
and IV give the modeling and solution of the content replica
allocation problem and the placement problem respectively.
The performance verification and comparison of the proposed
caching algorithm are given in Section V. And finally, con-
clusions are summarized in Section VI.

II. RELATED WORKS

Currently, lots of researches are studying caching place-
ment strategies based on the on-path forwarding strategy in
regular topology [15], [16]. Our research focus, on contrary,
on the caching placement strategy based on the off-path
forwarding in arbitrary topology. In ICN, the performance of
caching is determined by both the caching placement strategy
and the request forwarding strategy [17], [18]. The caching
placement strategy determines where to cache and what to
cache, including a proactive way and a reactive way; and
the request forwarding strategy determines the next-hop node
when forwarding a user request.

On one hand, depending on the target topology, the caching
placement strategies can be divided into strategies for regular
topology and caching strategies for arbitrary topology. On the
other hand, depending on the forwarding range, the request
forwarding strategies can be divided into on-path forwarding
strategies and off-path forwarding strategies. The forwarding
range of on-path forwarding strategy is confined within the
nodes on the default path decided by the default routing
strategy, that is, Shortest Path Routing (SPR). The off-path
strategy extends the forwarding range beyond the the default
path.

Generally speaking, the caching strategies combined with
on-path forwarding strategies usually are caching decision
strategies, which decide whether to cache the incoming con-

3

tents on en-route routers or not. While the caching strate-
gies combined with off-path forwarding strategies usually
are caching placement strategies, which push contents to the
routers proactively.

For instance, [19]–[23] studied the caching strategies for
arbitrary topology, where [19]–[21] adopted on-path forward-
ing strategies, and [22], [23] adopted off-path forwarding
strategies. [5]–[11] studied the caching strategies for arbitrary
topology, where [5], [6] adopted on-path forwarding strategies,
and [7]–[11] adopted off-path forwarding strategies.

Among the caching strategies for arbitrary topology, [5], [6]
proposed cache decision strategies based on user preferences
and content popularity. [7], [8] proposed caching placement
strategies utilizing clustering, which both considered the fac-
tors related to topology like neighbor node degree, node
centrality. [9] proposed caching placement strategies for multi-
domain networks, which utilized the potential values of nodes
to decide to cache which contents on which nodes. [10] pro-
posed a caching placement strategy based on the hash indexing
of the contents. [11] proposed a joint caching placement
and routing strategy utilizing an optimization problem, where
several kinds of costs are considered, but the setting of user
request probability is too simple that one user only request for
one content, which is not practical in the actual systems.

The caching performance of the above strategies is con-
fined due to the limited forwarding range. Several papers
have demonstrated the performance advantages of the NRR
forwarding strategy among the off-path forwarding strate-
gies [12]–[14]. Adopting NRR forwarding strategy can in-
crease the opportunity for the user requests to be satisfied
outside the default path. Users can obtain some contents from
nearer routers other than content source servers, so as to reduce
the hop count for acquiring contents, decrease the load of the
content source servers and improve the utilization of caches.

The existing caching strategies combined with NRR for-
warding strategy [11], [24]–[28] are described in detail. [24]
studied the joint problem of request forwarding and content
caching in cluster-based heterogeneous networks. The opti-
mization objective is to minimize the average content access
delay, and an approximate method is used to solve the optimal
problem. Content caching and scheduling in cellular networks
is studied in [25], which is essentially a joint problem of
caching and forwarding. Optimization objectives related to
finite queue lengths for elastic traffic and zero average deficit
value for the inelastic traffic are given and solved by Lyapunov
drift algorithm. [26] studies the caching placement and for-
warding problem in ISP networks, as well as the optimization
for cache space allocation. Two optimization objectives of
minimizing link cost and maximizing cache hit rate are set,
and greedy algorithms are used to solve them. [27] studied the
problem of caching placement and forwarding in cellular net-
works. The optimization objective is to minimize the total cost,
and an on-line algorithm is used to solve the problem. [28]
studied the joint problem of caching and forwarding in a single
administrative domain network. The optimization objective is
to minimize the maximum link utilization, which is solved by
primitive dual decomposition and Lagrange relaxation. The
problem of caching placement and forwarding in arbitrary

topology is studied in [11]. The optimization objective is to
minimize the network traffic, and the heuristic algorithm is
used to solve the problem. The research scenarios in [24]–
[27] include both wired and wireless networks. Although NRR
strategy is realized by means of setting a restricted network
topology, transforming the network into a bipartite graph
by clustering or partitioning, or simply adopting single-hop
wireless access network, all of them stay at the level of single-
hop forwarding. The optimization problem with single-hop
forwarding is simplified to linear programming problem when
the objective is to minimize routing cost. In these schemes, the
requesting node is directly connected to the cache in a single
hop, and none of these schemes can be generalized to multi-
hop scenarios because it results in a non-convex property [29],
which is an NP-Hard problem. In order to realize the strategy
proposed in [28], the strategy has the limitation of requiring
a complete copy of all contents in the network. [11] proposes
a cache-aware network planning strategy, including location
selection of cache nodes and content placement, as well as
determination of request forwarding path, and establishes an
optimization objective with multiple costs as the main body.
However, as one of the important components of optimization
problem, the setting of user requests is too simple where
one user only initiates requests for one content, and thus the
performance gain is limited in the actual system.

In summary, the current arbitrary topology caching algo-
rithm has the problem that global optimization of the caching
performance is not achieved due to the limited forwarding
range, and the caching algorithm combined with the NRR
forwarding strategy is unable to realize a multi-hop fashion.
Therefore, we intend to combine the two, that is, to implement
a proactive caching placement algorithm in arbitrary topology
combined with the multi-hop NRR forwarding, and formulate
an optimization problem. In the solution process, we utilize the
auction algorithm and the matching algorithm respectively, and
introductions of the two theories can be found in [30] and [31].

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, we proposed a caching placement algorithm
for arbitrary topology. In this section, the network topology,
the working process of the proposed algorithm and the content
request distribution in our scenario is described, and the
formulation of a caching placement problem combined with
the multi-hop NRR forwarding is given. For the sake of clarity,
we summarize the notation used throughout the paper in Table
I.

A. Network Topology

The proposed caching placement algorithm applies to the
scenario of a management domain of Internet Service Provider
(ISP) or Autonomous System (AS) [32], and the network
topology within the domain is arbitrary topology. As shown in
Fig. 2, the domain contains ICN routers and an ICN manager
node. The ICN routers have the functions of name resolution,
content caching, and routing and forwarding. Some ICN
routers are connected with multiple user nodes, responsible
for collecting and forwarding user-initiated content requests.

4

TABLE I: Summary of the Notation

Symbol Meaning

R Set of cache nodes
O Set of contents
U Set of users
J Number of cache nodes, J = |R|
I Number of contents, I = |O|
K Number of users, K = |U|
Sj Size of cache spaces of router j
pki Request probability of user k for content i
pij Request probability at node j for content i
dkj Hop count from user k to node j
dki Hop count from user k to the source server of content i
xij 0-1 caching placement variable: xij = 1 if j caches i.
yi Number of replicas of content i

Content Source Servers

ICN Router ICN ManagerN1

N2

N3

N4

C1 C2 C3 C4

1

1

1

1

1

10

00

0

001

0

CST

0

0

Deployment Phase

C2

C2

ICN Routers:

 Upload the request probability

information to the ICN Manager

ICN Manager (M):

 Collect information from the

ICN routers, then calculate the

result for caching placement

 Build the CST

 Distribute the CST to all ICN

routers by broadcasting

 Proactively push the contents

to the routers according to CST

N1

N6

N5N3

N7

N4

N2

M

(a) The Deployment Phase

N1

N2
N6

N5N3

N4

N7

M

Content Source

Servers

Content request arrival

ICN Routers:

 Look up the CST to find

which routers cached the

requested content

 Forward the request to the

nearest router if the content

exists in the routers or the

content source server if not

 Return the requested

content to the user

N1

N2

N3

N4

C1 C2 C3 C4

1

1

1

1

1

10

0 0

0

0 01

0

CST

0

0

Operation Phase

C2

C2

ICN Router ICN Manager

(b) The Operation Phase

Fig. 2: Working process of the proposed caching placement
algorithm

The user nodes are not shown in the figure for the sake of
simplicity. The ICN manager can communicate with all the
ICN routers in the domain, and is responsible for collecting
information to make caching placement decisions, and giving
the Caching State Table (CST) to routers for forwarding
requests. Hereinafter, ICN routers can also be called cache
nodes.

B. Working Process of the Proposed Caching Placement Al-
gorithm and the NRR Forwarding Strategy

The working process of the proposed caching placement
algorithm can be described in two phases: the deployment
phase and the operation phase. The working process in the
deployment phase is given in Fig. 2(a). Step 1: all the ICN

routers upload the user request probability information to the
ICN manager. Step 2: the manager collect the information
from all the routers, and calculate the result for the caching
placement algorithm utilizing the request probability and the
hop count information. Step 3: build the CST according to
the result. Step 4: distribute the CST to all the routers by
broadcasting. Step 5: proactively push the contents from the
content source servers to the routers according to the CST. This
paper proposes an active cache placement strategy that pushes
specific content to various cache nodes in the network. Every
once in a while, the cached content of the entire network will
be updated, and the corresponding CST of each node will also
be updated. The original cached content in the node is reserved
if it appears in the new CST; if it is not in the new CST, it
is replaced with the new content. Therefore, the strategy can
guarantee to search for the most recent content based on CST.
Each time the CST is updated, the original contents in the
cache space would also be updated according to the CST. It
is noteworthy that the user request probability at each router
is obtained independently by recording the requests initiated
by users accessing the respective routers and calculating the
probability with a certain method. Since this paper mainly
focuses on how to use the request probability instead of how to
generate it, and the method of generating the probability does
not affect the caching algorithm, this paper did not introduce
the specific probability generation method.

After the deployment phase, the working process enters the
operation phase, which is given in Fig. 2(b). When a content
request arrives at a router, the router will follow the following
process. Step 1: look up the CST to find which routers cached
the content. Step 2: if the lookup result is positive, according
to the adopted NRR forwarding strategy, the router forwards
the request to the nearest router which cached a replica of the
content. If the lookup result is negative, the router forwards
the request to the content source server. Here we use some
examples to illustrate the process. In Fig. 2(b), user requests
for content C4 arrive at router N2 and N4. The two routers
both look up the CST and find out router N1 and N3 cached
the content. According to the NRR forwarding strategy, N2
and N4 forward the request to N1 and N3 respectively. On
the other hand, user request for content C2 arrives at router
N1. N1 looks up the CST to find out there are no replica
of C2. Then N1 forwards the request to the content source
server. Step 3: After receive the requests, router N1, N3 and
the content source server return the requested contents to the
users along the forwarding path respectively. It is noteworthy
that the ’nearest router’ here means the router with the smallest
hop count distance.

In the following, the method for determining the forwarding
destination for users is described. According to the NRR
forwarding strategy, user requests will be forwarded to the
nearest cache node which cached the replica of the content.
Thus, by determining the cache nodes to which the users are
forwarded, a plurality of user sets Ui

j against different cache
nodes for content i can be obtained. The detailed steps are as
follows.

First, the quantity of user sets and the corresponding cache
node number are determined. The quantity of user sets for

5

Start

Generate the global

probability and number of

content requests

Generate the number of

content requests

for a user randomly

Update the remaining number

of requests

If requests for all

users are allocated

No

Yes

The allocation of

requests is completed

Fig. 3: User Request Generation Process

content i is yi, the number of replica of content i in the
network, where the cache node number set Ji is defined as

Ji = {j|xij=1} (1)

Next, the node number jik of the forwarding destination for
user k when requesting content i need to be determined, which
is defined as

jik = arg
j

min dkj , j ∈ Ji (2)

The expression means to assign user k to the nearest node
that can satisfy the request.

Furthermore, the set of users who are forwarded to node j
when requesting the content i is obtained by assembling the
users belonging to the same cache node are into a set, which
is defined as

Ui
j =

{
uk|jik = j

}
(3)

The set of all users U can be obtained by
⋃
j∈Ji

Ui
j = U.

C. Content Request Distribution

In caching models of many classical literatures [6], [7], [10],
both the network-wide and the single-node content requests
follow the Zipf distribution [33], where content i is requested
with probability qi = c · i−α, c =

(∑
i∈O i

−α)−1. The value
of α indicates the concentration degree of content requests.
A bigger α means that fewer contents attract the majority
of the requests. Under this setting, the difference of user

preferences for contents is not reflected, and homogeneity of
the user request is serious. Besides, in [8], [11], the content
requests at a single node are quite different, which embodies
user preferences. However, the network-wide content requests
do not follow the Zipf distribution, and it lacks the generality
of the network requests following the Zipf distribution.

Different from the above-mentioned request setting meth-
ods, in our model, we use a different user request gener-
ation process to achieve the differentiated content request
distribution at each cache node while keeping the network-
wide requests following Zipf distribution. In our process, the
user requests for contents are generated randomly under the
limitation of the total number of content requests. Fig. 3 gives
the user request generation process adopted in our scenario.

First, generate the global probability for all the contents and
the total number of requests for all the contents according to
the global probability and the total number of user requests.
The generated global probability represents the network-wide
request probability, which reflects the overall popularity dis-
tribution of the contents. Second, generate random request
numbers of all the contents for a user under the restrict of the
total request numbers. The request probability of each content
for a user is obtained by calculating the proportion of the
request number of each content in total request number. Third,
update the remaining total request number. Then repeat the
second and the third steps to generate the request probability
for other users until request probability for all the users are
generated.

D. Problem Formulation
In this section, we will describe the global optimization

model of the caching placement problem combined with the
multi-hop NRR forwarding.

In order to reduce user delay and improve load balancing
level of cache nodes in the network, we formulate a multi-
metric proactive caching placement optimization problem. The
first metric is to reduce user delay, and we use user average
hop count for content acquisition to , which is related to the
user delay directly. The smaller the average hop count, the
smaller the user delay. On the other hand, we borrowed the
concept “load balancing” in heterogeneous cellular networks
to reflect the uniformity of load distribution of cache nodes in
the network, and the fairness index of the distribution of the
user requests hit on each cache node is utilized as the metric
for the load balancing level of the cache nodes. The higher
the fairness index, the higher the load balancing level.

The user average hop count for content acquisition is
represented by d (X), which is derived by

d (X) =
1

I ·K
·
∑
i∈O

di (X) (4)

where,

di (X) =

∑
j∈R

∑
k∈Ui

j

xijpkidkj ∃xij > 0, j ∈ R∑
k∈U

pkidki ∀xij = 0, j ∈ R
(5)

(5) consists of two parts, which are hop count consumed
when a request is hit or not hit in the in-network cache nodes

6

respectively. Ui
j represents the set of users who are forwarded

to the node j when requesting the content i, which is described
in Section III-B.

On the other hand, we use the equation of Jain’s fairness
index to calculate the fairness index r (X), which is derived
by

r (X) =

(
J∑
j=1

pj

)2

J ·
J∑
j=1

pj2
(6)

where pj represents the proportion of user requests to hit at
the cache node j, which is defined as

pj =
1

K

∑
i∈O

∑
k∈Ui

j

xijpij , j ∈ R (7)

Then, we module an optimization problem with an objective
of a trade-off between the average hop count and the fairness
index, where σ1 and σ2 are trade-off parameters between the
two metrics. The formula of the optimization objective is given
by

min
X

σ1d (X)− σ2r (X) (8)

s.t.
∑
i∈O

xij ≤ Sj , ∀j ∈ R, (8a)

xij ∈ {0, 1} ∀i ∈ O, ∀j ∈ R, (8b)

(8a) sets the cache space limit for each cache node, where
the cache space is measured by the amount of content replicas,
and (8b) limits the problem to a 0-1 planning problem. The
formula (8) is NP-Hard and can not be solved directly. So we
solve the problem in two steps. In the following section, we
will describe the algorithm in detail.

IV. PROPOSED CACHING PLACEMENT ALGORITHM

We solve the caching placement problem in two sub-
problems, content replica allocation sub-problem and con-
tent replica placement sub-problem. First, we reformulate the
original problem into a content replica allocation problem
by approximating the optimization objective. In the content
replica allocation problem, cache spaces are resources and
need to be assigned to the contents. Different contents occupy
different number of cache spaces, so we utilize the auction
algorithm to allocate the cache spaces to all the contents.
Second, the replica number of each content is used as a
constraint for the content replica placement problem. In the
content replica placement problem, the number of replicas for
each content is fixed, and hence we only need to determine
where to cache them to achieve the best performance. Here
we utilize the matching algorithm to find the best matching
pairs. In this section, we will describe the two algorithms in
detail.

A. The Content Replica Allocation Algorithm Based on Auc-
tion Theory

In this section, we want to achieve the exact number of
replica for each content yi. But at first, we need to make
a reasonable approximation to the (4) in the optimization
objective. When there are no replica of content i in the
network, the total hop count required for all users to obtain
the content i may be expressed as:

dimax =
∑
k∈U

pkidki (9)

Next, we need to arrive at an approximation of the total
hop count for all users to obtain the content i with yi replicas
cached. Inspired by [34], we propose the hypothesis of the
relationship between the hop count for content acquisition by
the user and the number of content replica in the network,
which can be expressed as d̃i (yi) = diβ

yi , yi ≥ 0, where
β is the attenuation coefficient, and the value range is (0, 1],
and d̃i decreases with the increase of yi. In the literature, the
value is set artificially according to the size of the network.
Considering the user interest in the contents, the user request
distribution is not uniform, and different levels of request
probability will reflect in different edge nodes. For example,
in some cases, user requests for a certain content are focused
on fewer nodes, and fewer replica is required to significantly
reduce the average hop count required. In other cases, user
requests for a certain content are more dispersed, more replica
is needed to achieve the same effect. To solve this problem,
we design the formula of β according to the distribution of
user requests.

To get the concentration degree of user requests in the
network, we utilized the concept of species evenness. Species
evenness refers to the distribution of the individual numbers of
all species in a certain area, and it reflects the evenness degree
of all species. The more the species, the larger the species
evenness. When the quantity of species is the same, the closer
the individual numbers of the species, the larger the species
evenness. In our scenario, a certain content corresponds to a
certain area, a certain cache node corresponds to a certain
species, and the number of requests at a certain cache node
corresponds to the individual numbers of a certain species. For
ease of understanding, we renamed species evenness to request
evenness. Due to the fixed network topology, the quantity of
cache nodes for different contents is the same, so the request
evenness reflects the concentration degree of user requests in
the network directly. The larger the request evenness, the more
concentrated the user requests.

Since Loyd and Pielou et al. proposed the measuring method
of evenness, several species evenness have been developed.
Currently, Pielou evenness is mainly used, which is based
on Simpson index and Shannon-Wiener index. Other evenness
indices include Alatalo, Sheldon, Hiep and Hurlbert evenness
indices.

According to the objective of this paper, the range of our
request evenness should be between 0 and 1, so the Shannon-
Wiener index is adopted. The formula for the request evenness

7

of content i (Pielou evenness) can be expressed by:

Pi =
Hi

Hmax
(10)

where Hi is the Shannon-Weiner index of content i, and Hmax

is the theoretical maximum of Hi. Therefore, the Shannon-
Weiner index is calculated as follows:

Hi = −
∑
j∈R

(pij ln pij) (11)

where pij can be obtained by utilizing the request history of
node j, and the method to obtain the value is not introduced
here for it is not the focus of this paper. Hmax is obtained when
all requests are evenly distributed where pij = 1

J ,∀j ∈ R, the
formula is:

Hmax = −
∑
j∈R

(pij ln pij) = −
∑
j∈R

(
1

J
ln

1

J

)
= ln J (12)

In summary, the formula for calculating the request even-
ness is as follows:

Pi =

−
∑
j∈R

(pij ln pij)

ln J
(13)

The range of values for Pi is (0, 1]. When the request is
concentrated on a few edge nodes, the calculated value of Pi
is close to 0; when requests are scattered across most edge
nodes, the calculated value of Pi is close to 1.

Let β = Pi, and when the replica number of content i is
yi, the formula for approximate hop count d̃i is given by:

d̃i (yi) = dimaxP
yi
i

=
∑
k∈U

pkidki

[(
− 1

ln J

) ∑
j∈R

(pij ln pij)

]yi
(14)

The approximation of the total hop count to acquire all the
contents can be obtained by:

d̃ (Y) =
∑
i∈O

d̃i (yi) =
∑
i∈O

dimaxP
yi
i (15)

where Y is the vector for the number of replica of all contents,
Y = (yi) , i ∈ O and yi ∈ {0, 1, . . .}.

The original optimization objective can be rewritten as:

min
Y

d̃ (Y) =
1

I ·K
·
∑
i∈O

dimaxP
yi
i (16)

In the following, the exact number of replica of each content
in the network yi is determined to minimize the value of d̃ (X)
utilizing auction theory. Here one cache space can hold one
replica of a content, and the amount of cache space occupied
by each content is the number of replica of the content in the
network. In order to allocate cache spaces to different contents,
this paper uses the auction method to auction the cache space
as a commodity to the content as a buyer. By assigning a
valuation to each cache space for different contents, every
cache space is auctioned to the content with highest valuation
until all cache spaces are auctioned. Eventually, different
contents will acquire different amounts of cache space. Some
contents may acquire one or more than one cache spaces, while
other contents may not acquire any spaces.

Algorithm 1 Proposed Auction-Based Content Replica Allo-
cation Strategy
Input: O, R, Q, d
Output: The matrix of number of content replica Y

1: Initialization: t = 1, nti = 0, and Sremain = S.
2: repeat
3: Calculate vti for all i.
4: at = arg

i
max vti

5: ntat = ntat + 1
6: Sremain = Sremain − 1
7: t = t+ 1
8: until Sremain = 0
9: yi = nti for all i

The valuation on a cache space for a content can be derived
from the previous approximated optimization objective func-
tion. Since r (X) for a single content can not be achieved, only
d (X) is considered in the valuation function. The valuation
is specific to a certain cache space, so the hop count of each
content in different number of replica is required. The hop
count decreases as the number of replica increases, so the hop
count reduction is adopted as the valuation. The formula for
the valuation of content i at the t-th auction is as follows:

vti = d̃i (n
t
i)− d̃i (nti + 1) = dimaxP

nt
i−1

i − dimaxP
nt
i+1

i

=
∑

1≤k≤K
pkidki

[
−(ln J)−1

∑
1≤j≤J

pij ln pij

]nt
i

−
∑

1≤k≤K
pkidki

[
−(ln J)−1

∑
1≤j≤J

pij ln pij

]nt
i+1

(17)
where nti represents the number of cache space already ac-
quired by content i at the t-th auction.The value is 0 in an
initial state, i.e, n1i = 0. At the end of the whole auction
process, the final value of nti can be abbreviated as ni.

The result of this auction algorithm can obtain the minimum
value of the total hop count, and we will prove that.

Lemma 1: The result of the auction can obtain the minimum
of the total hop count.

Proof 1: See Appendix A .
In the following, the auction process is described below:

1) Initialize the value of remaining cache space Sremain =
S, the number of cache space acquired by each content
ni = 0, and the sequence number of the auction t = 1.

2) The t-th auction begins. calculate the valuation vti of the
t-th cache space being auctioned for each content.

3) The cache space is auctioned to the content at having
maximal valuation. The number of auctioned cache
space ntat corresponding to content at is increased by
1, and the remaining cache space Sremain is decreased
by 1. The t-th auction ends, and the sequence number t
is increased by 1.

4) Repeat steps 1) and 2) until the condition is met:
Sremain = 0 , then the whole auction ends.

8

After the auction process, the winner of each auction
an, 1 ≤ n ≤ S can be obtained, and the number of cache
space acquired by each content is yi. The algorithm 1 gives
the pseudo-code for the proposed auction-based content replica
allocation algorithm. In the algorithm, Q is the user request
matrix, and d is the hop count matrix between the users and
nodes. At the end of the auction, the obtained Y is the vector
of the number of replica for each content. Next, we will use
yi to obtain the value of xij , that is, to determine the location
of each replica.

B. The Content Replica Placement Algorithm Based on
Matching Theory

In the previous auction algorithm, the number of replica
of each content in the network has been obtained, and then
the location of each copy of content needs to be obtained.
The problem is the optimization problem of the relationship
between contents and cache nodes. The equation of objective
of the optimization problem remains the same as equation (8),
and the limitation of the number of replica is added to the
constraints of the optimization problem based on the original
constraints: ∑

j∈R

xij = yi ∀i ∈ O (18)

A replica of a content is cached on a cache node, which is
equivalent to a matching relationship between the content and
the cache node; all replicas of all the contents are cached on
the cache nodes all over the network, which is equivalent to a
many-to-many matching problem between contents and cache
nodes. In this matching, a single content can be matched to
multiple cache nodes, and a single cache node can be matched
to multiple contents. Based on the above descriptions, we give
the following definitions.

Definition 1: A many-to-many matching µ is a function from
the set O ∪R into the set of unordered families of elements
of O ∪R ∪ {0} such that:

1) µ (i) = Ri
µ ⊆ R;

2) µ (j) = Oj
µ ⊆ O;

3) |µ (i)| = yi, ∀i ∈ O
4) |µ (j)| ≤ Sj , ∀j ∈ R
5) if and only if µ (j) ∈ O, µ (i) ∈ R;
6) i ∈ µ (j)⇔ j ∈ µ (i).
In 1) and 2), the symbol µ has different meanings for

different parameters. When the parameter is content i, µ (i)
represents an unordered subset of the set of cache nodes
matching the content i; When the parameter is a cache node j,
µ (j) represents an unordered subset Oj

µ of the set of contents
O matching the cache node j. 3) and 4) represent quotas of
each matching, where yi is the number of replica of each
content obtained in the previous process, and Sj is the cache
space limit for each cache node. 5) indicates that the matching
result of i or j must be a subset of the set R or O. 6) indicates
that the matching parties are mutual.

Definition 2: There doesn’t exist that one content is unac-
ceptable to any cache node nor one cache node is unacceptable
to any content, and a player in the matching must be individ-
ually rational.

The matching in this paper contains externalities, which
is reflected in that when existing more than one replica of
a content, and the location of one replica will affect the
utility of the other replicas. The reason is that the addition
or reduction of replica and the change in the placement of
replicas would cause a change to the user set, and consequently
changes the utility value of the content i. In many-to-many
matching with externalities, a stability concept cannot be
defined straightforwardly because the gain from a matching
pair depends on the matching results of other players. Inspired
by the definition of exchange stability, a swap matching is de-
fined to achieve stability [31]. Specifically, an swap matching
is defined as µi

′

i = {µ\ {(i, j) , (i′, j′)} ∪ {(i′, j) , (i, j′)}},
where j ∈ µ (i), j′ ∈ µ (i′), i.e., the cache node that matches
with the content i changes from j to j′, and meanwhile the
cache node that matches with content i′ changes from j to j′.
Based on the operations of swap matching, we will give the
concept of swap-blocking pairs as follows, and then introduce
the two-sided exchange stability.

Definition 3: When there two players i and i′ , such that
d
(
µi

′

i

)
< d (µ), the (i, i′) are called an swap-blocking pair

in the matching µ.
d (µ) represents the overall utility value of the matching µ.

The features of swap-blocking pairs ensures that if a swap
matching is approved, the value of the overall utility related
to hop count is decreased. In this paper, both of the contents
and the cache nodes are of no selfishness, so as long as the
overall utility can be decreased, the pair of matching players
is a swap-blocking pair, without satisfying the requirements
that their respective utility will not be increased.

Definition 4: The matching µ are two-sided exchange-stable
if and only if there are no swap-blocking pairs.

This definition gives a necessary and sufficient condition
for judging the stability of many-to-many matching problems
with externalities. Below we will prove that there is always a
stable matching in the model considered in this paper. Before
the proof is given, a local minimum needs to be defined.

Definition 5: If there are no swap-blocking pairs such that
d (µ′) < d (µ), d (µ) can be a local minimum.

Lemma 2: All local minima of d are two-sided exchange-
stable.

Proof: assume the matching µ is a local minimum, then
according to definition 5, there is no swap-blocking pairs in
the matching µ. And then according to definition 4, it is proved
that the matching µ is two-sided exchange-stable. The proof
is completed.

In the model considered in this paper, because the number
of matching is finite, there must be local minima, so it is
also proved that there is always two-sided exchange-stable
matchings in the model.

Next we introduce the definition of the overall utility d (µ).
Since the purpose of the matching process is to find the
solution of the optimization objective and the matching has
the externalities, the utility in the swap matching process is
consistent with the optimization objective in this paper, that
is, the overall utility of the matching, which can be expressed
as:

d (µ) = σ1d (X)− σ2r (X) (19)

9

The value of overall utility is used to find better matchings
in the swap matching process, and the lower the utility value,
the better the performance. For example, assuming that µ1

and µ1 are two different matchings, we have the following
relationship:

µ1 � µ2 ⇔ d (µ1) < d (µ2) (20)

where � is the preference relation, indicating that matching µ1

is superior to matching µ2 only when the value of the overall
utility of matching µ1 is smaller than matching µ2.

Next, in order to build the initial matching state between the
contents and the cache nodes, we need to build a preference
list between the content and the cache node. Each content has
different preferences for different cache nodes, and each cache
node has different preferences for different contents similarly.
Here these two kinds of preference values are defined.

First, based on the optimization objective, we define the
preference value of a content over a caching node. Since r (X)
for a single content can not be achieved, only d (X) is con-
sidered in the preference value. Furthermore, the preference
value is the initial value of the content, it is assumed that there
is only content i in the network, and changing the matching
cache node j does not affect the value of the cache miss part
in the formula of the optimization objective. So the hop count
caused by other contents is not considered, only the hop count
required is calculated when only one replica of content i is
cached on cache node j, which can be expressed as:

di (j) =
∑
k∈U

pkidkj (21)

Assuming that for a given i and any two different cache
nodes j and j′, we have the following relationship:

j�ij′ ⇔ di (j) < di (j
′) (22)

which indicates that the content i prefers j than j′, only when
the utility value for content i is smaller on j than j′.

Similarly, we define the preference value of a cache node
over a content. Since it is the initial preference of the cache
node, it is assumed that other cache nodes do not exist, but
changing the matching content i will affect the value of the
cache miss part in the formula of the optimization objective,
so the hop count required for acquiring all the contents is
considered in the preference value of a cache node, which can
be expressed as:

dj (i) =
∑
k∈U

pkidkj +
∑

i′∈{O\i}

∑
k∈U

pki′dki′ (23)

Assuming that for a given cache node j and any two
different contents i and i′, we have the following relationship:

i�ji′ ⇔ dj (i) < dj (i
′) (24)

which indicates that the cache node prefers the content i to i′

only when the utility value for cache node j is smaller on i
than i′.

Now the initial matching state between the contents and the
cache node can be obtained utilizing the extended deferred
acceptance (EDA) algorithm based on the preference list
established above, where we assume that the content proposes

Algorithm 2 Proposed Matching-Based Content Placement
Strategy
Input: O, R, Y, Q, d
Output: The stable matching µ∗ and the replica placement

matrix X.
1: Initialization: Construct the initial content-caching node

matching µ.
2: repeat
3: For any content, select one caching node j ∈ Ri

µ

randomly. It searches for another content i′ 6= i and one
matching node j′ ∈ Ri′

µ .

4: if d
(
µi

′

i

)
< d (µ) then

5: The caching nodes agree the swap operation.
6: Update the matching µ.
7: until Reach the maximum iteration
8: µ∗ = µ

to cache nodes. In the EDA-based initialization process, first,
the contents and cache nodes construct their own preference
lists based on 22 and 24 respectively. Then each content
proposes to the most preferred cache node in its preference
list. At the acceptance phase of cache nodes, each cache
node accepts the content with prior preferences and rejects
the others. The initialization process ends when all contents
are matched to the cache node or every unmatched contents
has been rejected by every cache node.

Algorithm 2 presents the process for solving the problem of
matching between contents and cache nodes. First, the initial
matching state is obtained by the initialization process, then
the contents and the matching nodes are randomly selected
for the swap operation, and if the utility value is smaller,
the swap operation is carried out. Repeat the swap operation
until reaching the predefined maximum number of iterations.
The approach of ending the iteration when a stable matching
is reached is not adopted here, because in many-to-many
matching problems with externalities, although there is always
two-sided exchange-stable matchings, due to the high order
of magnitude of each parameter and the update to the utility
value after each swap matching, it will take a lot of time to
find a stable matching. The experimental results show that the
utility value tends to be stable after a certain number of swap
operations. Therefore, in this algorithm, we take the approach
of ending the iteration until reaching the predefined maximum
number of iterations.

In Algorithm 2, X is a content placement matrix that
corresponds to a stable matching µ∗, and the values of the
elements in the matrix can be obtained by:

xij =

{
1 j ∈ µ∗ (i)
0 j /∈ µ∗ (i) (25)

Up to now, we find the solution of the optimization problem
by matching algorithm, and obtain the scheme of content
placement algorithm, where a replica of the content i is cached
at the cache node j when xij = 1, otherwise it will not be
cached.

10

C. Analysis of the Proposed Algorithms

1) Complexity: The proposed two-step caching algorithm
is based on auction algorithm and matching algorithm.
In the following, we will analyze the computational
complexity of these two algorithms. In Algorithm 1,
evaluations of I contents are calculated in each loop,
and there are total S loops. The complexity is O (IS). In
the initialization procedure of algorithm 2, each content
propose to cache nodes, and then each cache node
decides which content to accept based on its preference
list. In the worst case the proposing number of a content
is J − yi. The complexity is O

(
I2J2

)
. In the swap

procedure of algorithm 2, there are I contents at J
cache nodes can perform swap operations. Each content
matches with yi cache nodes, and each cache node
matches with Sj contents. Therefore, the maximum
swap operation number for content i is yi (J − yi) in
each iteration, and the maximum swap operation number
for I contents is 1

2ISjyi (J − yi). Given a number
of total iterations V , the complexity is approximated
as O (V IJSjyi). As a result, the complexity of the
entire caching placement algorithm can be calculated as
O
(
I2J2 + IS + V IJSjyi

)
.

2) Stability and convergence: In the auction procedure of
algorithm 1, one content is selected to allocate one cache
space in each loop, and the loop process ends with the
completion of the cache space allocation. After the swap
process of algorithm 2, a two-sided exchange-stable
matching is formed between the contents and the cache
nodes. Because the utility value decreases monotonously
in the swap process and there is a floor limit on the
utility value due to the limited cache space. After a finite
number of swap operations, algorithm 2 will get a local
solution, that is, converge to a two-sided exchange-stable
status.

V. SIMULATION RESULTS

In this section, in order to verify the performance of the
proposed caching algorithm, we simulate the proposed content
placement algorithm and compare it with other algorithms.
In the simulation, the Matlab simulation platform is used to
implement the caching placement algorithm. Currently, there
is no existing caching placement algorithm that perfectly
matches our proposed scenario. Therefore, we chose two
typical ICN caching algorithms to compare with the proposed
caching placement algorithm for arbitrary topology (CPAT) in
the simulation: 1) MPC algorithm [35], a caching placement
algorithm based on local popularity; 2) RND algorithm [36],
a probabilistic caching placement algorithm. All the caching
placement algorithms adopts NRR algorithm as the request
forwarding algorithm in the simulation, and the specific for-
warding method has been described in detail before, so we
will not repeat it here.

A. Simulation Assumption

The topology used in this paper is arbitrary topology. With-
out loss of generality, we use randomly generated arbitrary

topology as the simulation topology. The specific generation
method is: First, the nodes are randomly scattered in the plane,
and then the connection is randomly established according to a
certain probability between all the nodes. In our simulation, the
probability is 10%. Second, the gateway node and the cache
nodes are randomly selected from the nodes in the network,
and several user nodes are connected to each cache node.

The default parameters used in the simulation are given
in Table II. For convenience, it is assumed that each cache
node has the same size of cache spaces and that each cache
space can accommodate one content. Two Zipf distribution
parameters have been considered in the simulation: α = 1.0
and α = 0.7. α = 1.0 is used to model a relatively skewed
popularity distribution where few contents are frequently re-
quested, whereas α = 0.7 better represents less skewed content
requests.

TABLE II: Simulation Parameters

Parameters Value

Number of cache nodes (J) 20
Number of users (K) 200
Number of contents (I) 300
Number of requests by a user (Qk) 1000
Size of cache spaces for a cache node (Sj) 20
Content Distribution Zipf (α = 0.7 or 1)

In the simulation, we mainly use the following metrics to
evaluate the performance of the caching algorithms.

1) User average hop count for acquiring contents, abbre-
viated as average hop count, can directly reflect user
delay. The smaller the average hop count, the better the
performance of the algorithm.

2) Fairness index, can directly reflect the load balancing
level of the cache nodes in the network. The higher
the value, the more uniform the distribution of requests
hitting at the nodes.

3) Utility, is the utility value of the caching placement
result, which is recorded in the calculation process. In
our simulation, σ1 = σ2 = 1, and the values can be
adjusted according to the level of average hop count to
prevent the gap of the two metrics from being too large.

B. Convergence of the Replica Placement Algorithm

In the process of solving the caching placement algorithm,
this paper introduces a matching problem with externalities,
and uses swap matching to search the approximate optimal
solution. With the proceeding of the swap matching process,
the utility value of the matching decreases gradually and
approaches to the optimal value. Therefore, in this section,
we verify the convergence of the matching algorithm.

As shown in Fig. 4, the four curves in the figure give
records of the variation of the utility with the number of swap
matchings under different parameter settings. There are 10
cache nodes in the network, each cache node has 10 users
connected to it, each user initiates 1000 content requests, and
each cache node has 10 cache spaces. The Zipf parameter
and the total number of contents are different. Each curve in
the graph represents the average value of 20 simulations. First

11

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.5

1

1.5

2

2.5

3

Swap Times

U
til

ity

α=0.7 I=100

α=1.0 I=100

α=0.7 I=200

α=1.0 I=200

Fig. 4: Records of the utility value for the matching algorithm

observe the overall trend, with the progress of swap operations,
the utility values of all the four curves are decreasing. At
the beginning of the swap process, the decreasing trend of
utility value is relatively fast. After about 300 times of swap
operations, the decreasing trend slows down obviously, and
after about 1500 times of swap operations, the utility value
reaches a relatively stable status. Then observe the trend
contrast between the curves, we can see the influences of the
popularity parameter and the number of contents. The greater
the popularity parameter, the higher the centralization of user
requests, the more requests the users generate for a smaller
amount of popular contents, the more user requests the cache
nodes can accommodate, and therefore the lower the average
hop count for the users to acquire the contents. On the other
hand, the larger the number of contents, the more dispersed the
user requests. In the case of the same cache spaces, the cached
contents are unchanged, but the number of user requests that
can be satisfied is also reduced accordingly, so the average
hop count for the users to acquire the contents is higher.

C. Impact of Network Scale

In this section, we verify the impact of the network scale
and the popularity parameters on the performance of the
caching algorithms, and here we use the number of cache
nodes to reflect the scale of the network. The number of swap
operations of the matching algorithm is set to 1000, and each
curve in the graph is the average value of 20 simulations. If not
indicated, the parameter settings are the same in subsequent
simulations.

The network performance comparison with varying cache
node number is shown in Fig. 5. The average hop count and
the fairness index of the proposed algorithm all performs the
best. The utility is in accordance with the result of average hop
count and the fairness index, which proved the correctness of
the proposed algorithm. From the Fig. 5(a) we can see that
with the increase of the number of cache nodes, the average
hop count of all strategies is decreasing. This is because the
number of cache nodes increases and the total size of cache
spaces in the network increases correspondingly, but the total
amount of contents does not increase, which allows more

contents to be cached in the network. When the hop count
reaches a certain level, the downward trend slows down and
tends to be stable. As a contrast, the hop count curves of MPC
and RND algorithms basically show a linear downward trend.
This is because the cached contents for both algorithms do
not change with the increase in the number of cache nodes,
it is only related to the local popularity of the contents. As
the number of cache nodes increases, the number of users
also increases proportionally, which leads to more diverse user
requests, and the number of cached replicas in the network is
also increasing, so the average hop count decreases gradually
with the increasing of the number of cache nodes.

It is noteworthy that the proposed algorithm has an obvious
difference in the trend of hop count decline when the popu-
larity parameter is 0.7 and 1.0 respectively, where the curve
with the parameter 0.7 is more skewed than the curve with
1.0. This is because when the popularity parameter is smaller,
content requests are more decentralized across the network,
and caching relatively less popular contents will bring more
gain to the caching performance. However, when the size
of cache space reaches a certain number, the cache nodes
in the network already cover most of the contents requested
by the users, and the gain of hop count reduction caused by
increasing the number of replicas exceeds the gain caused by
caching uncached contents. Therefore, when the cache spaces
are saturated, the proposed algorithm with higher popularity
tends to cache more existing contents to decrease the average
hop count.

From the Fig. 5(b) we can see that with the increase of
the number of cache nodes, the curves of the three algorithms
show different trends, and the proposed algorithm performs the
best. The values of the three algorithms all change within a
small interval, and this is the reason why the trends of the
curves in Fig. 5(c) are similar to Fig. 5(a). The proposed
algorithm is superior under different number of cache nodes,
for the algorithm has fully utilized the cache spaces within the
network.

D. Impact of Size of Cache Spaces

As a constraint of caching algorithm, cache space is one of
the important factors that restrict caching performance. In this
section, we verify the impact of the size of cache spaces and
the number of contents on caching performance.

The network performance comparison with varying size of
cache spaces is shown in Fig. 6. The average hop count and the
fairness index of the proposed algorithm all performs the best.
From the Fig. 6(a) we can see that the average hop count of
all algorithms decreases as the size of cache spaces increases.
This is because with the increase of the size, the cache nodes
can accommodate more contents, which can satisfy more user
requests, and make the user requests satisfied at nearer nodes
and thus reduce the average hop count. It also can be seen that
when the number of contents is bigger, the average hop count
is bigger. This is because more contents can not be cached in
the network, and more requests need to be satisfied outside the
network. From the Fig. 6(b) we can see that with the increase
of the size of cache spaces, the curves of the three algorithms

12

10 15 20 25 30
0.5

1

1.5

2

2.5

3

3.5

4

Number of Cache Nodes

A
ve

ra
ge

 H
op

 C
ou

nt

CPAT (α=0.7)
MPC (α=0.7)
RND (α=0.7)
CPAT (α=1.0)
MPC (α=1.0)
RND (α=1.0)

(a) Average hop count

10 15 20 25 30
0.75

0.8

0.85

0.9

0.95

1

Number of Cache Nodes

Fa
ir

ne
ss

 I
nd

ex

CPAT (α=0.7)
MPC (α=0.7)
RND (α=0.7)
CPAT (α=1.0)
MPC (α=1.0)
RND (α=1.0)

(b) Fairness index

10 15 20 25 30
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Number of Cache Nodes

U
til

ity

CPAT (α=0.7)
MPC (α=0.7)

RND (α=0.7)
CPAT (α=1.0)

MPC (α=1.0)
RND (α=1.0)

(c) Utility

Fig. 5: Network performance comparison with varying cache node number

10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

Size of Cache Spaces

A
ve

ra
ge

 H
op

 C
ou

nt

CPAT (I=100)
MPC (I=100)
RND (I=100)
CPAT (I=300)
MPC (I=300)
RND (I=300)

(a) Average hop count

10 15 20 25 30
0.75

0.8

0.85

0.9

0.95

1

Size of Cache Spaces

Fa
ir

ne
ss

 I
nd

ex

CPAT (I=100)
MPC (I=100)
RND (I=100)
CPAT (I=300)
MPC (I=300)
RND (I=300)

(b) Fairness index

10 15 20 25 30
−0.5

0

0.5

1

1.5

2

2.5

3

Size of Cache Spaces

U
til

ity

CPAT (I=100)
MPC (I=100)
RND (I=100)
CPAT (I=300)
MPC (I=300)
RND (I=300)

(c) Utility

Fig. 6: Network performance comparison with varying size of cache spaces

show different trends, and the proposed algorithm performs
the best. The values of the three algorithms all change within
a small interval, and this is the reason why the trends of the
curves in Fig. 6(c) are similar to Fig. 6(a). For the same reason
under the scenario of different network scale, the algorithm is
also superior under different size of cache spaces.

E. Impact of the Content Number

The content number represents the total amount of contents
that can be requested by users, which involves elements
such as the number of requests for a single content and the
distribution of user requests. Therefore, in this section, we
verify the impact of the number of contents and the number
of users on the performance of the caching algorithms.

The network performance comparison with varying content
number is shown in Fig. 7. The average hop count and the
fairness index of the proposed algorithm all performs the best.
From the Fig. 7(a) we can see that the average hop count of all
the algorithms increases as the number of contents increases.
With the increasing of the number of contents, the proportion
of contents that can be cached is relatively decreased without
changing the size of cache spaces, and the proportion of
user requests that can be satisfied in the cache nodes are
also decreased. Therefore, with the increase of the number
of contents, the average hop count for acquiring the contents
also increases. We can see that the curves with 100 users
performs better than 200 users. This is because according to

the generation method of user requests, when the number of
users connected to one cache node is bigger, the distributions
of content requests at various cache nodes tend to be identical.
If the requests for a content are uniformly distributed across all
the cache nodes, more replicas are needed to reach the same
level of average hop count comparing to the situation that the
requests for a content are highly centralized in only a few
nodes. And consequently, more cache spaces are needed to
reach the same level of cache hit ratio. Therefore, the average
hop count of 100 users is lower than the average hop count
of 200 users. This also verified the impact of the distribution
of content requests on the proposed algorithm.

From the Fig. 7(b) we can see that with the increase of
the size of cache spaces, the curves of the three algorithms
show different trends, and the proposed algorithm performs
the best. The values of the three algorithms all change within
a small interval, and this is the reason why the trends of the
curves in Fig. 7(c) are similar to Fig. 7(a). The algorithm is
also superior under different number of contents and different
number of users, because the algorithm has fully considered
the request distribution and the distances between users and
nodes.

VI. CONCLUSION

In this paper, we proposed a proactive caching placement
algorithm for arbitrary topology, where the content popularity,
the distribution of user requests and the distances between
users and nodes are considered. The proposed algorithm

13

100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of Contents

A
ve

ra
ge

 H
op

 C
ou

nt

CPAT (K=100)
MPC (K=100)
RND (K=100)
CPAT (K=200)
MPC (K=200)
RND (K=200)

(a) Average hop count

100 200 300 400 500
0.75

0.8

0.85

0.9

0.95

1

Number of Contents

Fa
ir

ne
ss

 I
nd

ex

CPAT (K=100)
MPC (K=100)
RND (K=100)
CPAT (K=200)
MPC (K=200)
RND (K=200)

(b) Fairness index

100 200 300 400 500
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Number of Contents

U
til

ity

CPAT (K=100)
MPC (K=100)
RND (K=100)
CPAT (K=200)
MPC (K=200)
RND (K=200)

(c) Utility

Fig. 7: Network performance comparison with varying content number

is combined with the multi-hop NRR forwarding strategy,
where the caching placement algorithm is not limited by the
network topology and can work under any kind of network
topologies including arbitrary topology. In comparison to the
classic caching placement algorithms, the average hop count
for content acquisition is greatly reduced, and the level of
load balancing is also improved. Due to the characteristics
of the proactive caching placement algorithm, our proposed
algorithm is more suitable for network scenarios where the
user requests are not highly dynamic and higher network
performance is required including user delay and cache hit
ratio, and the algorithm will show more superior performance
in arbitrary network. The implementation of the proposed al-
gorithm is relatively simple, and the computational complexity
is manageable.

APPENDIX A
PROOF OF LEMMA 1

Assuming that the result obtained by the auction is at, t =
{1, 2, . . . , S}, the cache space finally acquired by each content
i is ni, and the sum of the results is S, i.e.,

∑
1≤i≤I

ni = S.

Since in each auction t, the maximum of vti is selected,
the sum of the results of the S auctions

∑
1≤t≤s

vtat is also the

maximum of
∑

1≤t≤s
vti , so we have:

max
∑

1≤t≤S

vti =
∑

1≤t≤S

vtat (26)

These S auctions can be grouped by contents, and the
amount of auctions is ni whose auction result is content i.
For the ease of writing, the valuation of the result vtat in each
auction is redefined as a variable vni with respect to the content
i and the cache space n, and the equation of is defined as:

vni =

{
0

d̃i (n− 1)− d̃i (n)
n = 0
n > 0

(27)

When some contents have not acquired any cache spaces,
that is, ni = 0, the value of v0i is v0i = d̃i (0)− d̃i (0) = 0.

Then, re-sum the S auctions according to the content:∑
1≤t≤S

vtat =
∑

1≤i≤I

∑
1≤n≤ni

vni (28)

Bring the formula (27) and (28) into (26), we can obtain:

max
∑

1≤t≤S

vti =
∑

1≤i≤I

d̃i (0)−
∑

1≤i≤I

d̃i (ni), ni ≥ 0 (29)

where
∑

1≤i≤I
d̃i (0) is a fixed value, so

∑
1≤i≤I

d̃i (ni) is the

minimum of the total hop count. Because ni is the auction
result for each content, it is proved that the result of auction
can get the minimum of the total hop count.

The proof is completed.

REFERENCES

[1] Cisco, “Cisco visual networking index: Forecast and methodology 2017–
2022.” Report, 2018.

[2] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the
5th international conference on Emerging networking experiments and
technologies. ACM, 2009, Conference Proceedings, pp. 1–12.

[3] A. Ioannou and S. Weber, “A survey of caching policies and forwarding
mechanisms in information-centric networking,” IEEE Communications
Surveys & Tutorials, vol. 18, no. 4, pp. 2847–2886, 2016.

[4] G. Zhang, Y. Li, and T. Lin, “Caching in information centric networking:
A survey,” Computer Networks, vol. 57, no. 16, pp. 3128–3141, 2013.

[5] S. Shan, C. Feng, T. Zhang, and Y. Liu, “A user interest prefer-
ences based on-path caching strategy in named data networking,” in
2017 IEEE/CIC International Conference on Communications in China
(ICCC), 2017, Conference Proceedings, pp. 1–6.

[6] J. Li, X. Wang, and M. Huang, “User preferences and data popularity
based cache management scheme in information centric networking,”
Journal of Chinese Computer Systems, vol. 36, no. 5, pp. 916–921,
2015.

[7] H. Yan, D. Gao, W. Su, C. H. Foh, H. Zhang, and A. V. Vasilakos,
“Caching strategy based on hierarchical cluster for named data network-
ing,” IEEE Access, 2017.

[8] L. Zhou, T. Zhang, X. Xu, Z. Zeng, and Y. Li, “Generalized dominating
set based cooperative caching for content centric ad hoc networks,” in
IEEE International Conference on Communications Workshops (ICC).
IEEE, 2015, Conference Proceedings.

[9] S. Eum, K. Nakauchi, M. Murata, Y. Shoji, and N. Nishinaga, “Catt:
Potential based routing with content caching for ICN,” in Proceedings
of the second edition of the ICN workshop on Information-centric
networking. ACM, 2012, Conference Proceedings, pp. 49–54.

[10] L. Saino, I. Psaras, and G. Pavlou, “Hash-routing schemes for informa-
tion centric networking,” in Proceedings of the 3rd ACM SIGCOMM
workshop on Information-centric networking. ACM, 2013, Conference
Proceedings, pp. 27–32.

[11] M. Mangili, F. Martignon, and A. Capone, “Optimal design of infor-
mation centric networks,” Computer Networks, vol. 91, pp. 638–653,
2015.

14

[12] R. Chiocchetti, D. Rossi, G. Rossini, G. Carofiglio, and D. Perino,
“Exploit the known or explore the unknown?: Hamlet-like doubts in
icn,” in Proceedings of the second edition of the ICN workshop on
Information-centric networking. 2342491: ACM, 2012, Conference
Proceedings, pp. 7–12.

[13] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen,
B. Maggs, K. Ng, V. Sekar, and S. Shenker, “Less pain, most of the
gain: Incrementally deployable icn,” in ACM SIGCOMM Computer
Communication Review, vol. 43. ACM, 2013, Conference Proceedings,
pp. 147–158.

[14] G. Carofiglio, L. Mekinda, and L. Muscariello, “Joint forwarding and
caching with latency awareness in information-centric networking,”
Computer Networks, vol. 110, pp. 133–153, 2016.

[15] T. Zhang, X. Xu, Le Zhou, X. Jiang, and J. Loo, “Cache space efficient
caching scheme for content-centric mobile ad hoc networks,” IEEE
Systems Journal, vol. 13, no. 1, pp. 530–541, March 2019.

[16] T. Zhang, H. Fan, J. Loo, and D. Liu, “User preference aware caching
deployment for device-to-device caching networks,” IEEE Systems Jour-
nal, vol. 13, no. 1, pp. 226–237, March 2019.

[17] F. Zhang, Y. Zhang, and D. Raychaudhuri, “Edge caching and nearest
replica routing in information-centric networking,” in Sarnoff Sympo-
sium, 2016 IEEE 37th. IEEE, 2016, Conference Proceedings, pp. 181–
186.

[18] G. Rossini and D. Rossi, “Coupling caching and forwarding: Benefits,
analysis, and implementation,” in Proceedings of the 1st ACM Con-
ference on Information-Centric Networking. ACM, 2014, Conference
Proceedings, pp. 127–136.

[19] K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi, and S. Pack, “Wave:
Popularity-based and collaborative in-network caching for content-
oriented networks,” in Computer Communications Workshops (INFO-
COM WKSHPS), 2012 IEEE Conference on. IEEE, 2012, Conference
Proceedings, pp. 316–321.

[20] J. M. Wang and B. Bensaou, “Progressive caching in CCN,” in 2012
IEEE Global Communications Conference (GLOBECOM), 2012, Con-
ference Proceedings, pp. 2727–2732.

[21] W. K. Chai, D. He, I. Psaras, and G. Pavlou, “Cache “less for more” in
information-centric networks (extended version),” Computer Communi-
cations, vol. 36, no. 7, pp. 758–770, 2013.

[22] G. de Melo Baptista Domingues, E. A. de Souza e Silva, R. M. M. Leão,
and D. S. Menasché, “Enabling information centric networks through
opportunistic search, routing and caching,” CoRR, vol. abs/1310.8258,
2013.

[23] Y. Zhu, M. Chen, and A. Nakao, “Conic: Content-oriented network with
indexed caching,” in 2010 INFOCOM IEEE Conference on Computer
Communications Workshops, March 2010, pp. 1–6.

[24] M. Dehghan, A. Seetharam, B. Jiang, T. He, T. Salonidis, J. Kurose,
D. Towsley, and R. Sitaraman, “On the complexity of optimal routing
and content caching in heterogeneous networks,” in 2015 IEEE Con-
ference on Computer Communications (INFOCOM), 2015, Conference
Proceedings, pp. 936–944.

[25] N. Abedini and S. Shakkottai, “Content caching and scheduling in wire-
less networks with elastic and inelastic traffic,” IEEE/ACM Transactions
on Networking, vol. 22, no. 3, pp. 864–874, 2014.

[26] A. Araldo, M. Mangili, F. Martignon, and D. Rossi, “Cost-aware
caching: Optimizing cache provisioning and object placement in ICN,”
in Global Communications Conference (GLOBECOM), 2014 IEEE.
IEEE, 2014, Conference Proceedings, pp. 1108–1113.

[27] K. Naveen, L. Massoulie, E. Baccelli, A. C. Viana, and D. Towsley,
“On the interaction between content caching and request assignment in
cellular cache networks,” in Proceedings of the 5th Workshop on All
Things Cellular: Operations, Applications and Challenges. 2785975:
ACM, 2015, Conference Proceedings, pp. 37–42.

[28] H. Xie, S. Guangyu, and W. Pengwei, “TECC: Towards collaborative
in-network caching guided by traffic engineering,” in 2012 Proceedings
IEEE INFOCOM, 2012, Conference Proceedings, pp. 2546–2550.

[29] S. Ioannidis and E. Yeh, “Jointly optimal routing and caching for
arbitrary network topologies,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 6, pp. 1258–1275, 2018.

[30] Y. Zhang, C. Lee, D. Niyato, and P. Wang, “Auction approaches for re-
source allocation in wireless systems: A survey,” IEEE Communications
Surveys & Tutorials, vol. 15, no. 3, pp. 1020–1041, Third 2013.

[31] E. Bodine-Baron, C. Lee, A. Chong, B. Hassibi, and A. Wierman, “Peer
effects and stability in matching markets,” Lecture Notes in Computer
Science, vol. 6982, pp. 117–129, 2011.

[32] S. Shailendra, B. Panigrahi, S. Sengottuvelan, H. K. Rath, and A. Simha,
“Distributed optimal caching for information centric networking (ICN),”
in Personal, Indoor, and Mobile Radio Communications (PIMRC),

2016 IEEE 27th Annual International Symposium on. IEEE, 2016,
Conference Proceedings, pp. 1–6.

[33] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and
Zipf-like distributions: Evidence and implications,” in INFOCOM’99.
Eighteenth Annual Joint Conference of the IEEE Computer and Commu-
nications Societies. Proceedings. IEEE, vol. 1. IEEE, 1999, Conference
Proceedings, pp. 126–134.

[34] M. Yang and Z. Fei, “A model for replica placement in content dis-
tribution networks for multimedia applications,” in IEEE International
Conference on Communications, 2003.

[35] C. Bernardini, T. Silverston, and O. Festor, “MPC: Popularity-based
caching strategy for content centric networks,” in 2013 IEEE In-
ternational Conference on Communications (ICC), 2013, Conference
Proceedings, pp. 3619–3623.

[36] S. Arianfar, P. Nikander, and J. Ott, “On content-centric router design
and implications,” in Proceedings of the Re-Architecting the Internet
Workshop. ACM, 2010, Conference Proceedings, p. 5.

