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ABSTRACT In this work, an integrated antenna system with Defected Ground Structure (DGS) is presented
for Fourth Generation (4G) and millimeter (mm)-wave Fifth Generation (5G) wireless applications and
handheld devices. The proposed design with overall dimensions of 110 mm × 75 mm is modeled on
0.508 mm thick Rogers RT/Duroid 5880 substrate. Radiating structure consists of antenna arrays excited
by the T-shape 1 × 2 power divider/combiner. Dual bands for 4G centered at 3.8 GHz and 5.5 GHz are
attained, whereas the 10-dB impedance bandwidth of 24.4 - 29.3 GHz is achieved for the 5G antenna array.
In addition, a peak gain of 5.41 dBi is demonstrated across the operating bandwidth of the 4G antenna array.
Similarly, for the 5G mm-wave configuration the attained peak gain is 10.29 dBi. Moreover, significant
isolation is obtained between the two antenna modules ensuring efficient dual-frequency band operation
using a single integrated solution. To endorse the concept, antenna prototype is fabricated and far-field
measurements are procured. Simulated and measured results exhibit coherence. Also the proposed design
is investigated for the beam steering capability of the mm-wave 5G antenna array using CSTrMWSr.
The demonstrated structure offers various advantages including compactness, wide bandwidth, high gain,
and planar configuration. Hence, the attained radiation characteristics prove the suitability of the proposed
design for the current and future wireless handheld devices.

INDEX TERMS Antenna array, integrated solution, 4G, mm-wave 5G, handheld devices.

I. INTRODUCTION
Rapidly increasing requirement in data rates prompted by 
modern wireless devices caused substantial development in 
establishing advanced standards for wireless communication 
systems [1]–[3]. In order to meet such high data require-
ments, modern wireless standards have adopted Long Term 
Evolution (LTE) and 4G standards for commercial and broad-
band wireless communication services [4]–[7]. Subsequently,

researchers intensified their efforts on the next generation
5G wireless networks for mobile and broad-band wireless
communication [8]–[12]. Henceforth the millimeter (mm)-
wave radios have appeared as a significant solution for the 5G
low-latency, multi-Gbps wireless networks [13]. The wireless
devices supporting the future 5G communication applications
must be proficient enough to operate at high data rates. This
imminent standard for wireless communication requires wide
bandwidth [14], [15]. Moreover, high gain is also essen-
tial to overcome the effects of raised atmospheric attenu-
ations and absorptions at mm-wave frequencies [16], [17].
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Antenna configuration consisting of a number of array ele-
ments providing high gain will be considered as an essential
solution to this problem. Integrating the 4G at sub-6 GHz
bands and 5G antennas at mm-wave frequencies will be
an efficient solution for the future wireless communication
applications. However, due to size restrictions, integrating
such designs in handheld devices becomes difficult, as the
coupling currents increase due to the nearby placement of
adjacent antenna elements [18]. Thus sufficient isolation
between antenna elements is necessary for such compact
integrated designs.

5G wireless networks for broadband and cellular com-
munication have drawn attention and intensive research has
been carried out on designing antennas for mm-wave 5G
communication applications. Recently reported work demon-
strates numerous 5G antenna systems for mm-wave appli-
cations [19]–[21]. A four element mm-wave Multiple Input
Multiple Output (MIMO) antenna with DGS is presented
in [19], where the design acquires a gain value of 10.6 dB.
Likewise, a 4 × 4 dual-band MIMO antenna with Electro-
magnetic Band Gap (EBG) structure is reported for 28 and
38 GHz future 5G wireless devices [20]. A smallest form fac-
tor Planar Inverted-F Antenna (PIFA) is reported in [21] for
5G applications. In this work, the obtained bandwidth for the
dual bands is 3.34GHz and 1.395GHz respectively.Whereas,
the gain attained is 3.75 dBi and 5.06 dBi, respectively.

Although there is continuous progress in mm-wave 5G
antenna systems, it is required to employ the antenna array
solutions in order to obtain a high gain. In addition, these high
gain antenna systems should be pertinent and compatible with
handheld terminals. Lately, a few antenna array solutions are
reported with improved performance aiming 5G mm-wave
applications [22]–[25]. In [22], a 4-elementMIMO connected
PIFA array for 28 GHz 5G mobile applications is presented,
and the proposed structure is modeled with overall dimen-
sions of 130 mm × 68 mm × 0.76 mm. Moreover, the peak
gain obtained is 12 dBi. In the same way, a 16-element
stacked array antenna with parasitic-patches is demonstrated
for mm-wave 5G applications [23], where the geometrical
size of the structure is 17.45 mm × 99.2 mm × 0.254 mm
with maximum broadside gain of 19.88 dBi. Furthermore,
an 8-element Vivaldi antenna array operating at 28 GHz
is reported [24] with overall dimensions of 28.82 mm ×
60 mm × 0.78 mm and the gain obtained is 11.2 dB. The
work in [25], presents an 8-element antenna array for mobile
application operating at 37-40 GHz with maximum gain
of 12.2 dB, whereas the substrate size for the reported system
is 130 mm × 65 mm × 0.25 mm.

The reported work discussed above is supporting either
4G LTE or 5G wireless communication applications.
Subsequently, there is a need for a system that is compat-
ible with both 4G and 5G technology. Recently, integrated
antenna designs are reported supporting 4G and 5G wire-
less standards for mobile applications [26]–[30]. The work
reported in [26] demonstrates an integrated 4G/5G antenna
system acquiring peak gain of 4 and 8 dBi at microwave and

mm-wave frequencies, respectively. Therefore, the design
is suitable for smart phone devices with an overall size
of 60 mm × 100 mm × 0.965 mm. Likewise, in [27] a con-
nected MIMO antenna array system is presented for 4G/5G
applications with 8 dBi peak gain value. In addition to this,
a monopole based four-element MIMO antenna and a single
connected antenna array with geometrical size of 115 mm ×
65 mm × 0.76 mm is presented for the 4G and 28 GHz
5G applications [28]. Another MIMO 4G/5G antenna design
is reported [29] for smart phones. The design is composed
of 4-element monopoles for 4G and 2-element linear con-
nected arrays for 5G with overall substrate size of 115 mm×
65 mm × 0.76 mm. In another work, a slot based connected
antenna array with substrate size of 100 mm × 60 mm ×
0.76 mm for typical modern mobile phone supporting 4G and
5G mm-wave wireless standards is demonstrated [30].

In this article, an integrated antenna design for the current
4G and the forthcoming 5G handheld devices is presented.
The proposed structure is an arrangement of a two element
antenna array for microwave frequency bands alongside a
two element array for mm-wave frequency band. Also a
sufficient bandwidth and gain is obtained for the acquired
microwave and mm-wave frequency bands. Moreover, DGS
is incorporated for the isolation enhancement amongst the
antenna elements. Hence, the design with compact size while
accomodating dual antenna systems is a potential candidate
for future handheld applications.

II. DESIGN CONFIGURATION
Fig. 1 illustrates the layout of the integrated 4G/5G antenna
system proposed in this work. The design consists of two
antenna arrays, the one on the top side covers the microwave
4G bands whereas the other on the long edge of the
board supports mm-wave 5G band as shown in Fig. 1 (a).
CSTrMWSr is used for the simulation and optimization
purpose.

FIGURE 1. Layout of the proposed integrated antenna system (a) Front
view, (b) Back view (All dimensions are in millimeter).

The design is realized on 0.508 mm thick Rogers RT/
Duroid 5880 substrate with εr = 2.2, while the loss tangent,



δ is 0.0009. The overall dimensions of the substrate are
110 mm × 75 mm × 0.508 mm. The front side of the design
in Fig. 1 (a) shows the feeding structure and port placement of
the antenna arrays, whereas the back side shown in Fig. 1 (b)
depicts the slotted ground plane.

The 4G antenna system consists of 1 × 2 antenna array
excited by power divider/combiner. Optimization of the feed-
ing structure and ground plane with DGS structure is car-
ried out for improving the impedance matching. The 5G
antenna array comprises of two elements. Also two horizontal
slots are subtracted from the ground for enhanced impedance
matching that leads to the good radiation characteristics. The
optimized parameters for the proposed antenna system is
tabulated in Table 1, and the design process is discussed
below in detail.

TABLE 1. Optimized design parameters.

A. 4G ANTENNA DESIGN
The modeling of the design starts with a single element 4G
antenna as shown in Fig. 2 (a). The inset-fed rectangular
patch with inverted T-shaped slot is used as the elementary
resonating component to acquire the benefits of low profile
and planar structure. In the first place, single element antenna
is designed by considering the following already established
mathematical equations [31].

Wp =
c
2fo

√
2

(εr + 1)
(1)

Lp =
c

2fo
√
εreff
− 21L (2)

FIGURE 2. 4G Antenna design (a) Single element antenna,
(b) Two-element antenna array, (c) Ground layer, (d) Simulated S11.

where Wp and Lp is the width and length of the radiating
patch, respectively, fo is the operating frequency, εr is the
relative dielectric constant and ∆L is the change in length
due to fringing field effect which can be obtained using:

1L =
0.421H

(
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)
(
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) (3)

where εreff is given as:
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εr + 1

2
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2
1

√
(1+ 12 HW )

(4)

where W and H is the width and height of the substrate
respectively, whereas εreff is the effective permittivity.
Furthermore, the design is optimized from single ele-

ment antenna to a two- element array with DGS as shown



in Fig. 2 (b) and (c). The design procedure of the 1 × 2
antenna array starts with a corporate feed combiner/splitter
design. The two elements of the array are connected by a one-
to-two parallel-feed network. Moreover, the quarter-wave
matched T-junction power divider is employed to design the
parallel-feed network for a balanced distribution of the input
RF-power and impedance matching enhancement. In addi-
tion, the line widths of the feed network are calculated to
match themain feed at impedance of 50�, while the branched
network at 100� impedance. Hence, for impedance match-
ing, the following microstrip transmission line characteristic
equations are considered while modeling as follows [31].
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For Wf
H ≥ 1
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where Z0 is the characteristic impedance of transmission line,
andWf is the width of the feed-line. The width and length of
the feed network is calculated using the following equations:

Wf =
2H
π
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B−1+

εr − 1
2εr

[
ln(B−1)+0.39−
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])
(9)
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√
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where B is a constant used in the inverse design formula,
expressed in (9) for a microstrip line of a given characteristic
impedance, and Lf is the length of the feedline. In order to
achieve compactness, the distance d between the two ele-
ments is maintained at 3 mm which is approximately equal
to 0.038λ for 3.8 GHz and 0.05λ for 5.5 GHz. In addition to
this, alterations in the ground have been made by introducing
two symmetrically placed vertical slots and truncated corners
as illustrated in Fig. 2 (c), thus optimizing the reflection coef-
ficient (S11). The S11 curve for the single element 4G antenna
in Fig. 2 (d) depicts that the achieved band is centered at
3.7 GHz with 90 MHz (−6 dB) bandwidth. For two- element
array configuration, slight shifting of the band at 3.7 GHz
to 3.8 GHz occurs, whereas two more bands are attained at
2.6 GHz and 5.5 GHz as shown in Fig. 2 (d). Consequently,
the bandwidth of the band centered at 3.8 GHz increases from
90 MHz to 160 MHz.

B. MM-WAVE 5G ANTENNA DESIGN
At mm-wave frequencies, the antenna size is necessary to
be compact. At first, the primary design of single element
5G antenna and feedline is obtained from (1-11). The opti-
mized 5G antenna consists of rectangular shaped patch with
trimmed corners and edges along with double bowtie slots
at the centre of the patch as shown in Fig. 3 (a). Further-
more, the detailed dimensions of the 5G antenna are pro-
vided in Table 1. The simulated S22 curve for single element
antenna shown in Fig. 3 (c) demonstrates that the covered
band ranges from 27.3-28.6 GHz, with 1.3 GHz bandwidth.
The miniaturization of the antenna and the increased amount

FIGURE 3. Two-element antenna array for 5G (a) Front view, (b) Back
(Ground layer) view, (c) Simulated S22.



of losses at higher frequencies require the use of antenna
arrays to enhance the gain. Therefore in this work, a two-
element antenna array is modeled as depicted in Fig. 3 (a),
targeting the mm-wave 5G handheld terminals. The dis-
tance d2 between the two array elements is 5.6 mm which
is approximately equal to 0.47λ for 25.4 GHz and 0.54λ for
28.6 GHz frequencies. Aftewards, two horizontal slots are
etched from the ground to improve the impedance matching
as illustrated in Fig. 3 (b). The simulated S22 curve plotted
in Fig. 3 (c) shows that the two-element antenna array covers
24.7-26.2 GHz and 27.9-29.2 GHz dual bands with 1.5 and
1.3 GHz (−10 dB) bandwidths, respectively.

C. 4G/5G INTEGRATED DESIGN
Afterwards, both the 4G and 5G antenna arrays are integrated
on the same board and subsequent effects are investigated.
The layout of the integrated 4G/5G antenna design is depicted
in Fig. 4. The antenna arrays supporting 4G and 5G fre-
quency bands are placed on the top side and along the long
edge of the board, respectively, as illustrated in Fig. 4 (a).
Likewise, the ground layer of the integrated design is shown
in Fig. 4 (b). Therefore, the compact structure as well as the
placement of the antenna modules demonstrates the suitabil-
ity of the proposed design for current and future handheld
devices [32].

FIGURE 5. Simulated S-parameter curves of integrated design with and
without optimization (a) S11 for two-element 4G antenna array,
(b) S22 for two- element 5G antenna array.

illustrated in Fig. 5 (a) and (b) for the sub-6 GHz as well
as mm-wave frequency band, respectively. The optimized
results show that band at 3.8 GHz shifts downward with
S11 < −10 dB as well as an improved bandwidth of 170MHz
is obtained. In addition, the bandwidth for the 5.5 GHz band
improves from 300 to 360 MHz. In the same manner, the
S-parameter curve for the mm-wave frequencies in Fig. 5 (b)
illustrates that after designmodification a wide band covering
25-29.3 GHz has been obtained with 4.3 GHz (−10 dB)
bandwidth.

The simulated isolation curves in Fig. 6 (a) and (b) demon-
strates that isolation has been enhanced after the modification
of ground. Henceforth, an improvement inminimum isolation
is observed from 40 dB to 43 dB for the obtained microwave
frequency bands, whereas for the mm-wave frequency band,
minimum isolation is improved from 38 dB to about 43 dB
between the two ports.

The radiating behavior of the antenna array elements is
further investigated by observing the surface current dis-
tribution. The objective for carrying out this analysis is to
ascertain the antenna parts that are radiating and to elucidate
the coupling amongst adjacent elements. Initially, the port 1 is

FIGURE 4. Layout of the integrated antenna system before optimization 
(a) Front view, (b) Back view.

The S11 curve for 4G microwave frequencies in Fig. 5 (a) 
demonstrates that as a result of integrating both antenna 
modules, band at 3.8 GHz shifts upward (with S11> −10 dB). 
Moreover, the bandwidth of the 5.5 GHz band narrows down 
from 350 to 300 MHz. Similarly, at 5G mm-wave frequen-
cies, the integration results in attainment of a wideband cov-
ering 25.3-28.6 GHz frequency band as shown in Fig. 5 (b). 
Hence, the bandwidth achieved for this wideband is 3.3 GHz. 
To further improve the results, it was required to optimize 

the design. After carrying out parametric analysis, the design 
is modified by segregating the ground into two parts. The final 
optimized design of the overall integrated antenna system is 
shown earlier in Fig. 1 (a) and (b). Likewise, the S-parameter 
curves for the optimized integrated 4G/5G antenna design are



FIGURE 6. Simulated isolation curves of integrated design with and
without optimization (a) S21 for two-element 4G antenna array,
(b) S12 for two-element 5G antenna array.

activated at 3.8 GHz and 5.5 GHz as shown in Fig. 7. For
3.8 GHz, a high surface current is observed along the inverted
T-slot, as illustrated in Fig. 7 (a). Whereas, for 5.5 GHz reso-
nant frequency, the maximum current distribution is noticed
around the vertical slots in the ground plane, as demonstrated
in Fig. 7 (b). This illustrates the impact of ground in radia-
tion behavior. Moreover, insignificant coupling amid the two
adjacent 4G antenna array elements is also observed. In order
to understand the radiation mechanism of the antenna array
at mm-wave frequencies, current distribution at 28 GHz is
examined by activating the port 2, as shown in Fig.7 (c).
It is observed that at 28 GHz, surface current is strongly
concentrated on the feedline as well as around the bowtie
slots in the patch. Likewise, concentration of current around
the horizontal slots in the ground demonstrates the significant
amount of coupling between the slots and the feed line,
which mainly contributes to the added resonances ultimately
forming a wideband.

III. RESULTS AND DISCUSSION
The proposed integrated antenna array solution is fabri-
cated on a Rogers RT/Duroid 5880 Substrate using the pho-
tolithography process to experimentally exhibit the concept.

FIGURE 7. Current distribution at (a) 3.8 GHz, (b) 5.5 GHz, and (c) 28 GHz.

A 50� subMiniature version A (SMA) connector is con-
nected to each antenna array as shown in Fig. 8 (a).
Fig. 8. (a) and (b) illustrates the fabricated prototype and
the farfield measurement setup respectively. The measured
results are discussed below.

A. SCATTERING PARAMETERS
The S-parameters of the fabricated prototype were mea-
sured using the Rohde & Schwarz ZVA 40 Vector Net-
work Analyzer. Fig. 9. (a) - (d), shows the measured and
simulated S-parameter curves for the proposed integrated
4G and 5G antenna system. The S11 curve demonstrates that
the 4G antenna system is resonating at 3.8 and 5.5 GHz with
sufficient bandwidths of 160MHz and 450MHz respectively,



FIGURE 8. (a) Fabricated prototype, (b) Far-field measurement setup.

as illustrated in Fig. 9 (a). As a result of comparing sim-
ulated and measured results, an increase in bandwidth for
the 5.5 GHz operating band is observed. On the otherhand,
the band at 2.6 GHz shifts upward (with S11>−6 dB), there-
fore this band is not claimed as an operational band. Addition-
ally, the minimum measured isolation at the sub-6 GHz band
is 41 dB between two ports, whereas the simulated isolation
is approximately 43 dB as shown in Fig. 9 (b).

The simulated as well as measured S-parameter curves
of the proposed mm-wave 5G antenna system are shown
in Fig. 9 (c) and (d). The measured and simulated 10-dB
impedance bandwidths are 24.4-29.3 GHz and 25-29.3 GHz,
respectively. Therefore, the measured bandwidth of 4.9 GHz
is obtained for the mm-wave frequency band. Further-
more, the measured isolation at mm-wave frequency band is
approximately 38 dB as compared to the simulated isolation
that is nearly 43 dB. Therefore, the measured and simulated
results are in good coherence. While, the insignificant dif-
ference is due to the fabrication errors and inevitable use of
coaxial cables for measurement purpose [33], [34].

B. RADIATION PATTERNS

FIGURE 9. Measured and simulated S-parameter curves of integrated
design (a) S11 for two-element 4G array, (b) S21 for two-element 4G array,
(c) S22 for two-element 5G array, (d) S12 for two-element 5G array.

The 3D radiation patterns of the antenna for microwave fre-
quencies at sub-6 GHz band, are measured using the commer-
cial ORBIT/FR far-field measurement system in a shielded 
radio frequency anechoic chamber as shown in Fig. 8 (b).



FIGURE 10. Simulated (left) and measured (right) 3D radiation patterns at
(a) 3.8 GHz, (b) 5.5 GHz.

As a result, the 3-D radiation patterns are obtained at 3.8 and
5.5 GHz as shown in Fig. 10 (a) and (b) respectively. The
Antenna Under Test (AUT) is rotated to obtain the radiation
intensity of the antenna at different orientations. It can be seen
that the antenna exhibit nearly a directional radiation pattern.

For mm-wave frequency, the far-field radiation patterns
are measured for the theta values ranging from −90◦ to 90◦.
The transmit horn antenna used is SGH-series (SGH-15) by
Millitech Co. which has a standard gain of 24 dBi. The
simulated and measured 2D radiation patterns at 28.25 GHz
in xz and yz plane are depicted in Fig. 11 (a) and (b), respec-
tively. The maximum radiation is observed at θ = − 15◦ for
xz plane, whereas an observation at θ = 9◦ is made for the
yz plane.

C. GAIN AND EFFICIENCIES
The gain and efficiencies of the integrated antenna system at
different frequencies are tabulated in Table 2. The measured
peak gain of 3.27 dBi and 5.41 dBi is achieved at 3.8 and
5.5 GHz frequencies, respectively. Likewise, a maximum
gain of 10.29 dBi is obtained at 28.25 GHz. Additionally,
a maximum efficiency of 79% is obtained for the 4G antenna
array whereas, for 5G antenna array maximum obtained effi-
ciency is 71%. However, some inconsistencies have been
observed between the simulated and the measured results
which are primarily due to the imperfections in the fabrication
of the antenna and the connectors used.

The proposed antenna solution is compared in Table 3 with
the related work [26], [27], and [29] reported in literature.
Thus, it can be seen that the design complexity is low for the

FIGURE 11. Measured and simulated 2D radiation patterns at 28.25 GHz
(a) XZ plane, (b) YZ plane.

TABLE 2. Gain and efficiencies of 4G/5G antenna system.

proposed antenna.Moreover, the significance of the proposed
antenna system as compared to the other designs is evident
in terms of achieved high gain over a wider bandwidth.
Therefore, this proves the suitability of antenna design for
future handheld devices.

IV. BEAM STEERING PERFORMANCE ANALYSIS
Research in beam steerable antennas is gaining a lot of
attention as efforts are being made to obtain an optimal



TABLE 3. Comparison with the literature designs.

beam steering solution at mm-wave frequency band for both
point-to-point and point-to-multipoint applications. Higher
propagation losses at mm-wave frequencies that prominently
vary depending on the environment require antenna arrays
with beam steering capability, as it increases the capacity
of cellular networks by improving the signal to interference
ratio (SIR) through direct targeting of user groups. Thus
beam steerable antennas are critical for increasing spectral
efficiencies and will play an important role in 5G implemen-
tations [10].

Beam steering permits an antenna system containing a
number of individual antennas to have the direction of the
beam to be changed by altering the phase and amplitude
of the signals provided to the individual antenna elements.
With increasing number of radiating elements in the array,
the beam becomes narrower and more directional. A linear
phased array with equal spaced elements is easiest to analyze
and forms the basis for most array designs with beam steering
ability.

A beam steerable antenna array can be created by using a
number of closely spaced antenna elements. If the antenna
elements are equally spaced, then phase shift between the
antenna elements is calculated using equation provided
below [35].

9 =
25de(sinθ )

λ
(12)

FIGURE 12. Design of four element antenna array for mm-wave
frequencies.

Fig. 13 (a) and (b) that the peak gain of the array has increased
with increasing number of elements. Thus a narrower and
more directional beam is obtained for four-element array as
compared to two-element array. For eight element antenna
array, the radiation pattern in Fig. 13 (c) illustrates scan
angles of −28◦, 0◦, and +29◦ for different phase values. It is
also observed that the radiation pattern for the eight element
array is not steering significantly. Since the beam width
of the antenna radiation pattern is dependent on the phase
constant ‘‘β’’, and β varies relatively with attenuation con-
stant ‘‘α’’, therefore when the attenuation constant becomes
equal or closer to phase constant, the beam get split and
becomes wider [41]. Thus in order to avoid the beam splitting
and to obtain a steerable beam, the aperture size or attenuation
constant could be adjusted. The scan angles and peak gain
values for different array configurations are also provided
in Table 4.

TABLE 4. Beam steerable array performance metrics.

where 9 is the phase difference between two adjacent beams, 
de is the array element spacing, λ is the wavelength, and θ is 
the pointing angle. A variety of techniques have been used to 
steer an antenna’s radiation, including mechanical steering, 
parasitic steering, Integrated Lens Antennas (ILAs), switched 
beam antennas using PIN-diode and varactor diode [36]–[40]. 
For the proof of concept, the beam steering capability of the 

proposed mm-wave antenna array is investigated by manually 
introducing the phase shift to each element of the antenna
array using CSTrMWSr. At first place, an array of two 
radiating elements is excited by a signal of distinct phase 
and amplitude. The simulated radiation patterns at 28.25 GHz 
with different phase shifting values demonstrates the main 
beam direction at −16◦, 0◦, and +19◦. Afterwards, an array 
configuration with four elements separated by distance de 
(0.5λ) as shown in Fig. 12, is investigated and scan angles 
of −17◦, 0◦, and +19◦ are observed. It is also evident from



FIGURE 13. Simulated radiation patterns at 28.25 GHz for
(a) Two element antenna array, (b) Four element antenna array,
(c) Eight element antenna array.

Although the beam steering capability is demonstrated at a
very basic level and just for the proof of concept in this work,
more sophisticated techniques to introduce phase shifts will
be explored in the future.

V. CONCLUSION
This work demonstrates an integrated antenna design sup-
porting current 4G and future 5G wireless communication
systems. The integrated solution consists of two antenna
arrays excited by the T-junction power divider/combiner. The
4G antenna array covers the dual sub-6 GHz frequency bands
centered at 3.8 GHz and 5.5 GHz with measured bandwidths
of 160 and 450 MHz respectively. Whereas, the 5G antenna
array supports mm-wave 26/28 GHz frequency bands with
wide bandwidth of 4.9 GHz. In addition, the peak gain
values of 3.27 and 5.41 dBi are attained for 4G antenna.
Likewise, for mm-wave 5G antenna, a maximum gain value
of 10.29 dBi is achieved. Beam steering capability of the
proposed 5G mm-wave antenna is also investigated using
CSTrMWSr by manullay altering the phase of the antenna
elements for two, four and eight element array configurations.
The radiated beam is steered in an elevated plane at −17◦,
0◦ and +19◦. Moreover, an enhanced isolation is obtained

due to DGS. Measured and simulated results exhibit good
agreement. Therefore, the proposed single layered, compact
and low profile antenna solution is a suitable contender for the
present 4G and forthcoming 5G enabled wireless handheld
devices.
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