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Abstract In this paper, we examine the sensitivity of trust-region al-
gorithms on the parameters related to the step acceptance and update of
the trust region. We show, in the context of unconstrained programming,
that the numerical efficiency of these algorithms can easily be improved by
choosing appropriate parameters. Recommended ranges of values for these
parameters are exhibited on the basis of extensive numerical tests.

Keywords: unconstrained programming – trust-region methods – algorith-
mic parameters

1 Introduction

Trust-region methods form a popular class of iterative optimization algo-
rithms, in which the objective function is approximated by a model and this
model is minimized in a neighbourhood—the trust region—of the current
iterate. Originally proposed in the context of nonlinear least-squares fitting
(see Levenberg (1944), Marquardt (1963) and Morrison (1960)), this class
of methods was then developed to form a robust theoretical and practical
framework containing a number of locally convergent algorithms for smooth
unconstrained minimization problems, and, in particular, Newton method
(see Goldfeldt et al. (1966), Powell (1970) and Winfield (1973)). The reader
is referred to Conn et al. (2000), Moré (1983) and Moré and Sorensen (1984)
for additional motivation and convergence analysis.
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Like many other algorithms, trust-region methods depend on the choice
of a set of parameters, which specify when a trial step is deemed success-
ful and how the trust-region size is updated as the iterations proceed. The
purpose of this paper is to present an experimental study of the sensitiv-
ity, measured in terms of efficiency, of a trust-region algorithm for smooth
unconstrained optimization as a function of these parameters.

We first present the trust-region algorithm in §2 and discuss the values
of its parameters. We next describe the setting of our numerical experiments
in §3, report on its results from the point of view of efficiency in §4. Some
conclusions and perspectives are finally presented in §5.

2 The problem and algorithm

We consider the problem
minimize f(x),
x ∈ <n (1)

where f is a twice continuously differentiable function from <n into <. We
assume that the problem is well defined in that f is bounded below. The
philosophy of trust-region methods is to calculate, at iterate xk, a model
mk of the objective function in the trust region

Bk = {xk + s | ‖s‖ ≤ ∆k},

where ‖ · ‖ is the Euclidean norm on <n and ∆k > 0 is the trust-region

radius. A step sk is then computed that approximately minimizes this model
within the trust region. If the value of the objective function computed at
the trial point xk +sk produces a decrease in the objective function which is
comparable to that predicted by the model, the trial point is accepted as the
next iterate and the trust-region radius is possibly increased. Otherwise, the
trial step is rejected and the radius decreased. More formally, our algorithm
is defined as Algorithm 1 on page 3.

A number of choices are possible for the model mk. Let 〈·, ·〉 denote the
usual inner product in <n. In what follows, we focus on a quadratic model
of the form

mk(xk + s) = f(xk) + 〈∇xf(xk), s〉 + 1

2
〈s,∇xxf(xk)s〉, (4)

which is sometimes known as Newton’s model. Note that the model and
objective function coincide up to second order at xk , i.e., mk(xk) = f(xk),
∇xmk(xk) = ∇xf(xk) and ∇xxmk(xk + s) = ∇xxf(xk) for all s.

We will not expand in full detail on what we mean by “sufficient model
reduction” in Step 2. If we define the Cauchy point xC

k to be a model mini-
mizer along the intersection of the steepest descent direction and the trust
region, we say that a step sk produces sufficient decrease if and only if

mk(xk) − mk(xk + sk) ≥ κred [mk(xk) − mk(xC

k)] , (5)
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Algorithm 1: The Basic Trust-Region Algorithm

Step 0. [Initialization] An initial point x0 and an initial trust-region radius ∆0 are
given, as well as the parameters η1, η2, α1 and α2 that satisfy

0 ≤ η1 < η2 < 1 and 0 < α1 < 1 < α2. (2)

Compute f(x0) and set k = 0.
Step 1. [Model definition] Define a model mk(xk + s) of f(xk + s) in Bk.
Step 2. [Step calculation] Compute a step sk that “sufficiently reduces the model”

mk and such that xk + sk ∈ Bk.
Step 3. [Acceptance of the trial point] Compute f(xk + sk) and

ρk =
f(xk) − f(xk + sk)

mk(xk) − mk(xk + sk)
. (3)

If ρk ≥ η1, then set xk+1 = xk + sk; otherwise, set xk+1 = xk.
Step 4. [Trust-region radius update] Set

∆k+1 =

8

<

:

α1‖sk‖ if ρk < η1

∆k if η1 ≤ ρk < η2

max[α2‖sk‖, ∆k] if ρk ≥ η2.

Increment k by one, and loop back to Step 1.

for some κred ∈ (0, 1). The quantity mk(xk) − mk(xk + sk) is referred to as
the predicted decrease. Condition (5) is known to ensure global convergence
of the algorithm to first-order critical points of problem (1) under suitable
assumptions (see Conn et al. (2000) and Moré (1983)). In the next section,
we return to the choice of an algorithm ensuring (5) when the model (4) is
considered.

The algorithm depends on the constants η1, η2, α1 and α2, whose values
are only restricted to satisfy (2). The values

η1 = 0.25, η2 = 0.75 (6)

(see, for instance, Coleman and Li (1996), Conn et al. (1988), Lin and Moré
(1999), Sartenaer (1993), Sebudandi and Toint (1993) and Shahabuddin
(1996)) and

α1 = 0.5 and α2 = 2 (7)

(see, for instance, Conn et al. (1988), Dennis et al. (1998), Dennis and
Vicente (1996), Sartenaer (1993) and Shahabuddin (1996)) have been used
in practical implementations. Is the behaviour of the algorithm relatively
insensitive to variations in these values? The purpose of this note is to
examine this question by analyzing the performance of the algorithm for a
set of alternative parameter values over a reasonable set of test problems.

The choice of η1 also has a theoretical implication: choosing η1 > 0
is known to be necessary in order to guarantee that all limit points of
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the sequence of iterates satisfy the first-order optimality conditions (see
Moré (1983), Thomas (1975) and Yuan (1998)). It is thus also of interest to
investigate the effect of this condition on numerical efficiency.

The authors are aware that, at least the choice of α1 and α2 may be made
less crucial if an interpolation scheme is used to determine the value of ∆k+1

from that of f(xk), f(xk + sk) and ∇xf(xk) (see Conn et al. (1992), Dennis
and Schnabel (1996) and Lin and Moré (1999)). However, good values for
these parameters remain helpful in simpler implementations of the trust-
region method.

3 The framework for the numerical experiments

We now turn to the discussion of the framework in which our numerical
experiments are conducted. Obviously, such an experimental investigation
is never perfect, and several of the choices made here, although reasonable
from our point of view, are not the only ones that one could consider. We
are well aware of the limitations of our approach. We briefly discuss them
and propose directions for additional research in §5.

A first decision involves selecting a suitable performance measure for the
algorithm. We have chosen to measure algorithm efficiency by CPU time
and number of iterations to obtain convergence, which is declared as soon
as

‖∇xf(xk)‖ ≤ 10−5. (8)

(We are aware that relative/weighted tests might be more useful for badly-
scaled/nonlinear problems.) We had intended to declare failure when (8)
was not met in the first 1000 iterations of the algorithm, but this situa-
tion never happened in our tests. Note that since we are only considering
unconstrained minimization, this measure in terms of iteration counts is
equivalent to considering the number of function evaluations and is justified
in the frequent case where objective function evaluations are computation-
ally costly and dominate the internal work of the algorithm. If evaluating
the objective function is relatively cheap compared to the algorithm’s in-
ternal work, which might be the case when the dimension of the problem
is large and the linear algebra therefore more expensive, then overall CPU
time is the obvious choice for measuring performance.

The second important choice is that of the procedure to compute, at each
iteration, a trial step sk that approximately minimizes the model within the
trust region. We have chosen to use the truncated conjugate-gradient itera-
tion, or Steihaug-Toint algorithm (see Steihaug (1983) and Toint (1981)), as
implemented in the GLTR module of the GALAHAD library (see Gould et al.
(1999) and Gould et al. (2003b)). In this method, the iterates generated by
the conjugate-gradient algorithm are used until either they leave the trust
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region or negative curvature is discovered—in either of these cases the last
conjugate-gradient step is truncated on the trust-region boundary. Thus,
the Steihaug-Toint procedure terminates at xk + s that satisfies

‖∇xf(xk + s)‖ ≤ min

[

1

10
, ‖∇xf(xk)‖1/2

]

or ‖s‖ = ∆k.

This procedure is known to guarantee (5).
We also decided to follow LANCELOT (see Conn et al. (1992)) in using

the value ∆0 = 0.1‖∇xf(x0)‖ for the initial trust-region radius. We did
not perform a sensitivity analysis on this parameter because this issue has
already been considered in Sartenaer (1997).

We have chosen to test the algorithm on a set of 24 problems from
the CUTEr collection of Gould et al. (2003a), whose average dimension is
around 1000. All problems are unconstrained, with some of them being
highly nonlinear. These problems have proved to be reasonably hard1 in
the past and are, in our opinion and despite their fairly uniform dimensions,
reasonably representative of the unconstrained part of the collection as a
whole. Their name and size can be found in Table 1. The number of problems
in our test set had to be kept relatively low in order to make the test for a
large number of parameter values tractable.

problem name dimension problem name dimension
BIGGSB1 1000 NCB20B 1000
CURLY10 1000 NONCVXU2 1000
CURLY20 1000 NONDIA 1000
CURLY30 1000 NONDQUAR 1000
EDENSCH 2000 PENALTY1 1000
EIGENBLS 1056 POWER 1000
FREUROTH 1000 QUARTC 1000
GENROSE 1000 SINQUAD 1000
LINVERSE 999 SPARSINE 1000
MSQRTALS 1024 SPMSRTLS 1000
MSQRTBLS 1024 VAREIGVL 999
NCB20 1000 WOODS 1000

Table 1. The test problems set from the CUTEr collection

Finally, we decided on a set of parameter values to be experimented
with. In a first stage, we chose to let (η1, η2) vary in the (coarse) uniform
grid

GC

η =







η1 ∈ {0, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45},
(η1, η2)

η2 ∈ {0.5, 0.6, 0.7, 0.8, 0.9}







,

1 On easy problems, the influence of the parameters is less prominent.
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while (α1, α2) varies in the grid

Gα =







α1 ∈ {0.25, 0.33, 0.5, 0.66, 0.75},
(α1, α2)

α2 ∈ {1.5, 2.0, 2.5, 3.0, 3.5, 5}







.

Preliminary experiments using the grids GC

η and Gα seemed to indicate that
the region

Z = {0 ≤ η1 ≤ 0.1, 0.7 ≤ η2 < 1}

was worth being discretized more finely as it appeared to be where the best
efficiency would occur. As a result, the coarse grid GC

η was replaced by the
finer, but no longer uniform, grid

GF

η =























η1 ∈ {0, 10−6, 10−5, 10−4, 10−3, 10−2, 0.1, 0.15, 0.2,

0.25, 0.3, 0.4}
(η1, η2)

η2 ∈ {0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99, 0.995,

0.999}























.

The grid Gα remained unchanged. Altogether, this gives a set of 3,960 dif-
ferent values for (η1, η2, α1, α2). We then applied the algorithm using these
values on the 24 test problems, which resulted in a grand total of 95,040
test runs. All tests were performed in double precision Fortran 90 on an
1.6GHz Intel Pentium IV Linux PC with 512 MBytes of RAM.

4 Numerical results and analysis

4.1 Combined performance

Remarkably, optimizing the trust-region algorithm parameters seems to de-
pend only marginally on whether one aims for a minimum number of itera-
tions (and thus of function/derivatives calculations) or for a minimum CPU
time. The performance measured in these two quantities seems indeed very
related, as is clear from Figure 1, where the couples consisting of the aver-
age iteration count and the average CPU time (the averages being taken on
all test problems) are plotted for each of the 3,960 tested variants. In this
figure, the performance of the “standard” parameter choice, as defined by
(6) and (7), is identified as the point at the intersection of the vertical and
horizontal cross lines.

The “comet-like” structure of the cloud of performance couples is very
elongated for our test set. Moreover, the densest “core” part of the cloud
appears to correspond to relatively efficient variants, the worst ones being
quite far in the sparser “tail”. The standard variant belongs to the core, but
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Fig. 1. Combined performance of all 3,960 tested variants (standard parameter choice
marked by crosshair)
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Fig. 2. Combined performance of the more efficient tested variants

just barely, which shows that many significantly better parameter choices
exist.

Figure 2 is obtained by zooming on the tip of the core, i.e., the part of
the figure containing the most efficient variants. This figure shows several
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vertical clusters of points corresponding to variants using exactly the same
average number of iterations and slightly different CPU times. These clus-
ters reflect the inaccuracy of the timing routine used (a few percent), and
should therefore be interpreted as a single combined performance measure.

We now explore in more details the clusters of the efficient frontier of
the above figures. This frontier is defined as the set of clusters that are not
dominated by any other cluster, that is the clusters such that there is no
other cluster in the figure giving better average number of iterations and

better average CPU time.
The first cluster on the left corresponds to the best variant in terms of

iterations. The associated performance is presented in Table 2, which shows
the associated parameter values, the total number of iterations and the CPU
time for this cluster, for the standard choice of the parameters, and for the
worst choice. Note that the CPU time in brackets is a rounded average of
the times associated with all the variants in the entire cluster.

η1 η2 α1 α2 # its CPU
Parameter choices [0,10−2] 0.99 0.25 3.5 14.750 (9.45)

for first cluster
Standard choice 0.25 0.75 0.5 2 20.625 17.13
Worst choice 0.4 0.5 0.75 5 47.000 63.90

Table 2. Average iteration counts and CPU times (s) for the best, standard and worst
parameter choices in terms of iterations

We see that the best parameter choice results in an algorithm that re-
quires, on average, 14.750/20.625 = 0.715 as many iterations as the standard
one. On the other hand, the worst choice produces a method that needs,
on average, 47/14.75 = 3.19 as many iterations as the best, and 47/20.625
= 2.28 as many as the standard. The proportions in time reinforce these
trends.

Another outcome of our tests is that the performance of the variants
cannot be distinguished if they differ only by the choice of η1 in the range 0
to 10−4. For most choices of the other parameters, this is also the case for η1

up to 10−2. This is interesting because it seems to imply that a small strictly
positive value of η1 is as good as possible from the numerical efficiency point
of view, while, at the same time, ensuring the best theoretical convergence
properties. Conversely, this indicates that choosing η1 = 0 may not have a
numerically detrimental effect despite being theoretically less satisfactory.
This behaviour is also apparent in Table 2.

Pursuing our exploration of the efficient frontier in Figure 2, the next
dominant cluster is that corresponding to variants taking on average 15
iterations. It is in fact made up from two similar but distinct choices of
parameters, as indicated in Table 3. Strictly speaking, only the first of those
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is really part of the efficient frontier, since it marginally dominates the
second.

η1 η2 α1 α2 # its CPU
Parameter choices [0, 10−1] {0.995, 0.999} 0.25 5 15.000 (9.15)

for middle cluster [0, 10−4] 0.999 0.33 3.5 15.000 (9.35)
Standard choice 0.25 0.75 0.5 2 20.625 17.13
Worst choice 0.4 0.5 0.75 5 47.000 63.90

Table 3. Average iteration counts and CPU times (s) for the middle dominant cluster
of variants, and for the standard and worst ones

We can observe that algorithms using these choices of parameters re-
quire, on average, 15/20.625=0.727 as many iterations as the standard
choice and 15/47= 0.319 as many as the worst. Again, the ratios for CPU
time confirm the trends observed for iterations.

The third and last point on the efficient frontier is given by the variant
which is best in terms of CPU time (i.e., is lowest in Figure 2). Table 4
shows the (unique) set of parameter values and total CPU time for this
variant, and compares them again with the standard and worst choices.

η1 η2 α1 α2 # its CPU
Parameter choice 0.15 0.999 0.33 5 15.25 8.76

for third cluster
Standard choice 0.25 0.75 0.5 2 20.625 17.13
Worst choice 0.4 0.5 0.75 5 47.000 63.90

Table 4. Average iteration counts and CPU times (s) for the best, standard and worst
parameter choices in terms of CPU time

Following the same logic as above, we note that this parameter choice
results in an algorithm that is, on average, 17.13/8.76 = 1.96 as fast as the
standard one. On the other hand, the worst choice produces a method that
is, on average, 63.90/8.76 = 7.3 times slower than the best, and 63.90/17.13
= 3.73 slower than the standard. We note that this best variant in CPU
time is close to those in the middle cluster, except for a surprisingly larger
value of η1. We might thus see it as the result of a particularly lucky set of
time measures.

4.2 Iterations sensitivity

We now examine the sensitivity in iterations of the above conclusions for the
parameter choices of the first cluster (most efficient in terms of iterations).
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η2 0.50 0.60 0.70 0.75 0.80 0.85 0.90 0.95 0.99 0.995 0.999
η1

0.00 0.75 0.79 0.80 0.78 0.75 0.76 0.82 0.83 1.00 0.89 0.94

10−6 0.75 0.79 0.80 0.78 0.75 0.76 0.82 0.83 1.00 0.89 0.94

10−5 0.75 0.79 0.80 0.78 0.75 0.76 0.82 0.83 1.00 0.89 0.94

10−4 0.75 0.79 0.80 0.78 0.75 0.76 0.82 0.83 1.00 0.89 0.94

10−3 0.75 0.79 0.80 0.78 0.75 0.76 0.82 0.83 1.00 0.89 0.94

10−2 0.75 0.79 0.80 0.78 0.75 0.76 0.82 0.83 1.00 0.89 0.94
0.10 0.69 0.78 0.75 0.80 0.80 0.78 0.86 0.84 0.91 0.83 0.87
0.15 0.72 0.72 0.75 0.77 0.80 0.74 0.76 0.78 0.95 0.86 0.90
0.20 0.74 0.70 0.74 0.75 0.73 0.77 0.81 0.85 0.92 0.90 0.91
0.25 0.70 0.72 0.70 0.78 0.72 0.76 0.84 0.77 0.90 0.86 0.87
0.30 0.70 0.66 0.72 0.78 0.71 0.76 0.76 0.78 0.91 0.90 0.89
0.40 0.71 0.72 0.72 0.74 0.73 0.77 0.80 0.80 0.88 0.87 0.86

Table 5. Relative performance in iterations as a function of η1 and η2 for fixed α1 = 0.25
and α2 = 3.5

Table 5 presents the relative performance, compared to the best, of all
considered choices of η1 and η2 when α1 and α2 are fixed to their optimal
value (see Table 2). We note in this table that, as indicated above, the
results are identical for all values of η1 that are between 0 and 0.01. This
indicates that small values of this parameter are best, but also that the
precise choice of a small value of η1 is not crucial. A second observation
is that a choice of η2 larger that 0.99 is comparatively better than that of
a smaller value. Globally the performance degrades nearly monotonically
when η1 grows and/or η2 decreases.

The relative performance of all considered choices of α1 and α2 (for val-
ues of η1 and η2 fixed to one of their optimal values) are shown in Table 6.
Again, the neigbouhood of the best values is clear. One notices that the
optimal values for α2, around 3.5, are considerably larger than their stan-
dard (2). It therefore seems more efficient to increase the radius relatively
unfrequently (η2 close to 1) but to do so more decisively when it happens.
This is supported by the observation that the choice α2 = 5 remains very
satisfactory for α1 = 0.25 and α1 = 0.33 (see also Tables 3 and 4). The best
value α1 = 0.25 shows that unsuccessful iterations (ρk < η1), although not
frequent, should not reduce the trust-region radius too aggressively.

We conclude our sensitivity analysis in terms of number of iterations by
considering the performance profiles proposed by Dolan and Moré (2002)
for the worst, standard and best parameter choices. Such profiles are defined
as follows. Assume a certain set A of competing algorithms A1, . . . ,Aq is
tested on a set S of p test problems and algorithm Ai reports a certain
measure of performance πi,t (iteration counts, in our case) when run on test
problem t such that Algorithm Ai is “better” than Algorithm Aj on this
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α2 1.50 2.00 2.50 3.00 3.50 5.00
α1

0.10 0.79 0.87 0.90 0.87 0.94 0.92

0.25 0.79 0.81 0.90 0.93 1.00 0.95
0.33 0.83 0.92 0.88 0.90 0.93 0.94
0.50 0.83 0.86 0.85 0.85 0.79 0.93
0.75 0.71 0.71 0.74 0.72 0.72 0.68

Table 6. Relative performance in iterations as a function of α1 and α2 for fixed η1 = 10−5

and η2 = 0.99

problem t if πi,t ≤ πj,t. If we define the indicator function

κ(π1, π2; σ) ≡

{

1 if π1 ≤ σπ2,

0 otherwise,

the performance profile of Algorithm Ai on the test set S with respect to
the performance measure π is defined as the function

πi(σ) ≡

∑p
t=1

κ(πi,t, πmin,t; σ)

p
, for every σ > 0,

where πmin,t = mini=1,...,q πi,t is the best perfomance achieved on prob-
lem t. Hence, πi(σ) is a measure of the probability for the performance of
Algorithm Ai to be within a factor σ of the performance of the best al-
gorithm. For instance, πi(1) measures the probability for the performance
of Algorithm Ai to be the best, and limσ→∞ πi(σ) is the probability that
Algorithm Ai solves a problem.

The iteration performance profiles for the algorithms corresponding to
the best, standard and worst parameter choices are presented in Figure 3.
Interestingly, the standard choice is less often the best (σ = 1) than the
worst and best.

4.3 CPU time sensitivity

We now turn to sensitivity in CPU time and analyze the third cluster of
the efficient frontier, which is the most efficient for this criterion.

Table 7 presents the relative performance in CPU time of all considered
choices of η1 and η2 when α1 and α2 are fixed to their optimal value (see
Table 4). Although the best performance is obtained for η1 = 0.15 and
η2 = 0.999, we see that the choices of η1 between 0 and 0.1 for η2 = 0.99
and 0.995 remain highly efficient. The general conclusions in terms of CPU
time are thus very consistent with those obtained when considering iteration
counts: small values of η1 are best and a choice of η2 larger that 0.99 is
comparatively better than that of a smaller value.
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Fig. 3. Iteration performance profiles for the best, standard and worst parameter choices

η2 0.50 0.60 0.70 0.75 0.80 0.85 0.90 0.95 0.99 0.995 0.999
η1

0.00 0.47 0.44 0.46 0.47 0.51 0.63 0.72 0.86 0.97 0.97 0.89
10−6 0.46 0.44 0.46 0.47 0.51 0.64 0.72 0.86 0.98 0.97 0.89
10−5 0.46 0.44 0.45 0.47 0.51 0.63 0.72 0.86 0.96 0.97 0.88
10−4 0.45 0.43 0.45 0.47 0.51 0.62 0.72 0.85 0.96 0.96 0.87
10−3 0.45 0.43 0.45 0.46 0.50 0.61 0.70 0.85 0.96 0.97 0.87
10−2 0.45 0.43 0.45 0.55 0.51 0.62 0.71 0.91 0.96 0.96 0.87
0.10 0.32 0.40 0.43 0.44 0.57 0.60 0.79 0.91 0.97 0.92 0.97

0.15 0.28 0.35 0.41 0.43 0.54 0.50 0.74 0.92 0.93 0.96 1.00
0.20 0.31 0.34 0.42 0.44 0.48 0.52 0.82 0.73 0.85 0.86 0.86
0.25 0.32 0.39 0.39 0.44 0.44 0.49 0.76 0.73 0.87 0.91 0.91
0.30 0.30 0.34 0.41 0.42 0.45 0.53 0.74 0.72 0.90 0.85 0.85
0.40 0.28 0.34 0.39 0.37 0.48 0.50 0.66 0.72 0.81 0.80 0.80

Table 7. Relative performance in CPU time as a function of η1 and η2 for fixed α1 = 0.33
and α2 = 5

The relative CPU time performance of all considered choices of α1 and
α2 (for values of η1 and η2 fixed to their optimum) are finally shown in
Table 8. Again, the conclusions follow the lines stated above: values of α1

should be moderate while values of α2 should definitely exceed the standard
choice of 2.

Finally, Figure 4 shows the CPU-time performance profiles for the best,
standard and worst parameter choices. Again the profile for the best choice
indicates a clear superiority of this variant on the other two.
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α2 1.50 2.00 2.50 3.00 3.50 5.00
α1

0.10 0.67 0.77 0.87 0.92 0.74 0.90
0.25 0.79 0.78 0.87 0.79 0.82 0.94

0.33 0.75 0.89 0.88 0.78 0.79 1.00
0.50 0.72 0.78 0.67 0.71 0.73 0.69
0.75 0.58 0.66 0.56 0.47 0.49 0.54

Table 8. Relative performance in CPU time as a function of α1 and α2 for fixed η1 = 0.15
and η2 = 0.999

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

σ

p(
σ)

Best
Standard
Worst

Fig. 4. CPU time performance profiles for the best, standard and worst parameter choices

4.4 Tentative recommendations

Recommending parameter values in general is always somewhat risky. The
actual performance of an algorithm may indeed strongly depend on the class
of problems on which it is applied, and the conclusions of this study rely
on a particular test-problem set. The values suggested here are therefore
best seen as appropriate for general purpose use and are not intended to
replace application dependent choices. This said, it seems that a reasonable
parameter choice could be

η1 = 0.0001, η2 = 0.99, α1 = 0.25, α2 = 3.5.

If distinguishing between the two measures of efficiency is critical, the values
suggested in Sections 4.2 and 4.3 might be considered, but direct experience
remains of course the best source of inspiration.
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5 Conclusions

We have performed simple, systematic, tests with a basic trust-region algo-
rithm for unconstrained programming. The test problems are taken from the
CUTEr collection and our algorithm underwent tests for nearly 4000 values
of the trust-region parameters. The commonly used “standard” values for
these parameters appear not to be the best choice and alternative values
have been pointed out, emphasizing the gain that these could produce over
the standard values.

Only simple, multiplicative, updating rules have been used in this algo-
rithmic framework. The authors are well aware that other rules could have
been tested and that a much finer grid could have been used. The values of
the α parameters could also be determined dynamically using a second or
third degree polynomial interpolation of the objective function, or of the ρ

function. While the conclusions drawn here therefore remain tentative and
dependent on a particular set of test problems, the authors believe that they
may be of interest for algorithm developers.
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Moré JJ (1983) Recent developments in algorithms and software for trust region methods.
In A. Bachem, M. Grötschel, and B. Korte, editors, Mathematical Programming: The
State of the Art, pages 258–287, Heidelberg, Berlin, New York, Springer Verlag
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